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Our account of the problem of the classical limit of quantum mechanics involves
two elements. The first one is self-induced decoherence, conceived as a process
that depends on the own dynamics of a closed quantum system governed by a
Hamiltonian with continuous spectrum; the study of decoherence is addressed
by means of a formalism used to give meaning to the van Hove states with
diagonal singularities. The second element is macroscopicity represented by the
limit –h → 0: when the macroscopic limit is applied to the Wigner transfor-
mation of the diagonal state resulting from decoherence, the description of the
quantum system becomes equivalent to the description of an ensemble of clas-
sical trajectories on phase space weighted by their corresponding probabilities.
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1. INTRODUCTION

The problem of the classical limit of quantum mechanics has been a point
of debate since the birth of the theory. Although this problem is usually
addressed in the context of measurement, it can be analyzed from a more
general point of view, in terms of how the classical world arises from an
underlying quantum reality, independently of whether there is a measure-
ment involved or not. Of course, the problem of the classical limit relies
on the assumption that, if quantum mechanics is correct, then its results
must reproduce the results of classical mechanics in the appropriate limit.
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In the old days of the theory, Heisenberg and Bohr among others
conceived the classical limit of quantum mechanics by analogy with the
classical limit of special relativity: –h → 0 in quantum mechanics should
play the same role as β → 0 in special relativity. This assumption was
considered by Einstein as an oversimplification since, while relativity and
classical mechanics have the same deterministic structure, quantum mech-
anics has a probabilistic structure. Nevertheless, since those days it has
been usually claimed that classical mechanics can be recovered as a
limiting case of quantum mechanics when –h→ 0. This assumption led to
correct results when the classical limit was conceived in the following way:

QM

{←−−−−−−−−−−−−−−−−−−−−−−−
quantization−−−−−−−−−−−−−−−−−−−−−−→

classical limit ≡ –h→ 0

}
CM (1)

where QM and CM stand for quantum mechanics and classical mechanics,
respectively. In this schema, the first step is to quantize a classical system,
e.g., by means of the Weyl transformation, in order to obtain the corre-
sponding quantum system (at present, quantization is also called “defor-
mation”). Then, the original classical system is recovered by applying the
inverse Weyl transformation, i.e., the Wigner transformation4 to the quan-
tum system previously obtained and by taking the limit –h → 0. It is
quite clear that this method is completely circular to the extent that it only
recovers the classical system originally proposed.

When the theoretical structure of quantum mechanics finally lost its
classical origin, the problem of the classical limit acquired a new formula-
tion that became the traditional one:

QM
{−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

classical limit ≡ –h→ 0
}

CM (2)

This means that, no matter how the original quantum system was
described, a classical system should be obtained via the Wigner transfor-
mation when –h→ 0. However, this way of conceiving the problem of the
classical limit leads, at least, to three problems:

1. In general, the Wigner state function ρ(φ) (where φ = (q, p) is a
point in phase space) is not non-negatively defined;5 as a result, it
cannot be interpreted as a probability distribution.

4 Historically, Weyl proposed his transformation as a quantization method. Later and inde-
pendently, Wigner proposed a transformation that mapped quantum states into classical
density functions. Finally, Moyal proved that the Wigner transformation was equivalent
to the inverse Weyl transformation.

5 A function ρ(φ) is non-negative if and only if ρ(φ) ≥ 0, a.e..
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2. Only Hamiltonians of degree ≤ 2 in p and q yield to Hamiltonian
fluxes that maintain the deformation invariant (or covariant) (see
Refs. 1 and 2). In fact, only in these cases ρ1ρ2(t) = ρ1(t)ρ2(t)

after performing the Wigner transformation.

3. In some cases, factors of the form –h−1 may appear in the Wigner
state function due to the features of the Wigner transformation
(see Refs. 1 and 5). In these cases, the limit –h→ 0 of the Wigner
function is singular.

In this paper we will follow a well known trend in contemporary
physics, according to which the classical limit must not be conceived as
a mere consequence of a limiting procedure, but as a result of a physi-
cal process. From this perspective, the explanation of the emergence of the
classical world from the underlying quantum realm involves two steps: the
first one consists in explaining the physical phenomenon of decoherence,6

and the second one consists in taking the macroscopic limit –h→ 0. How-
ever, we will move away from the mainstream position with respect to the
explanation of decoherence: the aim of this paper is to obtain the classi-
cal limit of quantum mechanics on the basis of the self-induced approach

6 We are going to use in here the notion of self-induced decoherence (SID) considered as a
property of systems with continuous spectrum. As is well known, this includes an enor-
mous variety of quantum systems from field interactions, scattering processes, etc., which
are in the core of quantum mechanics. Nevertheless, situations in which discrete systems
may approach to the continuum may be considered. See Appendix C and Ref. 33.

Decoherence processes are usually considered as the effect of interactions between
the system under study and its environment, the duality between Object+Environment.
In fact, this is only one possibility. Decoherence has been considered at least for the fol-
lowing reasons:

(i) A quantum computer is subject of external interactions that can produce errors.
Here the quantum computer is the Object and the surroundings the Environ-
ment. This would be a typical effect of decoherence in which the Object pos-
sesses pure discrete spectrum.

(iii) Decoherence could be used to derive macroscopic laws from quantum mechan-
ics as proposed by Halliwell. In this case, the splitting between Object+Envi-
ronment yields to the splitting between macroscopic variables and microscopic
variables.(3)

(iii) Decoherence is a useful tool in the discussion of the correspondence principle
between quantum and classical mechanics. And this is the aim and purpose of
the paper under discussion. As seen in the present discussion, this tool makes
sense for systems with continuous spectrum.

Finally, it is important to remark that there is a closed connection between the deco-
herence considered as the interaction between Environment and Object and SID. This is
the objective of a forthcomming study.(4)
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to decoherence, such as it was presented in Ref. 6 and discussed in depth
in Refs. 7 and 8. In contrast to the traditional einselection approach (see
Ref. 9),7 from the self-induced perspective decoherence does not require
the openness of the system and its interaction with the environment: a sin-
gle closed system can decohere when it has continuous spectrum. This self-
induced approach is based in the well-known phenomenon of destructive
interference of the off-diagonal terms of the density matrix (see Refs. 5,
10, 11, 12, 15) We will show that, in this new scenario, the classical limit
is described by the following diagram:

QM
{ −−−−−−−−−−−−−−−−−−→

decoherence Boolean QM
−−−−−−−−−−−−−−−−−−−−−−−−−−→

macroscopicity ≡ –h→ 0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
classical limit

}
CSM

(3)

Self-induced decoherence transforms quantum mechanics into a Boolean
quantum mechanics where the interference terms that preclude classical-
ity have vanished. Macroscopicity, expressed by the limit –h → 0,8 turns
Boolean quantum mechanics into classical statistical mechanics (CSM)
in phase space. According to this view, the classical limit of quantum
mechanics is not classical mechanics but classical statistical mechanics, and
it requires two physical conditions: decoherence and macroscopicity. In
other words, in order to behave classically a quantum system must have
decohered and must be macroscopic enough: each one of these conditions
alone is necessary but not sufficient for its classical behavior. Furthermore,
we will show how and under what conditions this explanation overcomes
the three problems that arise from the traditional way of conceiving the
classical limit.

This paper is organized as follows. In Sect. 2, we present the for-
malism for observables and states, necessary for developing our program.
Section 3 is devoted to explain the self-induced approach to decoherence:
decoherence in energy and in the remaining variables are considered. In
Sect. 4, we study the operation known as Wigner transformation and its
application to observables and states. In Sect. 5, we show how the classi-
cal limit leads to classical statistical mechanics when the macroscopic limit
is applied to the Wigner transformation of the quantum state resulting

7 Let us note that in the einselection approach the previous problems 1–3 are not even
considered.

8 It is quite clear that it is not possible to set the value of –h equal to 0, since it is not
a dimensionless parameter but an universal constant. This means that, strictly speaking,
the macroscopic limit is –h/S → 0, where S is the characteristic action of the system: this
is a factual limit which represents realistic situations where S � –h.
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from decoherence. In Sect. 6 we discuss the physical meaning of the results
just obtained, arguing that classicality must be understood as an emergent
property that objectively arises from an underlying quantum mechanical
realm. Finally, in Sect. 7 we draw our conclusions. Three appendices com-
plete the paper.

