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A B S T R A C T

Background: Trees and forests in drylands help mitigate the challenges through provision of economic products
and vital environmental services such as habitat for biodiversity, prevention of erosion and desertification,
regulation of water, microclimate, and soil fertility. The condition and changes in dry forests can be assessed by
using ecological indicators able to quantify spatial and temporal changes in vegetation. One of the ways to
determine the condition of the forest is to study the dominant tree species and its regeneration. Our study aimed
to assess whether the abundance of Prosopis flexuosa saplings is affected by environmental and biological factors.
Results: To evaluate the first variables we used data from remote sensing such as satellite images and Aster Global
Digital Model (GDEM). The second set of variables was about exotic and native ungulates and we used feces of
these animals and camera traps to take data. We found that sapling abundance related positively to sandy sub-
strates and negatively to Wetness Index. On the other hand, in relation to biological variables, the abundance of
saplings was positively affected by density of adult trees and by number of seeds dispersed by equines, but space
use by Lama guanicoe had a negative relationship with saplings. This research shows that P. flexuosa saplings are
benefited from sandy substrates and the conditions around adult trees. In addition to this, we found that exotic
ungulates in low densities have neutral (i.e. cattle) or positive (i.e. equines) effects on sapling abundance.
Conclusions: Based on these findings, we conclude that regeneration of the population of P. flexuosa in our study
area has no major problems. In addition, we corroborated that the presence of exotic and domestic ungulates in
low densities does not have deleterious consequences for saplings of the dominant tree, P. flexuosa.
1. Introduction

Drylands extend on more than 40% of the earth's surface and are
home to over 2 billion people who depend on the natural resources of
these systems for their livelihoods (Bastin et al., 2017). These ecosys-
tems host 1.1 billion hectares of forest, corresponding to 27% of the
world's forest area (FAO, 2019). Drylands and, therefore, dry forests are
vulnerable to water shortage, drought, desertification, land use,
degradation and climate change impacts, with dangerous ramifications
for the food security, livelihood and well-being of their populations
(Burrell et al., 2020). Trees and forests in these lands help mitigate the
challenges through provision of economic products and vital environ-
mental services such as habitat for biodiversity, prevention of erosion
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and desertification, regulation of water, microclimate and soil fertility
(FAO, 2019).

The condition and changes in dry forests can be assessed by using
ecological indicators able to quantify spatial and temporal changes in
vegetation (Lawley et al., 2015). If maintaining woodland ecological
integrity is one of the goals of conservation, then it is necessary to
evaluate andmonitor the forest's condition. One of the ways to determine
the condition of a forest is to study the dominant tree species and its
regeneration (Monteiro-Henriques and Fernandes, 2018). Dominant
species generally occur in low abundance, are taller, provide a high
proportion of biomass, and create and define ecosystem structure and
processes (Grime, 1998; Ellison et al., 2005).

The establishment, survival and regeneration of trees could be
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affected by several environmental factors (Campos et al., 2016;
M�endez-Toribio et al., 2016). The abundance of saplings of Quercus sp.,
for example, depends upon seed availability, grazing rate and climate
variables (i.e. drought and average temperature) (Monteiro-Henriques
and Fernandes, 2018). In Mexican dry forests, the abundance of saplings
of different species was related to soil attributes and light gaps (Var-
gas-Rodriguez et al., 2005). In drylands, evapotranspiration involves
more than 95% of the water output and depends on atmospheric de-
mands (i.e. incident radiation, humidity, and wind speed) and on soil
moisture (see review by Magliano et al., 2017). This last variable derives
from the combination of weather, vegetation, soil, and landscape attri-
butes. Thus, low primary productivity occurs primarily during periods of
minimum soil moisture and is not directly related to an absence of pre-
cipitation (see review by Schlaepfer et al., 2017). Therefore, atmospheric
demands and soil moisture are of particular concern in dry forests for
they, along with grazing pressure, are the main factors affecting seedling
emergency, sapling establishment, and adult tree permanence (P�aez and
Marco, 2000; Enoki and Abe, 2004; van der Sande et al., 2017; Ball and
Tzanopoulos, 2020).

