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We compute the Rényi entropies of the massless Dirac field on the Euclidean torus (the Lorentzian
cylinder at non-zero temperature) for arbitrary spatial regions. We do it by the resolvent method,
i.e., we express the entropies in terms of the resolvent of a certain operator and then use the explicit
form of that resolvent, which was obtained recently. Our results are different in appearance from
those already existing in the literature (obtained via the replica trick), but they agree perfectly, as
we show numerically for non-integer order and analytically for integer order. We also compute the
Rényi mutual information, and find that, for appropriate choices of the parameters, it is non-positive
and non-monotonic. This behavior is expected, but it cannot be seen with the simplest known Rényi
entropies in quantum field theory because they are proportional to the entanglement entropy.

I. INTRODUCTION

In the last years, the use of ideas and results coming
from quantum information theory has provided deep in-
sights into the properties of quantum field theory (QFT).
Some examples are the proof of the irreversibility of the
renormalization group flow in various dimensions [1–4],
the formulation of a well-defined version of the Beken-
stein bound [5] and several energy inequalities [6–9].
There have also been many applications to holography
(see [10] for a review) and, more recently, to the black
hole information problem [11–13].

In this context, one is typically interested in quantify-
ing the degree of mixing of a density matrix ρ obtained by
reducing a given global state to a certain spatial region.
The usual measure is the von Neumann entropy (which
for reduced states is also called entanglement entropy),
but a more complete characterization of the degree of
mixing of ρ is provided by the Rényi entropies,

Sn =
1

1− n
log (Tr ρn) , (1)

where n is a positive real number called the order of the
Rényi entropy. The entanglement entropy is obtained
by taking the limit n → 1 and applying l’Hôpital’s rule
[14]. The Rényi entropies are positive and monotonically
decreasing with n, so they have a limit as n → ∞. This
limit is called the min-entropy, and it gives the largest
eigenvalue, pmax, of ρ, S∞ = − log pmax.

In the context of QFT, the Rényi entropies are ultra-
violet divergent, so they must be regulated with a short-
distance cutoff. However, with the Rényi entropies of
multicomponent regions one can construct a finite quan-
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tity, the Rényi mutual information (RMI)

In(A : B) = Sn(A) + Sn(B)− Sn(A ∪B), (2)

where A and B denote spatial regions. In recent years, a
lot has been learned about Rényi entropies of multicom-
ponent regions for different theories, mainly conformal
field theories (CFTs). A partial list of references includes
[15–21] in 1 + 1 dimensions and [22–24] in higher dimen-
sions. However, exact results for arbitrary regions and
arbitrary n ∈ R+ are only available for the massless Dirac
field in 1+1 dimensions. There is a result [25] on the Eu-
clidean plane (i.e., Minkowski spacetime at zero tempera-
ture), from which one can obtain results on the Euclidean
cylinders (Minkowski spacetime at non-zero temperature
and the Lorentzian cylinder at zero temperature) by a
conformal transformation. This result was later general-
ized to the Euclidean torus (the Lorentzian cylinder at
non-zero temperature) in [26] (see also [27]).

The method used in the above references is the replica
trick, which is based on the observation that Rényi en-
tropies of integer order n ̸= 1 are related to the partition
function of the theory on a non-trivial manifold. One
computes this partition function, thereby obtaining the
integer Rényi entropies, and then analytically continues
to arbitrary n. In the case of the torus, the last step is
not obvious at first sight, because n enters in the integer
Rényi entropies as the number of terms of a sum. Never-
theless, the authors of [26, 27] managed to extend their
results to arbitrary n in the form of an infinite series.

In a recent paper [28] (see also [29]), we computed the
entanglement entropy (n = 1) of the massless Dirac field
on the torus by a different method, other than the replica
trick, and we obtained a result which is formally differ-
ent from that of [26, 27] (it involves an integral instead
of a series) but nevertheless agrees with it. The starting
point of the method is a general relation [14] (valid for
free field theories in Gaussian states) between the entan-
glement entropy of a region V and the two-point function
G, restricted to pairs of points in V and viewed as an op-
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erator which acts on functions by convolution. This rela-
tion can be reexpressed in terms of the resolvent of G, so
if one manages to compute the resolvent for the theory
and state of interest one can obtain the entropy. The ad-
vantage of this method is that it yields directly the result
for n = 1, without need of analytically continuing from
other values of n. In [30] (see also [31]) we computed the
resolvent for the massless Dirac field on the torus, and in
[28] we used it to obtain the entanglement entropy.

The purpose of this paper is to extend the above anal-
ysis to Rényi entropies of arbitrary order. As in the case
of the entanglement entropy, there is a general relation
between the Rényi entropies and the correlator G for free
field theories in Gaussian states. We will rewrite this re-
lation in terms of the resolvent of G, and then use the
resolvent computed in [30] to obtain the Rényi entropies
of the massless Dirac field on the torus. Our results are
valid for arbitrary n ∈ R+ and arbitrary spatial regions.
Again, they are formally different from those of [26, 27],
but we will show that they agree, numerically for non-
integer n and analytically for integer n. We will also show
that our general formula reduces to our previous result
for the entanglement entropy in the case n = 1, and study
the limits where one of the periods of the torus is sent to
infinity so that it becomes a cylinder. Finally, we will use
our results for the Rényi entropies to compute the RMI
in simple cases.