2. FORMALISM FOR OBSERVABLES AND STATES

The formalism for observables and states used in the present paper
is inspired by the formalism introduced by Antoniou et al.(13,14) which, in
turn, is based on the works of van Hove.(15) In several papers(16–22) we
applied different versions of this formalism to the study of the properties
of quantum systems with continuous spectrum. In particular, the formal-
ism was used in paper(6) for explaining decoherence. In order to simplify
the notation, here we will study a simplified model where all the observ-
ables have continuous spectrum (cases where all observables except H have
discrete spectrum will be considered in the footnotes): this will allow us to
improve the mathematical basis of our approach without a proliferation of
indices that would not introduce conceptual advantages.

2.1. Quantum Operator Algebra

Let us consider a system with a complete set of commuting observ-
ables (CSCO) {H,O1, . . . , ON } where H has a continuous spectrum 0 ≤
ω < ∞ and, for the sake of simplicity, the Oi , i = 1, 2, . . . , N , have also
continuous spectra.9 We will assume that the observables H,O1, . . . , ON
are Weyl observables, i.e., that they come from the Weyl transformation
of classical observables. In order to simplify the notation we will use
{H,O} to denote the CSCO {H,O1, . . . , ON }. The generalized eigenbasis
of {H,O} is {|ω, o〉}, where ω and o satisfy:

H |ω, o〉 = ω |ω, o〉 and O |ω, o〉 = o |ω, o〉. (4)

Then, H and O can be expressed as:

H =
∫ ∞

0

∫
o

ω |ω, o〉〈ω, o| dω do, O =
∫ ∞

0

∫
o

o |ω, o〉〈ω, o| dω do. (5)

9 The continuous spectrum is relevant for the classical limit since, in the limit –h→ 0 (pre-
cisely, the high quantum number limit), many discrete spectra become continuous. Spectra
with continuous and discrete parts are studied in Refs. 6 and 22.
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In addition to H and O, there are additional observables that may or may
not commute with H and O. Then, a generic observable A has the follow-
ing form:

A =
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
Ã(ω, ω′, o, o′) |ω, o〉〈ω′, o′| dω dω′ do do′, (6)

where Ã(ω, ω′, o, o′) could be, in principle, a distributional kernel. How-
ever, we will not work with the set of all the possible observables of the
system, but only with a subset of it. The condition that defines this sub-
set is given by the choice of the kernel Ã(ω, ω′, o, o′), which it is usually
taken to be:(13,14,18)

Ã(ω, ω′, o, o′) = A(ω, o, o′) δ(ω − ω′)+ A(ω,ω′, o, o′) (7)

where A(ω, o, o′) and A(ω,ω′, o, o′) are sufficiently regular functions (see
Ref. 19 for details). Then, we will work with observables whose generic
form is:

A =
∫ ∞

0

∫
o

∫
o′
A(ω, o, o′) |ω, o, o′) dω do do′

+
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
A(ω,ω′, o, o′) |ω,ω′, o, o′) dω dω′ do do′, (8)

where we have introduced the following notation

|ω, o, o′) = |ω, o〉〈ω, o′| and |ω,ω′, o, o′) = |ω, o〉〈ω′, o′|.

With the condition 〈ω, o|ω′, o′〉 = δ(ω − ω′) δ(o − o′), the set of the oper-
ators of the form (8) is an algebra A, and the observables are the self-
adjoint elements of A (See Refs. 18 and 19).10

The first term of (8) represents the observables that commute with
those of the CSCO {H,O}, and it will be called the singular component

10 Although we will work with a subset of all the possible observables of the system,
the physical generality of the self-induced approach to decoherence relies on the fact
that the coordinates of the observables not belonging to A in the generalized eigenba-
sis of {H,O}, being singular, cannot be measured in laboratory and, therefore, they must
always be approximated by their averaged counterparts (for a full argument, see Ref. 7).
On the other hand, the restriction from the generic Ã(ω, ω′, o, o′) to more specific ker-
nels like those of (7) will take the role of the usual “coarse graining” or “trace” as we
will see below (see below Eq. (31) and the end of Sect. 6).
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AS of A; the second term of (8) will be called the regular component AR
of A:

AS :=
∫
o

∫
o′

∫ ∞
0

A(ω, o, o′) |ω, o, o′) dω do do′

AR :=
∫
o

∫
o′

∫ ∞
0

∫ ∞
0

A(ω,ω′, o, o′) |ω,ω′, o, o′) dω dω′ do do′. (9)

The operators AS and AR form the singular and regular algebras AS

and AR respectively: AS ∈ AS and AR ∈ AR. The generalized eigen-
bases of AS and AR are {|ω, o, o′)} and {|ω,ω′, o, o′)} since they span
the algebras AS and AR respectively. Note that these two algebras have
a trivial intersection and that the algebra A is the direct sum of both:
A = AS ⊕AR.(19)

2.2. States as Linear Functionals

States are continuous linear functionals on the algebra A defined as
above. Let A∗ be the dual space of A (the vector space of all linear con-
tinuous functionals on A). In our notation, the action of the functional
ρ ∈ A∗ onto the operator A ∈ A is denoted as (ρ|A). With this notation
we define (ω, o, o′| and (ω, ω′, o, o′| as:

(ω, o, o′|A) = A(ω, o, o′), (ω, ω′, o, o′|A) = A(ω,ω′, o, o′) (10)

for all A ∈ A. It can be shown that (ω, o, o′| and (ω, ω′, o, o′| are in A∗ for
all values of ω, ω′, o, o′.(19) In addition, if A∗S is the dual of AS and A∗R
is the dual of AR, it can be shown that (ω, o, o′| ∈ A∗S and (ω, ω′, o, o′| ∈
A∗R,(18,19), and that the following relations hold:

(ω, o, s|ω′, o′, s′) = δ(ω − ω′)δ(o− o′)δ(s − s′),

(ω, σ, o, s|ω′, σ ′, o′, s′) = δ(ω − ω′)δ(σ − σ ′)δ(o− o′)δ(s − s′),

(ω, σ, |ω′, σ ′, o′, s′) = (ω, σ, o, s|ω′, σ ′) = 0. (11)

An element of the dual A∗ can be expressed as:
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ρ =
∫ ∞

0

∫
o

∫
o′
ρ(ω, o, o′) (ω, o, o′| dω do do′

+
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
ρ(ω, ω′, o, o′) (ω, ω′, o, o′| dω dω′ do do′, (12)

which shows that (ω, o, o′| and (ω, ω′, o, o′| form a generalized basis of
A∗. Again, we will call the first term in (12) the singular component ρS
of ρ, and the second term in (12) the regular component ρR of ρ, where
ρS ∈ A∗S and ρR ∈ A∗R:

ρS :=
∫ ∞

0

∫
o

∫
o′
ρ(ω, o, o′) (ω, o, o′| dω do do′,

ρR :=
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
ρ(ω, ω′, o, o′) (ω, ω′, o, o′| dω dω′ do do′. (13)

The action of the functional ρ on the operator A is given by:

(ρ|A) =
∫ ∞

0

∫
o

∫
o′
ρ(ω, o, o′) A(ω, o, o′) dω do do′

+
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
ρ(ω, ω′, o, o′) A(ω, ω′, o, o′) dω dω′ do do′ (14)

It is interesting to remark that, although A(ω, o, o′) and A(ω,ω′, o, o′)
must be regular, well behaved functions (polynomials and Schwartz func-
tions, see Ref. 19), this is not the case of ρ(ω, o, o′) and ρ(ω, ω′,
o, o′), which may be singular with the only condition that (14) be
well defined. For instance, the functional (η, s, s′| can be written in the
form (12) with ρ(ω, o, o′) = δ(η − ω) δ(s − o) δ(s′ − o′) and ρ(ω, ω′, o,
o′) = 0.