Such as occurs in temperate forests, where ungulates disperse 44% of
the regional plants (Albert et al., 2015), ungulate-mediated seed
dispersal is, around the world, potentially important for plant demog-
raphy from one generation to the next (Wang and Smith, 2002; Vellend
et al., 2006), and plays a role in metapopulation dynamics (Baltzinger
et al., 2019). These positive interactions could become negative with an
increasing density of ungulates because the impact of their grazing on the
forest is related to their density (Meier et al., 2017; Ramirez et al., 2018).
Ungulate populations are increasing, both native populations (Meier
et al., 2017; Ramirez et al., 2018) and introduced domestic species
(Etchebarne and Brazeiro, 2016; Ball and Tzanopoulos, 2020). These
medium and large-sized animals that are present worldwide explore
large home ranges, daily cover long distances, and are important in plant
dispersal (Baltzinger et al., 2019).

In dry woodlands of the Monte of Argentina, arboreal species of the
genus Prosopis (locally called algarrobos) are the main trees providing
important nature's contributions to people from rural communities, such
as forage for livestock and firewood, and facilitating establishment of
other plant species under their canopies (Rossi and Villagra, 2003;
�Alvarez and Villagra, 2009; Moreno et al., 2018; Villagra and �Alvarez,
2019). In this ecoregion, the probability of finding these trees is higher in
areas with potential moisture and a sandy substratum (Campos et al.,
2016). Prosopis saplings establish in areas with removed vegetation and
increased light level (Augspurger, 1984). They occupy bare and arid
microsites, far from tree and shrub canopies, and with high percentages
of incident light (P�aez and Marco, 2000), because solar radiation avail-
ability improves sapling growth and development (Vilela and Ravetta,
2000). While insolation rate is important for the growth of these plants,
in its early stages the algarrobo also needs humidity in the surface soil to
complete its photosynthetic activities (Villagra, 2000).

Prosopis flexuosa, the dominant tree species in the Monte, is dispersed
by animals, such as endozoochorous ungulates (guanaco, cow, donkey,
horse; Campos and Ojeda, 1997; Campos et al., 2008, 2011). The rela-
tionship with ungulates can affect plant performance differently in the
consecutive stages of the life cycle. For example, cattle move a great
amount of seeds and the number of saplings is higher on grazed sites than
on sites without livestock (Aschero and García, 2012). However, even
though cattle transport a huge amount of P. flexuosa seeds in a spatially
differential manner, trampling activity appears to have an important
impact on seedling survival and sapling establishment (Campos et al.,
2011). In the long term, those sites with high number of seedlings but
with heavy cattle traffic, are the ones with a low occurrence of saplings
(Campos et al., 2011).

Our study aimed to assess whether the abundance of P. flexuosa
saplings is affected by environmental and biological factors. Based on
this, we have two predictions related to environmental variables: the
abundance of saplings will be high 1) on sites with high incident
2

radiation, and 2) on sites with more moisture content. In addition, we
postulate three predictions related to biological variables: 3) sapling
abundance will be negatively related to the density of adult P. flexuosa
trees because saplings need high solar radiation, 4) sapling abundance
will be positively related to the input of seeds provided by ungulate feces,
and 5) on sites intensively used by ungulates, the abundance of saplings
will be low because of animal trampling.

2. Material and methods

2.1. Study area

Research was conducted in a part of the Ischigualasto Provincial Park
(IPP) and its area of influence (29�550 S, 68�050 W, San Juan Province;
Fig. 1), located in the Monte of hills and closed basins ecoregion (Morello
et al., 2012). The study area covers approximately 15,000 ha and lies in
the zone between the park ranger's house and Los Baldecitos locality. The
altitude range of this area is between 1,200 and 1,800 m a.s.l. The desert
climate of the study area is characterized by high temperature amplitude
that ranges from �10 �C to 45 �C. There are poor rain events that occur
primarily between November and February (< 100 mm, Poblete and
Minetti, 1999).