As is well-known, the entanglement entropy is subaddi-
tive and strongly subadditive; in other words, the mutual
information is positive and monotonic (i.e., it grows with
the size of the subsystems). These properties are in gen-
eral not shared by the RMI with n ̸= 1. For example, for
two qubits A and B in the separable state

ρAB =

1∑
i,j=0

pij |ij⟩⟨ij| (3)

with p00 = p01 = p10 = 1/3 and p11 = 0, it is straightfor-
ward to see that I∞(A : B) = log(3/4) < 0. Moreover,
since the Rényi entropies of the empty subsystem van-
ish, we have I∞(A : ∅) = 0 > I∞(A : B), thus breaking
monotonicity. As far as we know, no example like this of a
non-positive and non-monotonic RMI has been reported
in the context of QFT. The simplest known Rényi en-
tropies (those of the massless Dirac field on the plane, or
their conformal transformations to the cylinders) do not
provide such an example, because they are proportional
to the entanglement entropy with a constant coefficient
(independent of the spatial region) and hence they are
subadditive and strongly subadditive. One might naively
wonder whether this is a general property of QFT. We
will rule out this possibility by showing that, for ap-
propriate choices of the parameters, our RMIs are non-
positive and non-monotonic.

The paper is organized as follows. In section II we
present the general relation between the Rényi entropies
of Dirac fields in Gaussian states and the correlator G,
and rewrite it in terms of the resolvent ofG. In section III

we particularize to the massless field on the torus, and use
the explicit form of the resolvent to compute the Rényi
entropies. In section IV we explore some particular cases,
namely the limits where the torus becomes a cylinder, the
case n = 1 and the other integer values of n. In section
V we compute the RMI in simple cases and study its
positivity and monotonicity properties. And we close in
section VI with a discussion of our results. The paper
also contains two appendices: in appendix A we give the
relation between the Weierstrass and the Jacobi theta
functions, which is useful for comparison with previous
literature, and in appendix B we discuss the properties of
the Weierstrass elliptic function, which we use to study
the positivity and monotonicity of the RMI.

II. RÉNYI ENTROPIES OF A DIRAC FIELD IN
A GAUSSIAN STATE

Consider a Dirac field ψ in a Gaussian state, i.e., a state
in which correlation functions obey Wick’s theorem. The
reduction of such a state to a spatial region V is known
to have the form [14, 32]

ρ =
1

Z
exp

[
−
ˆ
V

ddx ddy ψ†(x)K(x, y)ψ(y)

]
, (4)

where Z is a normalization constant, d is the spatial di-
mension and K is a kernel yet to be determined. In
order to fix K we require the state in equation (4) to re-
produce the expectation values of operators localized in
V and since the state is Gaussian we only need to do this

for the correlator Gij(x, y) = ⟨ψi(x)ψ
†
j (y)⟩. Therefore,

we require

Gij(x, y) = Tr
[
ρψi(x)ψ

†
j (y)

]
. (5)

Diagonalizing equation (4) and inserting it into equation
(5) gives us a relation between the eigenvalues of the
kernels G and K, which in turn can be rewritten as the
following operator equation

K = − log
(
G−1 − 1

)
. (6)

Here, both K and G are viewed as operators acting on
vector-valued functions on V (any matrix-valued function
M of two variables naturally defines such an operator via
the equation (Mv)(x) =

´
dyM(x, y)v(y)). Note that G

is positive and, due to the canonical anticommutation
relations, so is 1 − G. This implies that the spectrum
of G is contained in the interval (0, 1), which in turn
guarantees that K is Hermitian. Substituting equations
(4) and (6) into (1) one obtains a formula for the Rényi
entropies of ρ [14],

Sn =
1

1− n
Tr log [Gn + (1−G)

n
] . (7)
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Figure 1: Contour of integration for equation (11). The dis-
tance between the two horizontal stretches is infinitesimally
small. There is no problem at the branch points ξ = ±1/2
because the integrand is continuous there.

Our first purpose is to rewrite this equation in terms of
the resolvent of G,

R(ξ) =
1

ξ − (1/2−G)
. (8)

For that purpose, recall Cauchy’s integral formula: if f
is an analytic function, then

f(1/2− z) =
1

2πi

‰
dξ

f(ξ)

ξ − (1/2− z)
(9)

for any contour enclosing the point 1/2− z. Defining

fn(ξ) =
1

1− n
log [(1/2− ξ)n + (1/2 + ξ)n] , (10)

equation (7) takes the form Sn = Tr fn(1/2−G), so, by
Cauchy’s integral formula, we can write

Sn =
1

2πi
Tr

‰
dξ R(ξ)fn(ξ) (11)

for any contour enclosing the spectrum of 1/2−G and in
whose interior fn is analytic. For generic n, this function
has cuts on the half-lines (−∞,−1/2) and (1/2,∞), and
also at the points where the argument of the logarithm
is real negative; everywhere else, fn is analytic. Taking
into account that the spectrum of 1/2 − G is contained
in the interval (−1/2, 1/2) and that the argument of the
logarithm does not become real negative anywhere near
it (because, for ξ in this interval, (1/2−ξ)n+(1/2+ξ)n >
min{1, 21−n}), a good contour is that of figure 1. This
completes our task of writing the Rényi entropies in terms
of the resolvent of G.