The condition of positivity for a functional f means that, if f ∈ A∗
and A ∈ A, then f (A†A) ≥ 0, where A† is the adjoint of A. In our case
we will require positivity to ρS , and this implies that:

ρ(ω, o, o′) ≥ 0. (15)
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The condition of normalization for a functional f means that f (I) = 1.
In our case, we will normalize only ρS :11

I =
∫ ∞

0

∫
o

|ω, o〉〈ω, o| dω do �⇒ (ρS |I )

=
∫ ∞

0

∫
o

∫
o′
ρ(ω, o, o′) dω do do′ = 1. (16)

Note that I ∈ A since for I , A(ω, o, o′) ≡ 1 and A(ω,ω′, o, o′) ≡ 0.
Finally, note that A∗ = A∗S ⊕A∗R,(18) and that {(ω, o, o′|} is a general-

ized basis of A∗S and {(ω, ω′, o, o′|} is a generalized basis for A∗R.

3. SELF-INDUCED DECOHERENCE

3.1. Decoherence in Energy

Let us now consider the time evolution of the system. Since ρ is a
functional, its time evolution in the Schrödinger picture cannot be directly
computed by means of the Liouville–von Neumann equation. Neverthe-
less, this equation also describes the time evolution of the observable A in
the Heisenberg picture:

i–h∂tA = −[H,A] = LA⇒ A(t) = exp(it L/–h) A(0), (17)

where H is the Hamiltonian that governs the time evolution, and L is the
Liouville operator associated to the Hamiltonian H : LA = −[H,A]. Once
the time evolution of A has been computed, the time evolution of ρ can
be obtained by means of the duality formula:

(ρ| exp(−it L/–h) A) = (exp(it L/–h)ρ|A). (18)

This equation gives the time evolution of ρ, which satisfies the Liouville–
von Neumann equation:

i–h∂tρ = [H, ρ] = −Lρ ⇒ ρ(t) = exp(it L/–h)ρ(0). (19)

In order to follow this strategy in our case, we begin by applying
the Liouville–von Neumann evolution equation to the generalized basis

11 We require positivity and normalization for ρS since, as we will see, it is the only com-
ponent of ρ that remains after decoherence. In addition, (ρR |I ) = 0 for any ρR ∈ A∗R .
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{|ω, o, o′) = |ω, o〉〈ω, o′|, |ω,ω′, o, o′) = |ω, o〉〈ω′, o′|}. Since H |ω, o, o′〉 =
ω |ω, o, o′〉, we have that:

L|ω, o, o′) = −H |ω, o〉〈ω, o′| + |ω, o〉〈ω, o′|H = −(ω − ω)|ω, o, o′) = 0

(20)

L|ω,ω′, o, o′) = −H |ω, o〉〈ω′, o′| + |ω, o〉〈ω′, o′|H = −(ω − ω′)|ω,ω′, o, o′).

(21)

This means that the generalized basis {|ω, o, o′), |ω,ω′, o, o′)} is an eigenb-
asis of the operator L. Moreover, L|ω, o, o′) = 0 implies that not only the
|ω, o, o′), but also all the singular operators AS ∈ AS are time invariant
(e−it L/

–hAS = AS), since:

LAS = L

∫ ∞
0

∫
o

∫
o′
A(ω, o, o′) |ω, o, o′) dω do do′

=
∫ ∞

0

∫
o

∫
o′
A(ω, o, o′) (L |ω, o, o′)) dω do do′ = 0. (22)

Therefore, for any A ∈ A, LA = LAS + LAR = LAR. Moreover, due to
Eq. (21) LAR ∈ AR.

From Eq. (21), it can be obtained:

e−it L/
–h |ω,ω′, o, o′) = eit (ω−ω′)/–h |ω,ω′, o, o′) (23)

and, hence, for any AR ∈ AR we have:

e−it L/
–h AR =

∫
o

∫
o′

∫ ∞
0

∫ ∞
0
A(ω,ω′, o, o′) eit (ω−ω

′)/–h |ω,ω′, o, o′) dω dω′ do do′. (24)

Then, for any A ∈ A, we obtain the following time evolution in the
Heisenberg picture:

e−it L/
–h A =

∫ ∞
0

∫
o

∫
o′
A(ω, o)|ω, o, o′) dω do do′

+
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
A(ω,ω′, o, o′) eit (ω−ω

′)/–h |ω,ω′, o, o′) dω dω′ do do′. (25)

A similar situation arises when we consider the time evolution of the
states. Since |ω, o, o′) is time invariant, the duality formula tells us that
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the functionals (ω, o, o′| are time invariant; therefore, all the singular
functionals ρS ∈ A∗S are also time invariant.

Now we can compute (ρ|A(t)) which, by the duality formula (18), is
equal to (ρ(t)|A):

(ρ|A(t)) = (ρ(t)|A) =
∫ ∞

0

∫
o

∫
o′
ρ(ω, o, o′) A(ω, o, o′) dω do do′

+
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
ρ(ω, ω′, o, o′) ei(ω−ω

′)t/–hA(ω′, ω, o′, o) dω dω′ do do′. (26)

Considering that A is arbitrary, we obtain the final equation for the evo-
lution of the functional ρ as:

ρ(t) =
∫ ∞

0

∫
o

∫
o′
ρ(ω, o, o′)(ω, o, o′| dω do do′

+
∫ ∞

0

∫ ∞
0

∫
o

∫
o′
ρ(ω, ω′, o, o′)ei(ω−ω

′)t/–h(ω, ω′, o, o′| dω dω′ do do′

(27)

where we will call the first term “invariant part” and the second term
“fluctuating part” of ρ(t).

If we now consider the states ρ such that the product

ρ(ω, ω′, o, o′) A(ω, ω′, o, o′)

is integrable, the Riemann–Lebesgue theorem(23) can be applied to Eq.
(26) to conclude that:

lim
t→∞(ρ(t)|A) =

∫ ∞
0

∫
o

∫
o′
ρ(ω, o, o′)A(ω, o, o′) dω do do′ = (ρ∗|A), (28)

for any A ∈ A, where the functional ρ∗ is precisely the singular component
ρS of ρ (see Eq. (13)):

ρ∗ =
∫ ∞

0

∫
o

∫
o′
ρ(ω, o, o′)(ω, o, o′| dωdo do′. (29)

The physical meaning of this process can be understood when we con-
sider that the mean value of the observable A in the state ρ can be com-
puted as 〈A〉ρ = (ρ|A). Therefore, Eq. (28) can be rewritten as:

lim
t→∞〈A〉ρ(t) = 〈A〉ρ∗ for anyA ∈ A. (30)
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Of course, this limit does not contradict the fact that the off-diagonal
terms of a functional ρ representing the quantum state of a closed sys-
tem never vanish through the unitary evolution described by the Liouville–
von Neumann equation. What self-induced decoherence shows is that the
mean value 〈A〉ρ(t) of any observable A ∈ A will evolve in such a way
that, for t → ∞, it can be computed as if the system were in a state ρ∗
where the off-diagonal terms have vanished. Formally this is expressed by
the fact that, although we strictly obtain the limit (30) (or (28)), the state
ρ(t) has only a weak limit:

w − lim
t→∞ ρ(t) = ρ∗. (31)

This weak limit means that, even if ρ(t) always follows a unitary evolu-
tion, the system decoheres from an observational point of view, that is, from
the viewpoint given by the observable A, for any A ∈ A .