The dominant plant physiognomy is open shrub with no more than
50% of plant cover (M�arquez et al., 2005). The most representative
species are Larrea cuneifolia, Atriplex spegazzinii, Zuccagnia punctata,
Prosopis torquata, and Bulnesia retama (Acebes et al., 2010). The main tree
species, P. flexuosa, is present in five of the ten plant communities
(M�arquez et al., 2005).

The native ungulate guanaco (Lama guanicoe) and the exotic ones,
cattle (Bos primigenius taurus), donkey (Equus africanus asinus), horse
(Equus ferus caballus), and mule (Equus mulus) are present in the area.
These species occur in low densities, and the most abundant one is the
guanaco (< 0.5 ind⋅km�2; Baigún et al., 2008). At the beginning of the
20th century, local people worked as miners and donkeys were the main
pack animals. When the mining activity decreased and people started to
use motorized vehicles, donkeys became feral. Currently, some local
people live on extensive livestock farming; cattle, horses and mules move
freely in the Park and its influence area.

2.2. Saplings

From January to March 2019, we collected data from 38 randomly
chosen sampling points, spaced at least 1 km apart within a 1 km � 1 km
regular grid (150 cells). Sapling abundance was recorded along four 50
m � 4 m (length � width) transects beginning in the center of each cell
and following each orientation (i.e. North, South, East, and West). We
considered all P. flexuosa plants with height less than 1 m and a basal
stem diameter less than 1 cm to be saplings (Aschero and García, 2012).

2.3. Environmental factors

We computed the Local Insolation Index (LII) as an indicator of
incident radiation. This index was calculated as the cosine of the aspect
multiplied by the square root of slope inclination (Cingolani et al., 2010).
Therefore, north-facing slopes (i.e. sunnier) had positive values, whereas
south-facing slopes had negative values, without considering projected
shadows (Cingolani et al., 2010).

The Tasseled Cap transformation (Kauth and Thomas, 1976; Crist and
Cicone, 1984) results in new bands by combining the original bands of
the image to enhance some features of interest. We used the Landsat 8
OLI image (30-m resolution) of the study area, acquired on January 19,
2019 (path 232, row 081). The first Tasseled Cap index (Brightness
Index, BI) provides data on soil signature, the second index (Greenness
Index, GI) reflects vegetation characteristics, and the third index
(Wetness Index, WI) captures information on the interaction of soil and
vegetation moisture. We used BI to determine substratum heterogeneity



Fig. 1. Geographic location of study area and cells sampled.
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because it provides information about reflectivity, particularly of the soil
(Martinelli, 2009; Gatica, 2010; Campos et al., 2015), and WI as a
measure of soil and vegetation moisture. Moreover, as an indicator of soil
moisture, we computed the Topographic Wetness Index (TWI), which
quantifies the role of topography in redistributing water across the
landscape (Beven and Kirkby, 1979). This index combines local upslope
contributing area and slope, and is so able to estimate where water will
accumulate in an area with slope differences.

Both indices (i.e. TWI and LII) were computed from a GDEM (Alos
Palsar-SRTM, 30 m-resolution, https://www.ign.gob.ar/NuestrasActivi
dades/Geodesia/ModeloDigitalElevaciones/Mapa). For BI, WI, TWI and
LII indices, we took into account the pixel values of each of the 38 cells to
calculate mean and standard deviation using a 5� 5 moving window size
(equivalent to 150 m � 150 m, area 2.25 ha). Each statistic value was
assigned to the central pixel of the moving window (Haralick et al.,
1973).
2.4. Biological factors

We estimated adult tree density using the nearest neighbor method
(Silvy, 2012) in each of 38 cells; as central tree we selected the adult
P. flexuosa tree nearest the centroid and its four nearest neighbors. From
these four nearest neighbors, we took into account the one farthest away
from the central tree to define the area for estimating tree density in each
cell. We considered all P. flexuosa plants with height more than 1 m and
diameter at breast height (DBH)> 5 cm to be adults (Aschero and García,
2012).