The analysis of this section was quite general: it applies
to Dirac fields of any mass in any number of dimensions,
and to any Gaussian state. In the next sections we will
be more specific.

III. RÉNYI ENTROPIES OF THE MASSLESS
FIELD ON THE TORUS

A. Massless field on the torus

Let us now specialize to a massless field in 1 + 1 di-
mensions. In this case ψ = (ψ+, ψ−) is a two-component
spinor, and the two components (chiralities) decouple
from each other. We take the spatial manifold to be
a circle of length L, so ψ satisfies the boundary condition

ψ(x+ L) = (−1)νψ(x) (12)

with ν ∈ {0, 1}. The periodic case ν = 0 is also called
a Ramond boundary condition, whereas the antiperiodic
case ν = 1 is called a Neveu-Schwarz boundary condition.
We also choose a particular Gaussian state: a thermal
state with inverse temperature β. The correlator in this
case has the form G = diag(G+, G−) with

G±(x, y) = ± 1

2πi

σν(x− y)

σ(x− y ∓ iϵ)
. (13)

In this equation, σ is the Weierstrass sigma function as-
sociated with the complex torus of periods L and iβ,

σ(z) = z
∏
λ̸=0

[(
1 +

z

λ

)
e−

z
λ+ 1

2 (
z
λ )

2]
, (14)

where λ runs over the lattice Λ = {mL+niβ,m, n ∈ Z}.
A related function is the Weierstrass zeta function,

ζ =
σ′

σ
, (15)

and both functions enter in the definition of σν ,

σν(z) = e−[ζ(L/2)+νζ(iβ/2)]z σ(z + L/2 + νiβ/2)

σ(L/2 + νiβ/2)
. (16)

Equation (13) can be rewritten in a perhaps more famil-
iar form by using the relation between the Weierstrass
functions and the Jacobi theta functions, which we give
in appendix A.

In order to gain familiarity with the Weierstrass func-
tions, let us briefly discuss some of their properties (see
[33, 34] for more details). As is clear from its definition,
σ is analytic throughout the complex plane (the infinite
product in (14) has no problems of convergence because
the factors tend quickly to 1 as |λ| → ∞). It has a zero
at the origin, where it has unit derivative, σ′(0) = 1, and
the remaining zeros are the points congruent to the ori-
gin, i.e., which differ from it by an element of the lattice
Λ. It is odd, σ(−z) = −σ(z), and commutes with com-
plex conjugation, σ∗(z) = σ(z∗), so it is real on the real
axis and imaginary on the imaginary axis. Moreover, one
can show that it is quasiperiodic,

σ(z + Pi) = −eζ(Pi/2)(2z+Pi)σ(z), (17)
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where P1 = L and P2 = iβ. As a consequence of these
properties, ζ is analytic except for poles of unit residue
at the points congruent to the origin, it is odd, commutes
with complex conjugation and has the quasiperiodicity

ζ(z + Pi) = ζ(z) + 2ζ(Pi/2). (18)

Integrating ζ along a rectangle of sides L and iβ, and
using the above properties, one obtains a useful relation
between the values of ζ at the half-periods,

iβζ(L/2)− Lζ(iβ/2) = iπ. (19)

As for σν , it is clearly analytic throughout the complex
plane with zeros at the points congruent to L/2+ νiβ/2,
and satisfies σν(0) = 1. Using the quasiperiodicity of σ
one finds that it is even, σν(−z) = σν(z), and commutes
with complex conjugation, and with the help of (19) one
also obtains its quasiperiodicity,

σν(z + Pi) = (−1)νi+1eζ(Pi/2)(2z+Pi)σν(z), (20)

where ν1 = ν and ν2 = 1. Finally, it is helpful to see
what these functions look like when one of the periods is
sent to infinity. In this limit, the infinite product in (14)
becomes basically the Euler product formula for the sine
and one obtains

σ(z) =
P

π
sin

(πz
P

)
e

1
6 (

πz
P )

2

, (21)

where P is the period that stays finite. It follows that

ζ(z) =
π

P

[
cot

(πz
P

)
+

1

3

πz

P

]
. (22)

From the above two equations one obtains the behavior
of σν , which depends on which of the periods is sent to
infinity,

σν(z) =

{
e−

1
6 (

πz
β )

2

L→ ∞
cos

(
δν0

πz
L

)
e

1
6 (

πz
L )

2

β → ∞.
(23)

Note that the asymmetry between both limits only occurs
in the case ν = 0, due to the Kronecker delta above. For
some plots of the Weierstrass functions, see appendix A
of [28].