At this point it is interesting to add a few remarks:
(i) Here we are using the term decoherence in a broad sense. As a

matter of fact, due to the nature of functions A(ω, o, o′) and A(ω,ω′, o, o′)
used in the previous context (polynomials and Schwartz type functions see
Ref. 19), decoherence is produced in the limit as t �−→ ∞ only. Note
that for finite values of time, Eq. (27) implies that, if ρ = ρ(0) is a regu-
lar state operator (for which is necessary and sufficient that ρ(ω, o, o′) =
ρ(ω, ω′, o, o′), see Refs. 16, 18 and 19), so is ρ(t) for any finite value of t .
Thus, in general, ρ will be a singular diagonal state (and hence decohered
in this sense) only in the very limit t �−→ ∞ and this in a weak sense
only. This property is sufficient for the discussion relevant to the classi-
cal limit. In order to introduce in the formalism systems with finite deco-
herence times, we need to restraint the algebra A, by restraining the class
of the allowed functions A(ω, o, o′) and A(ω,ω′, o, o′). For instance, if we
add the condition that A(ω,ω′, o, o′) would have an analytic continuation
with respect to the variable ω−ω′ and this continuation has a pole at the
point z0 = ωR − iγ , with γ > 0 (resonance pole), the time of decoherence
(as the time at which the second term in (26) is nearly equal to zero for
the observable A ∈ A) is estimated by tD = –h/γ . Then, decoherence times
of the order of 10−37 − 10−39 seconds are obtained.(21)

(ii) Unlike the usual decoherence a la Zurek(9) that transforms pure
states into mixtures, this type of decoherence transform both pure and
mixed states into states with diagonal singular a la van Hove.(13–15) See a
characterization of these states, for instance, in Refs. 13, 14 and 18.

(iii) Observe that the limit in (31) is taking in a weak sense. Conver-
gence is taking in the averages as in (28) and (30). This, together with
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the selection of the algebra A of observables, suggest that this type of
decoherence is produced by a kind of generalized coarse graining. For a
thourogly discussion on this idea see Ref. 7.

(iv) We have mentioned that the second term in (26) and hence in
(27) vanishes when ρ(ω, ω′, o, o′) A(ω, ω′, o, o′) is an integrable function
on the variable ω-ω′, as a consequence of the Riemann–Lebesgue theo-
rem. Nevertheless the most general form of the Riemann–Lebesgue theo-
rem says that the Fourier transform of some singular measures vanishes as
t �−→ ±∞.(24) This permits to enlarge the class of states that decohere.

3.2. Decoherence in the Remaining Variables

As we have seen, for t →∞ the system decoheres in energy since ρ∗
turns out to be diagonal in ω. However, we would like to obtain a state
diagonal in all the variables. To the extent that we have taken the limit
t → ∞, it is impossible that a new process diagonalizes the o-variables.
As we will see, when a convenient basis is chosen, the diagonalization of
ρ can be completed. This second stage necessarily depends on the initial
condition ρ at t = 0, since ρ∗ is a constant of motion.

Let us consider a unitary operator U that keeps the Hamiltonian
invariant but changes the set of observables {O1,O2, . . . , ON } into the set
{P1, P2, . . . , PN }, where {H,P1, P2, . . . , PN } is also a CSCO. The simplest
form of U is given by:

U =
∫ ∞

0

∫
p

∫
o

U(ω, p, o) |ω, p〉〈ω, o| dω dp do. (32)

It is probably worthy to note that, since the Oi and the Pi , i =
1, 2, . . . , N , are unitarily equivalent, they have the same spectrum and
therefore the variable p runs into the same domain than the variable o.
The action of U on the ket |ω, o〉 defines the action of U on any ket,
since the kets |ω, o〉 belong to a generalized basis. This action can be eas-
ily computed as:

|ω, p〉 := U |ω, o〉 =
∫
p

U(ω, p, o) |ω, o〉 dp, (33)

where obviously Pi |ω, p〉 = pi |ω, p〉 and this justifies the notation. The
unitarity of U implies that UU−1 = I . From here, we obtain:∫

o

U(ω, p, o)U∗(ω, p′, o) do = δ(p − p′). (34)
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In the new representation, the operator A takes the form:

A =
∫ ∞

0

∫
p

∫
p′
A(ω, p, p′) |ω, p〉〈ω, p′| dω dp dp′. (35)

Introducing Eq. (33) into Eq. (35) gives:

A =
∫ ∞

0

∫
p

∫
p′

∫
o

∫
o′
U(ω, p, o)

A(ω, p, p′) U∗(ω, p′, o′) |ω, o〉〈ω, o′| dω dp dp′ do do′. (36)

Therefore, the coordinates of A in the old basis are:

A(ω, o, o′) =
∫
p

∫
p′
U(ω, p, o) A(ω, p, p′) U∗(ω, p′, o′) dp dp′. (37)

Since U is a unitary operator, Eq. (37) is invertible:

A(ω, p, p′) =
∫
o

∫
o′
U(ω, p′, o′) A(ω, o, o′) U∗(ω, p, o) do do′ (38)

and, finally, by duality one finds that:

ρ(ω, p, p′) =
∫
o

∫
o′
U(ω, p′, o′) ρ(ω, o, o′) U∗(ω, p, o) do do′. (39)

If ρ= ∫∞0 ∫
o

∫
o′ ρ(ω, o, o

′) |ω, o〉〈ω, o′| dω do do′ is a state, it must
be positively defined and self adjoint. This implies that ρ(ω, o, o′)=
ρ∗(ω, o′, o).(19) Then, we can choose U(ω, p, o) such that:

ρ(ω, p, p′) = ρ(ω, p) δ(p − p′) (40)

and this completes the diagonalization. In the new basis, Eqs. (28) and
(29) of the previous subsection become:

lim
t→∞(ρ(t)|A) =

∫
p

∫ ∞
0

ρ(ω, p)A(ω, p) dω dp = (ρ∗|A) for anyA ∈ A,
(41)

ρ∗ =
∫
p

∫ ∞
0

ρ(ω, p)(ω, p| dω dp, (42)

where now ρ∗ is completely diagonal in ω and p. The generalized basis
given by {|ω, p), |ω,ω′, p, p′)} is the preferred basis (also called “pointer
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basis”12), as presented in Ref. 6 and extensively discussed in Ref. 7. On the
other hand, the decoherence time tD can be computed13 as in Ref. 22.

4. THE WIGNER TRANSFORMATION

4.1. Characterization of the Wigner Transformation

The Weyl transformation maps functions or generalized functions
on phase space into operators.(1,2,25,26) Thus, the Wigner transformation
maps operators into functions on the phase space.(25,26) If A is an oper-
ator, we will denote the function corresponding to A via the Wigner
transformation by symbA or A(φ), where φ = (q, p) = (q1, q2, . . . ,

qN+1, p1, p2, . . . , pN+1) is a point in flat phase space. The function
A(φ) = symbA is called Wigner symbol or Wigner function of the operator
A. As the Weyl transformation is a one to one mapping, the image of the
algebras A, AS and AR by the Wigner transformation are non-commuta-
tive algebras of functions denoted by L, LS and LR, respectively, where
L = LS ⊕ LR. Since the image of A by the Wigner transformation is the
function symbA, it seems quite natural to use the notation symb to denote
the Wigner transformation itself, so that:

symb : A �−→ L, symb : AR �−→ LR, symb : AS �−→ LS. (43)

Let us define the mapping AR �−→ LR for regular observables
as usual.(26) First, consider the phase space (in this case14

R
2(N+1)) and

endow it with the symplectic form:

ωab =
(

0 IN+1

−IN+1 0

)
; ωab =

(
0 −IN+1

IN+1 0

)
. (44)

Then, let f̂ be an operator such that symbf̂ = f (φ). This transformation
is defined by the usual Wigner recipe as:

symbf̂ = f (φ) :=
∫
d2N+1ψ exp

(
i
–h
ψaωabφ

b

)
T r
(
T̂ (ψ)f̂

)
(45)

12 We prefer to use the term “preferred basis” instead of “pointer basis” since it arises in
contexts other than measurements where the pointer of a measuring device is involved.