To assess the effect of ungulate-mediated seed dispersal on abundance
of P. flexuosa saplings, two persons walked randomly alone across each
cell for 15 min and collected fresh ungulate feces. Those samples spaced
at least 5 m apart were considered independent. Because the feces of
donkey, horse, and mule could not be distinguished from one another,
they were grouped as equine feces. In the laboratory, we quantified the
seeds contained in 20% of the total feces collected. Then, taking into
account the average value of seeds present in 20% of the total feces and
the number of feces collected, we estimated the total number of seeds
contained in feces from different ungulates for each cell.

In order to assess intensity of habitat use by ungulates, we put one
camera-trap in the center of each selected cell for 30 consecutive days in
the summer season of 2019. The 38 camera-traps (N¼ 28: Moultrie 999i,
3

Alabaster, AL, USA; and N ¼ 10: Primos Truth Cam 46) were placed at
0.4 m above the ground. Previously tested for their best setup, the
camera-traps were set to take a burst of three photos per shot with a 30-s
delay between them. Records were considered independent when the
individuals could be differentiated or when picture events were sepa-
rated by � 60 min (Rich et al., 2017). We considered only the data from
camera traps that had remained operative for at least 15 days. The photos
of the donkey, horse, and mule were grouped as equines to maintain the
grouping made with the feces samples. To estimate the value of habitat
use intensity for each cell, we used RNmodels (Royle and Nichols, 2003).
These models include the probability of detection, which was evaluated
considering distance to the first visual obstacle, camera-trap models, and
distance to roads. In our models, the probability of occupancy was
included as a constant (~1).
2.5. Statistical analysis

We fitted Generalized Linear Models (GLM) to assess the effect of
environmental (LII, BI, WI, and TWI indices) and biological variables
(density of P. flexuosa adults, input of seed transported in feces, and in-
tensity of habitat use by ungulates) on the abundance of P. flexuosa
saplings, which was included as response variable. For each prediction,
we fitted sets of separate models for environmental and biological effects,
considering all possible additive combinations between the explanatory
variables.

For the environmental variables we fitted two sets of models. One of
these sets included the mean and standard deviation for LII and BI as
explanatory variables (prediction 1), and the other one, the mean and
standard deviation of WI and TWI (prediction 2). The sets of models for
assessing the effect of biological variables considered were three. The
first model had only one explanatory variable, i.e. adult tree density
(prediction 3). The second set of models was fitted to the number of seeds
dispersed by each kind of ungulate: guanacos, cattle and equines (pre-
diction 4), and the last set of models contained the intensity of habitat use
by these ungulates as explanatory variable (prediction 5).

All explanatory variables were standardized by z-scores prior to
analysis. Sapling abundance was fitted to GLMs with Negative Binomial
error distribution because it exhibited overdispersion. We excluded
collinear explanatory variables, i.e. with a Spearman rank correlation
coefficient |ρ| > 0.7 (Appendix I). Then, we assessed the variance
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Table 2
Parameter likelihoods, estimates (� Standard Error) and 95% confidence interval
limits (CL) for biological explanatory variables that affect abundance of
P. flexuosa saplings. In bold explanatory variables with CL excluding zero.

Explanatory
variable

Parameter
Likelihood

Parameter estimate
� SE

CL

lower upper

Prediction 1: Incident radiation
Intercept 1.05 � 0.19 0.66 1.45
BI mean 0.98 0.85 ± 0.21 0.46 1.27
BI sd 0.32 �0.08 � 0.14 �0.66 0.19
LII mean 0.30 �0.06 � 0.11 �0.62 0.22

Prediction 2: Moisture content
Intercept 1.00 � 0.19 0.62 1.39
WI mean 1.00 ¡0.77 ± 0.19 ¡1.15 ¡0.39
TWI mean 0.52 0.17 � 0.21 �0.04 0.71
WI sd 0.42 �0.13 � 0.18 �0.71 0.10
TWI sd 0.30 0.06 � 0.11 �0.22 0.60