B. Rényi entropies

The resolvent of the correlator (13) was recently com-
puted in [28, 30, 31] for an arbitrary subset V of the circle
consisting of N disjoint intervals (a1, b1), . . . , (aN , bN ). It

has the form R = diag(R+, R−) with

R± (ξ;x, y) =
1

ξ2 − 1
4

[
ξδ (x− y) (24)

∓ e∓ik[ω(x)−ω(y)]

2πiσ (x− y)

σν (x− y ± ikℓ)

σν (±ikℓ)

]
,

where ℓ =
∑N

i=1(bi − ai) is the total length of V and

k =
1

2π
log

ξ − 1
2

ξ + 1
2

, (25)

ω(x) =

N∑
i=1

log

∣∣∣∣σ (ai − x)

σ (bi − x)

∣∣∣∣ . (26)

In order to obtain the Rényi entropies, we simply have to
insert this result into equation (11). Since that equation
involves a trace, we will ultimately set x = y, so it is
convenient to expand the second term in the resolvent in
powers of x− y. This gives

R±(ξ;x, y) =
1

ξ2 − 1
4

{
ξδ (x− y)∓ 1

2πi(x− y)

+
1

2πi
[ikω′(y)− ζν(ikℓ)]

}
+O(x− y), (27)

where we have defined

ζν(z) =
σ′
ν(z)

σν(z)
(28)

= ζ(z + L/2 + νiβ/2)− ζ(L/2)− νζ(iβ/2).

Note from the properties of σν (or alternatively from
those of ζ) that ζν is analytic except for poles at the
points congruent to L/2 + νiβ/2, it is odd, commutes
with complex conjugation and has the same quasiperiod-
icity as ζ. Now, the first two terms in (27) do not con-
tribute to the Rényi entropy, because the corresponding
terms in the integrand of (11) are analytic in ξ inside the
contour and hence integrate to zero (note that there is no
problem at the points ξ = ±1/2 of the contour, because
fn vanishes there). The remaining two terms in (27) sur-
vive, because k has a cut on the interval (−1/2, 1/2), so
the Rényi entropy is

Sn = − 1

2π2

ˆ
V

dx

‰
dξ

ξ2 − 1
4

[ikω′(x)− ζν(ikℓ)] fn(ξ).

(29)
The integral in x is straightforward,

ˆ
V

dxω′(x) =

N∑
i=1

[ω(bi − ϵ)− ω(ai + ϵ)] = 2Ξσ, (30)
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Figure 2: Integration path C, first appearing in equation (32).
Both lines extend to infinity.

where we define

Ξf =

N∑
i=1

log
f(bi − ai)

ϵ

+
∑
i̸=j

log
f(|bi − aj |)√

f(|ai − aj |)f(|bi − bj |)
(31)

for positive functions f on the interval (0, L) (such as σ).
Note that we had to introduce a cutoff ϵ to regulate a di-
vergence of the integral at the endpoints of the intervals;
this is the usual divergence of the entropy in QFT. Sub-
stituting equation (30) into (29), and changing variables
from ξ to k, we obtain

Sn =
1

π

ˆ
C
dk [2ikΞσ − ℓζν(ikℓ)] rn(k), (32)

where the integration path C is shown in figure 2 and

rn(k) =
1

1− n
log

[
(1− e−2πk)−n + (1− e2πk)−n

]
. (33)

With the further change of variables k = q/2π ± i/2,
and using that ζν is odd and commutes with complex
conjugation, equation (32) takes the form

Sn =

ˆ ∞

−∞
dq g(q)sn(q) (34)

with

g(q) =
1

π2

{
Ξσ − ℓRe

[
ζν

(
ℓ

2
+
iqℓ

2π

)]}
(35)

and

sn(q) =
1

1− n
log

[
(1 + e−q)−n + (1 + eq)−n

]
. (36)

Note that sn(q) is itself a Rényi entropy: it is the Rényi
entropy of the probability distribution p0 = 1/(1 + e−q),
p1 = 1/(1 + eq) for a two-outcome experiment. The in-

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

Figure 3: Rényi entropies as a function of n. We plot
the Rényi entropy of one interval of length ℓ as a function
of n for the values ℓ = 1/8 (bottom), ℓ = 1/4 (middle) and
ℓ = 3/4 (top), with L = 1, β = 9/10, ϵ = 1/100 and ν = 1.
The negative slope of these curves is a general property of the
Rényi entropy.

tegral of this function is readily computed,

ˆ ∞

−∞
dq sn(q) =

π2

6

(
1 +

1

n

)
, (37)

so we finally obtain

Sn =
1

6

(
1 +

1

n

)
Ξσ +∆Sn, (38)

where

∆Sn = − ℓ

π2

ˆ ∞

−∞
dqRe

[
ζν

(
ℓ

2
+
iqℓ

2π

)]
sn(q). (39)

This equation can be rewritten in a slightly more compact
(although perhaps less transparent) form by undoing our
last change of variables,

∆Sn = − ℓ

π

ˆ
C
dk ζν(ikℓ)rn(k). (40)

Equation (38), together with (39) or alternatively (40), is
the main result of this paper. It gives the Rényi entropies
of a massless Dirac field on the torus, for an arbitrary
spatial region and for arbitrary n ∈ R+. The form of
this result is quite different from the series expansions of
[26], but figures 3, 4 and 5 show numerical evidence that
both results are the same. In these plots, the solid col-
ored curves are computed with our expressions, and the
dashed black curves are computed with equations (20),
(21) and (43) of [26]. Below we will also show analyt-
ically that both results coincide in the case of integer
n. Note that the first term in (38) does not depend on
the boundary conditions (i.e., on ν), whereas the second
term is insensitive to most details of the spatial region
and only cares about its total length ℓ.