13 Of course, in the case where tD →∞, the system does not decohere.
14 The fact that the dimension of the phase space is 2(N+1), where N+1 is the number of

observables of the CSCO, amounts to the integrability of the classical system resulting
from the Wigner transformation. Non-integrable cases will be considered elsewhere.
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where ψa and φb denote the ath and the bth components of the points ψ
and φ on phase space, respectively. Here:

T̂ (ψ) = exp
(
i
–h
ψaωabφ

b

)
, (46)

where:

φ̂ =
(
q̂1, . . . , q̂N+1,−i–h ∂

∂q1
, . . . ,−i–h ∂

∂qN+1

)
(47)

and q̂i , i = 1, 2, . . . , N +1, is the i-th component of the position operator
on the Hilbert space L2(RN+1).

The non-commutative product that corresponds to the product of
operators in L (or LS and LR) is called star product, and it is given by:

symb(f̂ ĝ) = symbf̂ ∗ symbĝ = (f ∗ g)(φ) (48)

where f (φ) and g(φ) are the Wigner symbols of the operators f̂ and ĝ,
respectively. It can be proven (Ref. 25, Eq. (2.59); for more general expan-
sions, see Ref. 27) that:

(f ∗ g)(φ) = f (φ) exp
(
i–h
2
←−
∂ aω

ab−→∂ b

)

g(φ) = g(φ) exp
(
− i

–h
2
←−
∂ aω

ab−→∂ b

)
f (φ). (49)

The Moyal bracket is the Wigner symbol corresponding to the commuta-
tor in L:

{f, g}mb = 1
i–h
(f ∗ g − g ∗ f ) = symb

(
1
i–h

[f, g]
)
. (50)

Then, if we expand the last two equations in power series of –h, we
obtain:(1)

(f ∗ g)(φ) = f (φ)g(φ)+
∑
r=1

–hrP r(f (φ)g(φ)), (51)

{f, g}mb = {f, g}pb +
∑
r=1

–h2rP 2r+1(f (φ)g(φ)), (52)
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where the P r are the coefficients obtained by means of (49) and pb means
Poisson bracket. This suggests that, in the limit –h → 0, the star prod-
uct should become the ordinary product and the Moyal bracket should
become the Poisson bracket. In fact, this is the case in many circumstances
although not in all of them, because in some cases the coefficients P r may
contain factors of the form –h−1, making the limit –h → 0 singular (see
Refs. 1 and 5). In those cases, the problem 3 mentioned in the Introduc-
tion arises. From (49) we see that factors –h−1 can only come from the
symbols f (φ) or g(φ); then, if these functions do not depend on –h−1, the
limit –h → 0 is regular and can be considered as the proper macroscopic
limit.

Finally, let us observe that if f̂ commute with ĝ, Eqs. (49) and (51)
become:

(f ∗ g)(φ) = f (φ) cos
(
− i

–h
2
←−
∂ aω

ab−→∂ b

)
g(φ) (53)

and, hence, in the simple cases with no factors of the form –h−1 we obtain:

(f ∗ g)(φ) = f (φ)g(φ)+ 0(–h2). (54)

4.2. The Wigner Transformation of Observables and States

In the previous subsection we have considered the Wigner transforma-
tion for regular observables, as it is usually defined. But the Wigner trans-
formation has not been defined when singular distributions are involved;
therefore, the transformation must be defined in this case.

Let us go back to the algebra AS of the observables that commute
with the CSCO {H,P1, . . . , PN }, also denoted by {H,P } for simplicity. An
element of this algebra is given by:

AS =
∫ ∞

0

∫
p

A(ω, p) |ω, p) dω dp, (55)

where A(ω, p) is a regular function on its variables. The functional calcu-
lus gives:

AS = A(H,P ), (56)

where P := (P1, P2, . . . , PN). Since we are assuming that the observ-
ables H and Pi are Weyl observables, they have Wigner functions H(φ)
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and Pi(φ), i = 1, 2, . . . , N , respectively, not depending on –h−1. As a
consequence, if f̂ and ĝ are any powers of H or Pi , (54) holds. Therefore,
since we have assumed(19) that A(ω, p) is differentiable on its variables, the
Taylor theorem gives:

symbAS = AS(φ) = A(H(φ), P (φ))+ 0(–h2). (57)

This means that the problem 3 mentioned in the Introduction does not
arise in the singular algebra AS when we work with Weyl operators. As a
consequence, the Wigner symbol of any observable A ∈ AS , when –h→ 0,
is A(H(φ), P (φ)).

Now let us study the Wigner transformation for states of A∗. There
are two cases that we have to consider. The first case is given by the states
in A∗ that can be written as regular density operators. These states are
characterized by ρ(ω, ω, p, p′) = ρ(ω, p, p′) (see Refs. 13, 14, 16, 18
and 19). Regular density operators have well defined Wigner functions:(26)

we only must add a (2π–h)−(N+1) factor to (45) in order to obtain the
usual normalization for the Wigner function. The second case includes any
other possibility, i.e., density operators for which either ρ(ω, ω, p, p′) �=
ρ(ω, p, p′) or ρ(ω, ω, p, p′) or ρ(ω, p, p′) are defined only in a distri-
butional sense and not as regular functions. The question arises about
whether the operators of this second type do or do not have a well defined
Wigner function. The answer is given by the duality formula (18). If ρ ∈
A∗ and A ∈ A, we can define symbρ ≡ ρ(φ) in such a way that it satisfies:

(symbρ|symbA) := (ρ|A) =
∫ ∞

0

∫
p

∫
p′
A(ω, p, p′) ρ(ω, p, p′) dω dp dp′

+
∫ ∞

0

∫ ∞
0

∫
p

∫
p′
A(ω,ω′, p, p′) ρ(ω, ω′, p, p′)

× dω dω′ dp dp′. (58)

As the integrals in (58) are well defined, for any ρ ∈ A∗, symbρ is
also well defined and belongs to the dual space L∗ of the algebra L. Let
us recall the decomposition L∗ = L∗S ⊕ L∗R and the fact that the opera-
tion symb is a bijection: symbA∗S �−→ L∗S. Definition (58) will allow us to
obtain symbρS in the next section.

5. THE CLASSICAL LIMIT

We have seen that, as the result of decoherence, the regular part ρR
of ρ vanishes and only the singular part ρS = ρ∗ remains (see (42)):
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ρ∗ = ρS =
∫ ∞

0

∫
p

ρ(ω, p)(ω, p| dω dp. (59)

Then, the problem is to find the classical distribution ρc(φ) resulting from
applying the macroscopic limit –h → 0 to the Wigner transformation of
ρ∗ = ρS :

ρc(φ) = lim–h→0
symbρS = lim–h→0

∫ ∞
0

∫
p

ρ(ω, p) symb(ω, p| dω dp

=
∫ ∞

0

∫
p

ρ(ω, p) lim–h→0
[symb(ω, p|] dω dp. (60)

The first step consists in obtaining the limit of symb|ω, p) for –h→ 0.
From (55) and (57) we know that:

lim–h→0
[symbAS ] = A(H(φ), P (φ)) = lim–h→0

∫ ∞
0

∫
p

A(ω, p) symb|ω, p) dω dp

=
∫ ∞

0

∫
p

A(ω, p) [ lim–h→0
symb|ω, p)] dω dp. (61)

The function A(H(φ), P (φ)) can also be written as:

A(H(φ), P (φ)) =
∫ ∞

0

∫
p

A(ω, p) δ(H(φ)− ω) δ(P (φ)− p) dp dω. (62)

If we compare (61) and (62), we can conclude that:15

lim–h→0
symb |ω, p) = δ(H(φ)− ω) δ(P (φ)− p). (63)

The second step begins by remembering that, from (58) and (11),
symb(ω, p| must satisfy:16

(symb(ω, p| |symb |ω′, p′)) = (ω, p|ω′, p′) = δ(ω − ω′) δ(p − p′). (64)

15 In the case of discrete spectrum we would have A(ω, p) = δ(ω − ω′)δN
pp′ instead of

A(ω, p) = δ(ω−ω′) δ(p−p′). Then, we would obtain symb|ω′, p′) = δ(H(φ)−ω′)δN
P(φ)p′ ,

where δN
P(φ)p′ is a N Kronecker δ.