BI: brightness index; LII: local insolation index; WI: wetness index; TWI: topo-
graphic wetness index; mean: arithmetic mean; sd: standard deviation.
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inflation factor (VIFs) for any remaining collinearity in the full models,
and excluded explanatory variables with VIFs > 5 (Heiberger and
Holland, 2004). To test for spatial autocorrelation among sampling cells,
we fitted semivariograms with the Pearson residuals of the models con-
taining all explanatory variables (Zuur et al., 2009) (Apendix II). We
found no evidence of spatial dependence affecting the models.

We used an information-theoretic approach described by Burnham
and Anderson (2002) to model the data, based on the second-order
Akaike's Information Criterion (AIC). Akaike's information criterion
corrected for small sample size (AICc) was calculated for each model.
Models were compared with ΔAICc, which is the difference between the
lowest AICc value (i.e., the best of suitable models) and AICc from all the
other models. We considered an Akaike's weight of a model (wi), which
determines the relative likelihood that the specific model is the best of
the suite of all models. We evaluated the support for predictor variables
by summing wi across all models that contained the parameter being
considered (parameter likelihood; Burnham and Anderson, 2002).
Parameter estimates were calculated using model-averaged parameter
estimates based on wi from all candidate models. To supplement
parameter-likelihood evidence of important effects, we calculated 95%
confidence interval limits (CL) of parameter estimates. Besides, to know
the percentage of the variability explained by each model we estimated
their adjusted R2 (Zuur et al., 2009).

All analyses were done with R software (R Core Team, 2020). We
fitted occupancy models with the “unmarked” package (Fiske and
Chandler, 2011). VIFs were evaluated with the “car” package (Fox and
Weisberg, 2019), and spatial correlation with the “sp” and “geoR”
packages (Pebesma and Bivand, 2005; Ribeiro et al., 2020 respectively).
The models were selected using the “MuMIn” package (Barton, 2020).

3. Results

To analyze the environmental variables, we first assessed the effects
of LII and BI on the abundance of saplings. We fitted 16models and found
that three of them had ΔAICc < 2. This subset of best models explained,
on average, 33% of the variability (Table 1). Only the mean of BI did not
include zero in its confidence interval (Table 2) and had a positive
relationship with the response variable (Fig. 2). Secondly, in reference to
the effects of WI and TWI on sapling abundance, we also fitted 16models,
six of which had ΔAICc < 2. On average, the variability explained by
these six models was 37% (Table 1). In these best models, the mean of WI

excluded zero from their confidence intervals (Table 2) and had a
negative effect on sapling abundance (Fig. 2).

In relation to the effects of biological variables, we found that density
Table 1
Models with ΔAICc value lower than 2 and the NULL model for abundance of
P. flexuosa saplings in relation to environmental variables.

Models k AICc ΔAICc wi adjR2

Prediction 1: Incident radiation
BI mean 3 177.62 0 0.37 0.32
BI mean þ BI sd 4 179.22 1.60 0.17 0.33
BI mean þ LII mean 4 179.57 1.95 0.14 0.33
NULL 2 189.54 11.92 0 0

Prediction 2: Moisture content
WI mean 3 176.66 0 0.21 0.33
WI mean þ TWI mean 4 176.66 0 0.21 0.38
WI mean þ TWI mean þ WI sd 5 177.38 0.72 0.15 0.41
WI mean þ WI sd 4 177.80 1.14 0.12 0.36
WI mean þ TWI mean þ WI sd þ TWI sd 6 178.52 1.86 0.08 0.43
WI mean þ TWI sd 4 178.65 1.99 0.08 0.34
NULL 2 189.54 12.88 0 0