The structure of our result for the Rényi entropy has
a simple interpretation. To see this, let us go back to the
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Figure 4: Neveu-Schwarz boundary conditions. We plot
the n = 1/2 Rényi entropy for one interval as a function its
length ℓ for β = 6/10 (top), β = 9/10 (middle) and β = 5
(bottom), with L = 1, ϵ = 1/100 and ν = 1. In the limit of
zero temperature (bottom curve) the plot is symmetric with
respect to the middle point of the interval, as corresponds to
a pure global state (the vacuum).
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Figure 5: Ramond boundary conditions. We plot the
n = 1/2 Rényi entropy for one interval as a function its length
ℓ for β = 1/3 (top), β = 2/3 (middle) and β = 10 (bottom),
with L = 1, ϵ = 1/100 and ν = 0. In the limit of zero
temperature (bottom curve), the plot is not symmetric with
respect to the middle point of the interval. This is due to the
degeneracy of the ground state in the Ramond case, which
implies that the thermal state remains mixed in the limit of
zero temperature.

general formula for the reduction of a Gaussian state to a
spatial region V , equation (4). Expanding ψ in a basis of
eigenfunctions ofK (which we will refer to as modes), the
reduced density matrix factorizes as a product of single-
mode density matrices,

ρ =
∏
i

ρi ρi =
e−qia

†
iai

1 + e−qi
, (41)

where qi is the eigenvalue of the i-th mode (we call it the
modular energy of the mode) and ai is a fermionic annihi-

lation operator, satisfying {ai, aj} = 0 and {ai, a†j} = δij .
In consequence, the Rényi entropy is a sum of single-

mode Rényi entropies,

Sn =
∑
i

Sn(ρi) =
∑
i

sn(qi), (42)

where sn is the function defined in (36). This formula can
be rewritten in the form (34), where g is the density of
modes, i.e., g(q)dq is the number of modes with modular
energies between q and q + dq. Thus, equation (34) is
valid for generic Dirac fields in generic Gaussian states.
Equation (35) then gives the density of modes for the
massless field on the torus.

IV. PARTICULAR CASES

A. Cylinder limits

Let us see what the Rényi entropies look like when one
of the periods of the torus is sent to infinity, so that the
torus becomes a cylinder. Consider first the case L→ ∞.
Using the form of σ in this limit, equation (21), we find

Ξσ = Ξv −
1

6

(
πℓ

β

)2

(43)

with

v(x) =
β

π
sinh

(
πx

β

)
, (44)

whereas the form of σν , equation (23), implies

ζν(z) = −1

3

(
π

β

)2

z. (45)

Substituting the above equations into (35) we find that
the density of modes is g(q) = Ξv/π

2, independent of q,
so, by (34) and (37), the Rényi entropy is

Sn =
1

6

(
1 +

1

n

)
Ξv. (46)

Not surprisingly, the dependence on the boundary con-
ditions is lost in this limit. This result can also be recov-
ered from the plane result of [25] by a suitable conformal
transformation.

The limit β → ∞ is richer, due to the fact that ζν
has a slightly more complicated form, see equation (23).
Proceeding analogously to the previous case, we find

Sn =
1

6

(
1 +

1

n

)
Ξw + δν0 ∆n(ℓ), (47)

where

w(x) =
L

π
sin

(πx
L

)
(48)
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and

∆n(ℓ) =

ˆ ∞

−∞
dq h(ℓ, q)sn(q) (49)

h(ℓ, q) =
ℓ

πL
Re

[
tan

(
πℓ

2L
+
iqℓ

2L

)]
. (50)

The integral (49) can be computed explicitly in the cases
ℓ = 0 (where it vanishes) and ℓ = L. To study the latter
case, note that h can be rewritten as

h(ℓ, q) = − ℓ

πL
Im

{
coth

[
qℓ

2L
+
iπ(L− ℓ)

2L

]}
. (51)

Since coth(x+ iϵ) = cothx− iπδ(x), where the principal
part is understood in the first term, we have h(L, q) =
2δ(q) and therefore

∆n(L) = 2sn(0) = log 4. (52)

One can easily see (most easily in the case of a single in-
terval) that Ξw is invariant under the replacement of the
region V by its complement. Hence, for Neveu-Schwarz
boundary conditions (ν = 1), equation (47) implies that
the Rényi entropies of complementary regions coincide,
as corresponds to a pure state (which in this case is the
vacuum). This is shown in figure 4. The same is not
true for Ramond boundary conditions (ν = 0), because
∆n(L − ℓ) ̸= ∆n(ℓ). The physical reason is that the
massless field with Ramond boundary conditions has two
constant modes (one for each chirality), which have zero
energy, and hence the ground state is degenerate; it has
degeneracy 4 because each of the constant modes can
be either empty or occupied. This means that the zero-
temperature state is not a pure state, but a mixed state
where each of these four vacua occurs with equal proba-
bility. The Rényi entropy of such a state is log 4 for any
value of n, which is precisely what we get from equations
(47) and (52) when the spatial region is the whole cir-
cle, i.e., one interval of length ℓ = L − ϵ. The behavior
of the Rényi entropy in the Ramond case is shown in
figure 5. Equation (47) can also be recovered from the
plane results of [25] by a conformal transformation in the
Neveu-Schwarz case, but not in the Ramond case as far
as we know.