16 This is a definition of symb(ω, p| as a distribution. The aim of the following discus-
sion is to show that this distribution is proportional to δ(H(φ) − ω)δ(P (φ) − p). This
discussion is necessary but has the same level of rigor as the Dirac delta itself.
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Since the r.h.s. of the last equation does not depend on –h, the limit for
–h→ 0 results:

lim–h→0
(symb(ω, p| |symb |ω′, p′)) = ( lim–h→0

[symb(ω, p|] | lim–h→0
[symb |ω′, p′)])

= δ(ω − ω′) δ(p − p′). (65)

We will use ρSωp(φ) to denote the limit for –h→ 0 of symb(ω, p|:

ρSωp(φ) := lim–h→0
symb(ω, p|. (66)

Therefore, replacing (63) and (66) into (65) we obtain:

(ρSωp(φ) | δ(H(φ)− ω′) δ(P (φ)− p′)) = δ(ω − ω′) δ(p − p′). (67)

The final step consists in obtaining ρSωp(φ). Since we have assumed
that the number of operators in the CSCO {H,P1, . . . , PN } coincides with
the number of degrees of freedom of the system under consideration and,
as a consequence, the phase space has dimension 2(N + 1) (see footnote
11), then there exists a canonical transformation that carries the position-
momentum variables φ = (q, p) into the variables

ψ = (τ (φ), α1(φ), . . . , αN(φ),H(φ), P1(φ), . . . , PN(φ)),

where H(φ) = symbH , Pi(φ) = symbPi , i = 1, 2, . . . , N , τ(φ) is the con-
jugate variable of H(φ), and the αi(φ) are the conjugate variables of the
Pi(φ). On the other hand, from Subsect. 3.1 we know that each AS ∈ AS
and each functionals of the form ρS ∈ A∗S are time invariant. Since
the function symb does not introduce time variables, all the AS(φ) =
symbAS ∈ LS and all the ρS(φ) = symbρS ∈ L∗S are also time invari-
ant, and the same holds for their limits for –h → 0. Thus, if A(φ) ∈ LS,
ρ(φ) ∈ L∗S, A(φ) = f (H(φ), P (φ)), and ρ(φ) = g(H(φ), P (φ)), then
(ρ(φ)|A(φ)) can be expressed as:

(ρ(φ)|A(φ)) =
∫
φ2(N+1)

f (H(φ), P (φ)) g(H(φ), P (φ)) dφ2(N+1)

=
∫
τ

dτ

∫
α

dα

∫
H

∫
P

f (H, P ) g(H, P ) dH dP. (68)
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We can call:

C(H,P ) =
∫

M(H,P )

dτ dα, (69)

where C(H,P ) is the volume of the region M(H, P ) of the configuration
manifold defined by the conditions H = const and P = const. Then, (68)
becomes:

(ρ(φ)|A(φ)) = C(H,P )
∫
H

∫
P

f (H, P ) g(H, P ) dH dP. (70)

In the simplest case of bounded integrable systems described by action-
angle variables, C(H,P ) is a time-constant equal to (2π)N+1.(6) Anyway,
C(H,P ) is always a constant that we will ignore from now on in order to
simplify notation. If we now apply the result expressed by (70) to (67), we
obtain:∫
H

∫
P

ρSωp(H, P ) δ(H − ω′) δ(P − p′) dH dP = δ(ω − ω′) δ(p − p′). (71)

This means that:17

ρSωp(H, P ) = δ(H − ω) δ(P − p). (72)

If we now go back to the variables φ:

ρSωp(φ) = lim–h→0
symb(ω, p| = δ(H(φ)− ω) δ(P (φ)− p). (73)

Finally, we can obtain the classical distribution ρc by replacing the
just obtained result (73) into (60):

17 In the discrete case, (71) reads:

∫
H

∫
P

ρSωp(φ) δ(H − ω′) δNPp′ dH dPN = δ(ω − ω′) δNpp′ .

Then:

ρSω′p′ (φ) = δ(H(φ)− ω′) δN (P (φ)− p′).
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ρc(φ) =
∫ ∞

0

∫
p

ρ(ω, p) ρSωp(φ) dω dp

=
∫ ∞

0

∫
p

ρ(ω, p) δ(H(φ)− ω) δ(P (φ)− p) dω dp. (74)

As we can see, ρc(φ) is a constant of motion, as it was expected due to the
results obtained in Subsect. 3.1. Equation (74) has a clear physical mean-
ing: ρc(φ) is a sum of densities infinitely strongly peaked on the classical
trajectories defined by the constants of motion H(φ) = ω and P(φ) = p
and averaged by the density function ρ(ω, p) which is properly normal-
ized according to (16). As a consequence, ρc(φ) can be conceived as sum
of classical trajectories weighted by their corresponding probabilities. This
leads to the expected result: classical motion takes place along a classical
trajectory, and the probability of each possible trajectory is given by the
initial condition ρ at t = 0.

It is also interesting to consider the case where the initial condition
ρ at t = 0 is such that the factor ρ(ω, ω′, p, p′) A(ω, ω′, p, p′) of (26)
is strongly peaked around ω − ω′ = E. In this case, the evolution fac-
tor ei(ω−ω′)t/

–h can be approximated by eiEt/
–h. This shows two facts. First,

there is an interplay between the characteristic energy E and the decoher-
ence time: the decoherence time becomes shorter as the energy is higher.
Second, the limit E → ∞ plays the same mathematical role as t → ∞,
and represents the well known “high energy limit”:(5) for high energies
many systems behave in an almost classical way, e.g., high energy orbits
of atoms can be approximated by classical trajectories.18

In this section we have found the classical limit by applying the mac-
roscopic limit to the Wigner transformation of the state ρ∗ resulting from
decoherence. Nevertheless, it is also possible to translate the quantum evo-
lution equation into the classical language via the Wigner transformation
in order to obtain the complete process of decoherence in classical terms.
This strategy leads to the same result as the one obtained in the present
section (see Appendix A).

Finally, let us recall the three problems of the traditional way of
conceiving the classical limit as they were presented in sec. 1 and let us
consider how and under what conditions they can be overcome from the
present approach:

18 It is worth noting, however, that while t is a perfectly well defined variable, E is just
a characteristic energy that may be not well defined in some cases. For this reason, the
mathematically precise strategy is to find the limit for t → ∞ as we have done in the
present work.
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1. Although in general the Wigner function ρ(φ) of a state ρ is not
non-negatively defined, we can guarantee the non-negativeness of
ρc(φ) (74). In fact, ρ(ω, p) is non-negatively defined due to its
origin, since it represents the diagonal components of the original
state ρ (it can be also proved that, in general, if ρ = ρ(ω) =
ρ(ω, ω), then the limit for –h→ 0 of ρ(φ) is non-negatively defined
a.e.; see Appendix B).

2. Although only Hamiltonians of degree ≤ 2 in p and q (quadratic
Hamiltonians) yield to Hamiltonian fluxes that maintain the defor-
mation invariant, this is not a problem from the present perspec-
tive since, after decoherence, only the singular algebra remains,
and in this algebra both states and observables are constants of
motion.

3. Although in some cases factors of the form –h−1 may appear in
the Wigner state function making the limit –h → 0 singular, we
have shown that this possibility is blocked when the observables
of the CSCO are Weyl observables. The requirement of working
with a CSCO consisting of Weyl observables is very weak since it
does not impose artificial constraints on the state ρ. Furthermore,
to apply the Weyl transformation to classical observables is the
usual strategy in practice for obtaining the corresponding quantum
observables.