k is the number of estimated parameters; AICc: Akaike's information criterion
corrected for small samples;ΔAICc: difference between AICc; wi: Akaike's weight;
adjR2: adjusted R-squared; BI: Brightness Index; LII: Local Insolation Index; WI:
Wetness Index; TWI: Topographic Wetness Index; mean: arithmetic mean; sd:
standard deviation.
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of adult trees had a positive relationship with sapling abundance and
explained 41% of the variability (Table 3, Fig. 3). With respect to the
input of seeds dispersed by each ungulate, only two models out of eight
had ΔAICc < 2 and explained, on average, 36% of the variability
(Table 3). In this set of models, only the input of seeds dispersed by
equines excluded zero from its confidence interval (Table 4) and had a
positive relationship with the response variable (Fig. 3). Finally, in
relation to intensity of habitat use by ungulates, we found that four out of
eight models had ΔAICc < 2. On average, these models explained 22% of
the variability (Table 3). Among the explanatory variables used, space
use by guanaco was the only one excluding zero from its confidence in-
terval (Table 4). This variable had a negative relationship with abun-
dance of saplings (Fig. 3).

4. Discussion

In this research, we explored the effect of environmental and bio-
logical variables on the abundance of P. flexuosa saplings in the Monte
Desert, Argentina. We found a mean abundance of 90 saplings per ha, a
lower value than that for other areas in the Monte ecoregion in Mendoza
Province, such as the ~Nacu~n�an reserve: 620 per ha (Campos et al., 2011).
Regarding environmental variables, we can say that abundance of sap-
lings related positively to BI and negatively to WI; this confirms and re-
jects our first and second predictions respectively. On the other hand, in
relation to biological variables and contrary to our third prediction,
sapling abundance was positively affected by density of adult trees and
by number of seeds dispersed by equines, this latter agreeing with the
fourth prediction. Furthermore, space use by L. guanicoe had a negative
relationship with sapling abundance, in accordance with our prediction.

Prosopis flexuosa is a tree adapted to arid conditions. The distribution
of adult individuals has been related to sandy substrate in our study area
(Campos et al., 2016) and in other zones such as the Telteca Reserve in
Mendoza (Giordano et al., 2011). According to this, we found that the
greater abundance of saplings is positively related to these substrates
(high brightness values). P. flexuosa, P. chilensis and their hybrids can
grow in dry systems, although the first is the most tolerant (L�opez
Lauenstein et al., 2013). These very permeable substrates would enable it
to use rainwater in addition to groundwater, which is possible because
these trees have a dimorphic root system that generates independence
from environmental water (Villagra et al., 2011). Because saplings still
need humidity in surface soil horizons (Villagra, 2000), we expected to
find a positive relationship with moisture indicators, but did not find this
relationship. This could be explained by the fact that saplings also
develop a great net of roots and use the groundwater available (Giordano
et al., 2011).

Although we expected a negative relationship between abundance of



Fig. 2. Main effects and 95% credible intervals for environmental explanatory variables on abundance of P. flexuosa saplings.
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saplings and density of adult trees because solar radiation availability
improves sapling growth and development (Vilela and Ravetta, 2000),
actually this relationship was positive. Probably in these open woodlands
with low-density (90 ind⋅ha�1) of trees and few shady areas, light
availability is not a limiting environmental factor. In addition, previous
studies reported the importance of adult tree density to ensure seed
availability (Vayreda et al., 2013; Monteiro-Henriques and Fernandes,
2018). It was observed that some saplings are grown from the roots of
adults such as has been found in other xerophytic trees with a vegetative
reproduction (vegetative recovery from roots) (Moglia and Jofre, 1998;
Barchuk et al., 2006).

Previous studies showed that saplings are more abundant at grazed
than ungrazed sites (Aschero and García, 2012) and that sapling estab-
lishment is related to cattle activity (Campos et al., 2011). Along these
same lines, we found that sapling abundance was high at sites with
higher input of seeds from equine feces. These animals are consumers of
Prosopis propagules and seed dispersers (Campos et al., 2008; S�anchez de
la Vega and Godínez-Alvarez, 2010). It was found that because equines
are hindgut fermenters, i.e. non-ruminant, ingested P. flexuosa seeds have
lower retention time in their digestive tract and, thus, recovery of alive
seeds is higher in comparison to a ruminant (cattle) and a “ruminant like”
ungulate (guanaco) (Campagna, 2018). This positive relationship be-
tween equines and saplings could be explained by the apparent low
density of domestic ungulates; otherwise these animals could be tram-
pling on seedlings and grazing on saplings, then affecting sapling
Table 3
Models with ΔAICc value lower than 2 and the NULL model for abundance of
P. flexuosa saplings in relation to biological variables.