B. Entanglement entropy

Taking the limit n → 1 in our general formula for the
Rényi entropy, equations (38) and (40), we obtain the
entanglement entropy,

S =
1

3
Ξσ +∆S, (53)

where

∆S = − ℓ

π

ˆ
C
dk ζν(ikℓ)r(k) (54)

and

r(k) =
log(1− e−2πk)

1− e−2πk
+

log(1− e2πk)

1− e2πk
. (55)

This result can be simplified. Indeed, since ζν only has
poles at the points congruent to L/2 + νiβ/2, the in-
tegrand of (54) is analytic on the strip bounded by C
(see figure 2) except on the real axis, where r has a cut.
Moreover, the integrand decays almost exponentially as
Re k → ±∞ (ζν grows, but only linearly). This means
that both lines of C can be pushed towards the real axis,
so that equation (54) becomes

∆S = − ℓ

π

ˆ ∞

−∞
dk ζν(ikℓ) [r(k − iϵ)− r(k + iϵ)]

= 2iℓ

[ˆ 0

−∞
dk

ζν(ikℓ)

1− e−2πk
−
ˆ ∞

0

dk
ζν(ikℓ)

1− e2πk

]
= 4iℓ

ˆ ∞

0

dk
ζν(ikℓ)

e2πk − 1
, (56)

where in the last step we have used that ζν is odd. There-
fore, the entanglement entropy is

S =
1

3
Ξσ + 4iℓ

ˆ ∞

0

dk
ζν(ikℓ)

e2πk − 1
. (57)

This is the same result we had obtained previously in [28]
(up to a factor of 2 because the result presented there
corresponds to a single chirality).

C. Integer order

In the case n ∈ Z≥2, the integral in (40) can be explic-
itly computed. To see this, let us introduce the function

(Lσν)(z) =

ˆ z

0

dw ζν(w) (58)

for z on the strip −L/2 < Re z < L/2, where the integra-
tion path is required to be contained entirely in that strip.
Since ζν has no poles on the strip, Lσν is single-valued,
i.e., at each point z it is independent of the path chosen
to go from 0 to z. Moreover, it is analytic, (Lσν)

′ = ζν .
Note that (Lσν)(z) is a logarithm of σν(z), but it may not
be the standard logarithm with imaginary part in (−π, π)
(the difference is an integer multiple of 2πi, which may
jump from point to point because the standard logarithm
may have cuts). However, for real x we do have

(Lσν)(x) =

ˆ x

0

dy ζν(y) = log |σν(x)|, (59)
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because ζν is real on the real line. Now, going back to
(40), note that the integrand decays almost exponentially
as Re k → ±∞, so we can close the contour of figure 2
by adding to C the vertical sides of the rectangle,

∆Sn = − ℓ

π

‰
dk ζν(ikℓ)rn(k). (60)

Integrating by parts we obtain

∆Sn =
1

πi

‰
dk (Lσν)(ikℓ) r

′
n(k), (61)

and the explicit form of the above derivative is

r′n(k) =
2πn

1− n

[
1

1− e2πk
− 1

1 + (−e2πk)n

]
. (62)

For generic n, this function has a cut on the real axis.
However, for integer n the cut disappears and r′n becomes
meromorphic, so we can evaluate the integral by residues.
The poles are at k = im/n with m = −(n− 1)/2,−(n−
1)/2 + 1, . . . , (n− 1)/2, so using (59) we obtain

∆Sn =
2

1− n

n−1
2∑

m=−n−1
2

log |σν(mℓ/n)|. (63)

Together with (38), this is the result obtained in [26, 27]
for integer order. That result was expressed in terms of
Jacobi theta functions; in appendix A we give the relation
between the Weierstrass and the theta functions, and use
it to verify the agreement a bit more explicitly.

We can use the result (63) to obtain the min-entropy
S∞. Since the difference between two consecutive values
of m is ∆m = 1, we can rewrite (63) as

∆Sn =
2n

1− n

n−1
2∑

m=−n−1
2

∆(m/n) log |σν(mℓ/n)|. (64)

In the limit n→ ∞ this sum becomes an integral,

∆S∞ = −2

ˆ 1/2

−1/2

dx log |σν(xℓ)|, (65)

so the min-entropy is

S∞ =
1

6
Ξσ − 2

ˆ 1/2

−1/2

dx log |σν(xℓ)|. (66)

This gives the largest eigenvalue of the reduced density
matrix. Of course, this eigenvalue is very small, and van-
ishes when the cutoff is removed. This is not special of
the case we are considering: the reduced density matrix
is not well-defined in QFT.

! !

Figure 6: Pair of intervals for which we compute the RMI.