6. THE PHYSICAL MEANING OF THE CLASSICAL LIMIT

As we have seen, the classical limit of quantum mechanics involves
two elements:

1. Decoherence: According to the self-induced approach, decoherence
is a physical process that depends on the own dynamics of a closed
quantum system governed by a Hamiltonian with continuous spec-
trum. As the result of decoherence, in the infinite time limit the
mean value of any relevant observable can be computed as if the
system were in the diagonal state ρ∗. In other words, decoher-
ence transforms standard (non-Boolean) quantum mechanics into
a Boolean quantum mechanics restricted to states that are diago-
nal in the basis defined by the CSCO {H,P }.

2. Macroscopicity: For –h → 0, the Wigner transformation of the
diagonal state ρ∗ turns out to be ρc(φ), and it is resolved into
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an ensemble of classical trajectories on phase space weighted
by their corresponding probabilities. This means that, in the
macroscopic limit, the Wigner transformation maps the Boolean
description resulting from decoherence onto classical statistical
mechanics.

This shows that, strictly speaking, the classical limit of quantum
mechanics is not classical mechanics but classical statistical mechanics.
This point deserves some further remarks.

In the classical distribution ρc(φ) resulting from the classical limit,
the ensemble of trajectories is weighted by the non-negative function
ρ(ω, p): it is precisely the fact that ρ(ω, p) is non-negatively defined what
permits it to be interpreted as a probability function. Nevertheless, the
formal agreement between ρc(φ) and a density distribution in standard
classical statistical mechanics does not mean that both have the same
physical meaning. In fact, in classical statistical mechanics probabilities are
conceived as a sort of measure of our ignorance about the real determin-
istic classical trajectory. On the contrary, since the ρ(ω, p) are the diago-
nal components of the original quantum state ρ, they represent quantum
probabilities which, as many no-go theorems show, are irreducible. Of
course, this fact does not mean that a particular classical trajectory cannot
be chosen. Let us suppose that we prepare the system at t = 0 in an initial
condition ρ such that its singular part ρS is an eigenstate (ω, p|. In this
case, as a consequence of decoherence and macroscopicity, we will obtain
the particular trajectory defined by the constants of motion H(φ) = ω and
P(φ) = p with certainty. This shows that, although ρ(ω, p) in the classi-
cal distribution ρc(φ) represents quantum irreducible probabilities, a par-
ticular classical trajectory can always be selected by means of the proper
preparation of the quantum initial conditions.

Finally, it is worth stressing the emergent nature of classicality as
explained by the present approach. As we have seen, the off-diagonal
terms of the quantum state ρ(t) never vanish through the unitary quan-
tum evolution. Strictly speaking, what self-induced approach shows is that,
in the infinite time limit, for any A ∈ A , 〈A〉ρ(t) can be computed as if
the system were in the diagonal state ρ∗. In fact, the limit for t → ∞
of 〈A〉ρ(t) could also be computed in the Heisenberg picture as the limit
for t → ∞ of 〈A(t)〉ρ ; in this case we would obtain a diagonal operator
A∗. This fact clearly shows that the fundamental magnitude in the expla-
nation of decoherence is 〈A〉ρ(t) = 〈A(t)〉ρ and not ρ∗ nor A∗. In other
words, decoherence should be conceived as a coarse-grained process that
describes the evolution of the state ρ(t) from the observational viewpoint
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given by the observable A.19 As a consequence, classicality is an emergent
property that arises in a coarse-grained level of description.20 The clas-
sical limit shows that, from the point of view given by A, as the result
of decoherence and macroscopicity the quantum system behaves as if it
were a classical statistical system. This means that our measurements of
the mean value of any relevant observable A on the quantum system will
give the same results as those we would obtain on a classical statistical
system described as an ensemble of classical trajectories weighted by their
corresponding probabilities. The distinction between the fundamental and
the coarse-grained levels of description permits us to understand how the
Boolean and deterministic classical world objectively arises from an under-
lying non-Boolean and indeterministic quantum level.

7. CONCLUSION

Einstein was right when he considered the idea that the limit –h → 0
is the right classical limit as an oversimplification. On the basis of the
assumption that the problem of the classical limit of quantum mechan-
ics amounts to the question of how the classical world arises from an
underlying quantum reality, our account of the problem involves two ele-
ments. The first one is self-induced decoherence, conceived as a process
that depends on the own dynamics of a closed quantum system governed
by a Hamiltonian with continuous spectrum; the study of decoherence was
addressed by means of formal tools derived from the van Hove formalism.
The second element is macroscopicity represented by the limit –h → 0;
we have shown that, when the macroscopic limit is applied to the Wig-
ner transformation of the diagonal state resulting from decoherence, the
description of the quantum system becomes equivalent to the description
of an ensemble of classical trajectories on phase space weighted by their
corresponding probabilities. Furthermore, this approach to the classical
limit explains under what conditions the problems arising from traditional
approach can be avoided. Finally, when these formal results are considered
in the light of a generalized concept of coarse-graining, decoherence turns
out to be a coarse-grained process that, in the infinite time limit, leads

19 〈A〉ρ(t) = (ρ|A) can be thought as a generalized “projection” of the state ρ. In fact, we
can define a projector � belonging to A⊗A∗ as � = AρA, where ρA satisfies (ρA|A) = 1
(this condition guarantees that �2 = �). In this case, ρrel = (ρ|A)ρA, where ρrel is the
projected part of ρ relevant for decoherence. Since coarse-graining amounts to a projec-
tion (see Ref. 28), 〈A〉ρ(t) can be conceived as a coarse-grained magnitude.

20 An interesting discussion about emergence and reductionistic relations between the var-
ious levels of the quantum mechanical descriptions can be found in Refs. 29 and 30.
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to classicality when the system is macroscopic enough. Since there is no
subjective element involved in this process, from our approach classicality
is a property that objectively emerges from the underlying quantum world.
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APPENDIX A: THE QUANTUM EVOLUTION IN CLASSICAL
TERMS

The quantum evolution of the system can be translated into the clas-
sical language via the Wigner transformation. The phase space analogue
of the Liouville–von Neumann equation for –h→ 0, Eq. (52), is:

∂tρ(t) = {H, ρ}mb. (A.1)

Let us now compute ρ(φ, t) = symbρ(t), which is equal, up to the order
–h2 (hence, it is in fact the limit when –h→ 0), to:

ρ(φ, t) = ρ (H(φ), P (φ))+
∫ ∞

0

∫ ∞
0

∫
p

∫
p′
ρ(ω, ω′, p, p′)

× ei(ω−ω′)t/–h symb(ω, ω′, p, p′| dω dω′ dp dp′. (A.2)

Here we have used the Liouville equation for the regular part, and we have
kept the singular part unchanged since we know that it is time invariant.
As in the quantum case, we can call the first term the “invariant part” and
the second term the “fluctuating part” of ρ(φ, t).(16,21) On this basis we
can also compute:

(ρ(φ, t)|A(φ)) =
∫
H

∫
P

ρ(H(φ), P (φ))A(H(φ), P (φ)) dH dP

+
∫ ∞

0

∫ ∞
0

∫
p

∫
p′
ρ(ω, ω′, p, p′) ei(ω−ω

′)t/–h

×A(ω,ω′, p, p′) dω dω′ dp dp′, (A.3)
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where, again, we call the first term “invariant part” and the second term
“fluctuating part”. Now, if the product ρ(ω, ω′, p, p′)A(ω′, ω, p′, p) is
integrable, we can use the Riemann–Lebesgue theorem to conclude that:

lim
t→∞(ρ(φ, t)|A(φ)) =

∫
H

∫
P

ρ(H(φ), P (φ)) A(H(φ), P (φ)) dH dP

= (ρ∗(φ)|A(φ)) (A.4)

for any A(φ) ∈ L and for any ρ(φ) ∈ L∗ with the right properties. There-
fore:

ρ∗(φ) =
∫
H

∫
P

ρ(H(φ), P (φ)) dH dP

=
∫ ∞

0

∫
p

ρ(ω, p) δ(H(φ)− ω) δ(P (φ)− p) dω dp. (A.5)

This last equation is precisely the Wigner transformation of ρ∗ for
–h→ 0, as obtained in Eq.(74). In ρ∗(φ) the non-diagonal terms have dis-
appeared and only the diagonal (singular) terms remain. Thus, we have
found the weak limit:

w − lim
t→∞ ρ(φ, t) = ρ∗(φ), (A.6)

which express the result of decoherence.