Models k AICc ΔAICc wi adjR2

Prediction 3: Density of adult trees
density 3 170.96 0.41

Prediction 4: Number of seeds dispersed by ungulates
equine 3 176.09 0 0.44 0.34
equine þ guanaco 4 176.64 0.55 0.34 0.38
NULL 2 189.54 13.45 0 0

Prediction 5: Space use by ungulates
equine þ guanaco 4 184.79 0 0.29 0.23
equine þ guanaco þ cattle 5 184.82 0.02 0.29 0.28
guanaco 3 185.63 0.84 0.19 0.15
guanaco þ cattle 4 185.88 1.08 0.17 0.20
NULL 2 189.54 4.75 0.03 0

k is the number of estimated parameters; AICc: Akaike's information criterion
corrected for small samples;ΔAICc: difference between AICc; wi: Akaike's weight;
adjR2: adjusted R-squared.
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abundance (Campos et al., 2011; Marinho et al., 2016).
The unexpected result was the negative association between abun-

dance of saplings and intensity of habitat use by guanacos. Although
guanacos consume P. flexuosa fruits and disperse seeds (Reus et al., 2014;
Campos et al., 2008, 2020), the input of seeds from guanaco feces was the
lowest. The activity of guanacos is strongly associated with areas of
rougher rocky substrata and open terrain with sparse plant cover, while
exotic ungulates use areas of densest and most productive vegetation,
such as the open Prosopis forest (Acebes et al., 2010, 2012). This could be
showing that domestic ungulates are displacing guanacos, such as was
observed on other sites (Baldi et al., 2004; Schroeder et al., 2014), and
due to this spatial displacement, the intensity of habitat use by guanacos
is low in areas with high abundance of Prosopis saplings.

Our results show that P. flexuosa saplings are benefited from the
conditions around adult trees, such as sandy substrates. In addition to
this, we found that exotic ungulates in low densities have neutral (i.e.
cattle) or positive (i.e. equines) effects on sapling abundance. Notwith-
standing, continuous monitoring of abundance of large exotic species
would be needed in order to prevent overgrazing and the consequent
impact on the protected area. In this way, local people would be able to
continue their livestock activities and not lose an economic source.
Conservation management plans should consider the functional effect of
these species on the dynamics of Prosopis saplings and on forest
regeneration.
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Fig. 3. Main effects and 95% credible intervals for biological explanatory variables on abundance of P. flexuosa saplings.

Table 4
Parameter likelihoods, estimates (� Standard Error) and 95% confidence interval
limits (CL) for biological explanatory variables that affect abundance of
P. flexuosa saplings. In bold explanatory variables with CL excluding zero.

Explanatory
variable

Parameter
Likelihood

Parameter estimate
� SE

CL

lower upper

Prediction 4: Density of adult trees
Intercept 1.00 � 0.17 0.66 1.34
density 0.79 ± 0.15 0.47 1.15

Prediction 5: Number of seeds dispersed by ungulates
Intercept 1.03 � 0.19 0.65 1.40
equine 1.00 0.75 ± 0.18 0.38 1.12
guanaco 0.43 ¡0.15 � 0.22 ¡0.84 0.14

Prediction 6: Space use by ungulates
Intercept 1.16 � 0.21 0.72 1.59
equine 0.94 0.27 � 0.28 ¡0.01 0.92
guanaco 0.60 ¡0.66 ± 0.25 ¡1.14 ¡0.26
cattle 0.47 0.15 � 0.21 ¡0.10 0.74
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