V. RÉNYI MUTUAL INFORMATION

With our result for the Rényi entropies, it is straight-
forward to compute any RMI. For the simple configura-
tion of figure 6 (two intervals of length ℓ arranged sym-
metrically), the RMIs have the form

In =
1

6

(
1 +

1

n

)
F +∆In, (67)

where

F (ℓ) = log

[
σ2(L/2)

σ(L/2− ℓ)σ(L/2 + ℓ)

]
(68)

and ∆In is the contribution from the second term in (38).
We display it explicitly for two extreme values of n,

∆I(ℓ) = 8i

ˆ ∞

0

dx
ζν(ix)− ζν(2ix)

e2πx/ℓ − 1
(69)

∆I∞(ℓ) = −2

ˆ 1/2

−1/2

dx log

∣∣∣∣ σ2
ν(xℓ)

σν(2xℓ)

∣∣∣∣ (70)

(the absence of subscript means n = 1). Note that the
dependence on the cutoff has dropped out from (67), as
expected: the RMIs are finite.
Let us check that the mutual information (n = 1) is

positive and monotonic, as it should be. Since it vanishes
at ℓ = 0, as is clear from the above equations, it suffices
to show that it is monotonic, I ′(ℓ) ≥ 0. We have

F ′(ℓ) = ζ(L/2− ℓ)− ζ(L/2 + ℓ) (71)

and

∆I ′(ℓ) =
4πi

ℓ2

ˆ ∞

0

dx
x [ζν(ix)− ζν(2ix)]

sinh2(πx/ℓ)
. (72)

The above differences of zeta functions can be bounded
using the properties of the Weierstrass elliptic function

℘ = −ζ ′, (73)
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which is periodic, ℘(z + Pi) = ℘(z), hence the name (el-
liptic means meromorphic and periodic). We also define

℘ν(z) = −ζ ′ν(z) = ℘(z + L/2 + νiβ/2). (74)

As shown in appendix B (see the upper-left panel of figure
8), for real x we have ℘(x) ≥ ℘(L/2). Integrating this
inequality over the interval (L/2− ℓ, L/2 + ℓ) we obtain

F ′(ℓ) ≥ 2ℓ℘(L/2). (75)

On the other hand, it is clear from the lower-right panel
of figure 8 that ℘ν(iy) ≤ ℘(L/2) for real y. Integrating
this inequality in y from x to 2x, with x positive, we find

i [ζν(ix)− ζν(2ix)] ≥ −℘(L/2)x, (76)

so

∆I ′(ℓ) ≥ −4π

ℓ2
℘(L/2)

ˆ ∞

0

dx
x2

sinh2(πx/ℓ)

= −2ℓ

3
℘(L/2). (77)

Substituting the inequalities (75) and (77) into (67) with
n = 1 we find that I ′(ℓ) ≥ 0, as we wanted to show.
Hence, the mutual information is positive and monotonic,
as it should be.

Unlike the mutual information, the RMIs with n ̸= 1
are not expected to be positive or monotonic in general.
Let us study the behavior of I∞. Expanding to fourth
order around ℓ = 0 we find

F (ℓ) = ℘(L/2)ℓ2 +
1

12
℘′′(L/2)ℓ4 +O(ℓ6) (78)

and

∆I∞(ℓ) = −1

6
℘ν(0)ℓ

2 − 7

480
℘′′
ν(0)ℓ

4 +O(ℓ6), (79)

which after substitution into (67) yields

I∞(ℓ) =
1

6
[℘(L/2)− ℘ν(0)] ℓ

2

+
1

12

[
1

6
℘′′(L/2)− 7

40
℘′′
ν(0)

]
ℓ4 +O(ℓ6). (80)

Now, the lower-right panel of figure 8 makes it clear that
℘1(0) < ℘(L/2), so in the Neveu-Schwarz case, ν = 1,
the first term above is positive and hence I∞ is positive
and monotonic, at least near ℓ = 0. In contrast, in the
Ramond case, ν = 0, the first term above cancels and we
have

I∞(ℓ) = − 1

1440
℘′′(L/2)ℓ4 +O(ℓ6). (81)

Since ℘′′(L/2) > 0, it follows that I∞ is non-positive and
non-monotonic. This is shown in figure 7, where we also
show how positivity and monotonicity are recovered as

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Figure 7: Ramond RMIs for the configuration of figure 6 as
a function of ℓ, for n = 1 (top curve), n = 10 (middle) and
n = ∞ (bottom), with L = 10, β = 50. The top curve is
positive and monotonic, but the other two are not.

n → 1. Note that the effect is small (the temperature
in figure 7 is chosen so as to make ℘′′(L/2) as large as
possible), but nevertheless it is still there.

VI. DISCUSSION

In this paper we computed the Rényi entropies of the
massless Dirac field on the torus for arbitrary spatial re-
gions. These quantities had already been computed in
[26, 27], but by a different method, the replica trick. Here
we used the resolvent method, i.e., we expressed the en-
tropies in terms of the resolvent of the two-point function
(thought of as an operator) and used the explicit form of
that resolvent obtained recently in [28, 30]. Our results
are in perfect agreement with those of [26, 27] but have a
different form (they involve an integral instead of an in-
finite series). Thus, they serve as a cross-check and also
provide an alternative representation for the Rényi en-
tropies, which may be useful for numerical applications.

We also computed the RMIs in simple cases, and found
that, for appropriate choices of the parameters, they are
non-positive and non-monotonic. This behavior is ex-
pected, but we are not aware of previous examples in
the context of QFT. The simplest known Rényi entropies
(those of the massless Dirac field on the plane and their
conformal transformations to the cylinders) do not have
this behavior. The violation of positivity and monotonic-
ity we find is very small; it would be interesting to know
if there is a general reason behind this or it is just a
peculiarity of the case we are considering.

Appendix A: Relation between Weierstrass and
Jacobi theta functions

Following the conventions of [35] for the Jacobi theta
functions θi (i = 1, 2, 3, 4), we have (see theorem 2, chap-
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ter V of [33])

σ(z) = L
θ1(z/L)

θ′1(0)
exp

(
ηz2

)
, (A1)

where η = ζ(L/2)/L and we are omitting the depencence
of θi on the modular parameter τ = iβ/L. This implies

σν(z) =
θν+2(z/L)

θν+2(0)
exp

(
ηz2

)
. (A2)

These equations can be used to rewrite all the equations
of this paper involving Weierstrass functions in terms of
theta functions. In particular, setting L = 1 we have

Ξσ = Ξθ1/θ′
1(0)

+ ηℓ2 (A3)

and, for n ∈ Z,

n−1
2∑

m=−n−1
2

log

∣∣∣∣σν (mℓn
)∣∣∣∣ =

n−1
2∑

m=−n−1
2

log

∣∣∣∣∣θν+2

(
mℓ
n

)
θν+2(0)

∣∣∣∣∣
+

1

12
(n− 1)

(
1 +

1

n

)
ηℓ2. (A4)

Substituting the above two equations into (38) and (63),
we find that our result for integer n coincides exactly
with equations (20)-(22) of [26].

Appendix B: Weierstrass elliptic function

The properties of the Weierstrass elliptic function ℘
follow easily from those of ζ, together with general prop-
erties of elliptic functions. It has a pole at the origin,
around which it behaves as ℘(z) = 1/z2 + . . . , and no
other poles except for the congruent points. It is even,
which, together with periodicity, implies the additional
parity ℘(ωi − z) = ℘(ωi + z) with respect to the points
ω1 = L/2, ω2 = iβ/2 and ω3 = L/2 + iβ/2. Since these
points are not poles (because they are not congruent to
the origin), it follows that they are stationary points of ℘
or, in other words, zeros of ℘′. A basic property of elliptic
functions is that, within a cell (i.e., a rectangle of sides
L and iβ), the number of poles is equal to the number of
zeros, all weighted by their multiplicity. Clearly, ℘′ is an
elliptic function with a triple pole at the origin and no

other poles except for the congruent points, so it must
have exactly 3 zeros within a cell, which implies that ω1,
ω2 and ω3 are the only stationary points of ℘ except for
the congruent points. Finally, ℘ commutes with complex
conjugation, which, together with its parity properties,
implies that it is real on the real axis and its translations
by multiples of iβ/2, and also on the imaginary axis and
its translations by multiples of L/2.

Let us see what ℘ looks like on the lines where it is
real. It suffices to look at the intervals (0, L), i(0, β),
(0, L) + iβ/2 and L/2 + i(0, β); the behavior everywhere
else is determined by periodicity. Note that (taking seri-
ously that the intervals are open), ℘ has no poles on any
of the intervals, and its only stationary point within each
interval is the middle point, around which it is symmet-
ric. It follows that the middle point is either an absolute
maximum or an absolute minimum within the interval.
Now, for x ∈ R we have ℘(x) → +∞ and ℘(ix) → −∞
as x→ 0. Therefore, the middle point of (0, L) is a min-
imum, and that of i(0, β) is a maximum. This means
℘′′(L/2), ℘′′(iβ/2) ≥ 0, which in turn implies that the
middle point of the interval (0, L) + iβ/2 is a maximum
and that of L/2 + i(0, β) is a minimum. This discussion
leads to the qualitative plot of figure 8.

x

℘(x)

℘
(
x+ iβ

2

)

y

℘(iy)

℘
(
L
2 + iy

)

LL
2 ββ

2

Figure 8: Qualitative behavior of the Weierstrass elliptic func-
tion on the lines where it is real.
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a free scalar field in even dimensions,” Phys. Rev. D,
vol. 96, no. 4, p. 045006, 2017.

[25] H. Casini, C. D. Fosco, and M. Huerta, “Entanglement
and alpha entropies for a massive Dirac field in two di-
mensions,” J. Stat. Mech., vol. 0507, p. P07007, 2005.

[26] C. P. Herzog and T. Nishioka, “Entanglement Entropy
of a Massive Fermion on a Torus,” JHEP, vol. 03, p. 077,
2013.

[27] T. Azeyanagi, T. Nishioka, and T. Takayanagi, “Near
Extremal Black Hole Entropy as Entanglement Entropy
via AdS(2)/CFT(1),” Phys. Rev. D, vol. 77, p. 064005,
2008.

[28] D. Blanco, A. Garbarz, and G. Pérez-Nadal, “Entangle-
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