APPENDIX B: POSITIVITY OF THE WIGNER FUNCTION OF ρ(ω)

Here we will prove that the Wigner function of a state represented by
a density operator of the form ρ(ω) = ρ(ω, ω) is positively defined a.e.
in the limit –h → 0. This proof is a reformulation of an argument due to
Narcovich.(31,32).

Let us call ρ–h(q, p) the Wigner function for the density operator ρ in
terms of –h. We will call:

lim–h→0
ρ–h(q, p) = G(q, p). (B.1)

We will prove that G(q, p) is non-negative (a.e.):

G(q, p) ≥ 0. (B.2)
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Let us call:

a =
(
q

p

)
, z =

(
q ′

p′

)
, J =

(
0 1

−1 0

)
(B.3)

and

σ(a, z) = aJz = (q, p)
(

0 1

−1 0

) (
q ′

p′

)
= qp′ − pq ′. (B.4)

Now we consider the inverse symplectic Fourier transformation of
ρ–h(q, p) = ρ–h(φ) given by:

f–h(z) =
∫
ρ–h(φ) e

iσ (φ,z) dz, (B.5)

where dz = dq dp. This transformation (i.e., the function –h(z)) is of –h-
positive type (see Refs. Refs. 31 and 32), which means that:

m∑
j,k=1

f–h(aj − ak) ei(
–h/2) σ (ak,aj ) λ∗j λk ≥ 0, (B.6)

where:

1. a1, a2, . . . , am are arbitrary points of the phase space:

ak =
(
qk

pk

)
. (B.7)

2. λ1, λ2, . . . , λm are arbitrary numbers.

3 m = 1, 2, . . . is an arbitrary finite positive integer.

Let us now consider:

g(z) = lim–h→0
f–h(z) (B.8)

and see whether g(z) is positive in the sense of Bochner. If we make the
limit –h→ 0 in Eq. (B.5), we obtain:

m∑
j,k=1

g(aj − ak) λ∗j λk ≥ 0, (B.9)



Classical Limit of Quantum Mechanics

where the notation has been defined in 1, 2, 3 right above. Thus, the
function g(z) is positive in the sense of Bochner. Therefore, the Fourier
transform ϕ(q, p) is also positive (a.e.):

ϕ(q, p) =
∫
g(z) e−iza dz ≥ 0. (B.10)

This property is inherited by the symplectic Fourier transform of g(z), that
we have called G(q, p):

G(q, p) = ϕ(p,−q). (B.11)

Then, from Eq. (B.8) we have:

lim–h�→0
ρ–h(q, p) =

∫ [
lim–h�→0

f–h(z)
]
e−iσ (a,z) dz

=
∫
g(z) e−iσ (a,z) dz = G(q, p) ≥ 0 (a.e) (B.12)

where ρ–h(q, p) is an arbitrary regular Wigner function, q.e.d. Neverthe-
less, it is worth stressing that the non-negativeness obtained through de-
coherence is stronger than this result: ρc(φ) is non-negatively defined on
the whole phase space, and not only a.e.

APPENDIX C: CHARACTERISTIC TIMES AND TRANSITIONS
FROM THE DISCRETE TO THE CONTINUOUS

We add here a brief appendix in which we discuss the problem of
characteristic times and the discrete to continuous transitions. Thermo-
dynamic limit, normalization in a box followed by a limiting process,
etc. have been used very often to describe systems with continuous
spectrum in which these systems are taking as a limit of a sequence of
systems with discrete spectrum. All these are typical situations of transi-
tions discrete-continuum. In addition, this problem has been studied in the
context of self-induced decoherence (SID), a concept used in the present
paper. The results sketched here are extensively discussed in Refs. 9, 8, 33,
34, 35 and 21.
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C.1. Characteristic Times

In order to compare the behavior of models with discrete spectrum
with those showing a continuous spectrum, one should make an analysis
on characteristic times. In particular, we compare the characteristic times
that arose in the self-induced decoherence and the most traditional point
of view associated to the environment induced decoherence (EID).

In the SID one uses a closed system,(6–8,21) named U , that can be
split into the system under study S plus the environment E, so that U =
S ∪ E. This decomposition, although sometimes rather artificial, is neces-
sary if we want to compare SID with EID.(4) Conventionally, the whole
space U is often called the “Universe”. There are two kinds of character-
istic times, those in connection with the system S, considered as an unsta-
ble state which tends toward a state of equilibrium, and those related with
the universe U . Thus, we have:

(i) Two characteristic times related with S:

• Decoherence dynamical time τDS of the system S in the pointer
basis defined by the predictability sieve of EID. This decoher-
ence receives the name of dynamical decoherence.

• Relaxation time τRS . The state ρS(t) of S goes to the equilib-
rium state given by ρ∗S , which trivially decoheres in the eigenb-
asis for ρ∗S . Then, the eigenbasis for ρ∗S is the pointer basis.
This decoherence is called statistical decoherence.

These decoherence times are related through a very simple equation as
for instance:

τDS = τRS
(
LDB

L0

)2

,

where LDB is the de Broglie length and L0 a characteristic macro-
scopic length.(9)

(ii) Two times related with the Universe U .

• Relaxation time of the universe U , which is also the decoher-
ence time of the static decoherence of SID.(21) This is the time
for the state ρU(t) to arrive to the equilibrium state ρ∗U , which
is also the decoherence time because ρ∗U obviously decoheres in
the eigenbasis of ρ∗U .

• The recurrence or revival time of U , that we denote as τRU .
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C.2. Discrete Versus Continuous Spectrum

Fortunately, we have an interesting discussion on the transition
discrete continuous on a simple model (A harmonic oscillator on a bath
of harmonic oscillators with a linear coupling, this can be considered as a
discrete Friedrichs model) in Ref. 33. The Hamiltonian of the universe U
has discrete spectrum with eigenvalues {αν}. It is proven in Ref. 33 that

τRU = 2π–h
min(αν+1 − αν)

.

Now, if the number of particles goes to infinite (with some conditions such
that the spectrum goes to a dense set in the real line), this discrete model
approaches a similar model with continuous spectrum for times fulfilling
the condition (see Ref. 33 also Ref. 34):

t � τRU .

With respect to the behavior of characteristic times for systems hav-
ing discrete and continuous spectrum, we can summarize the situation as
follows:

(i) For systems with a discrete spectrum:

• Systems with discrete spectrum never decohere as τRU �=∞.
Poincaré recurrence theorem is then valid and we recover the
initial conditions after the revival time τRU .

• The subsystem S dynamically decoheres for all practical pur-
poses if t > τDS .

• Decoherence for discrete spectrum systems is produced for some
limit as previously explained.(33) In this case, if t� τRU the
system with a discrete spectrum is almost indistinguishable from
another with continuous spectrum. A similar situation in the
context of EID is discussed in Ref. 36.

• In the example discussed in Ref. 33, we see S arrives to a state
of equilibrium and then U as a whole does arrive to equilib-
rium. Thus, both statistcally decohere.

(ii) For system with a continuous spectrum:

• The revival time τRU �−→ ∞ and U decoheres.(4)
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• If the system is described by a Hamiltonian whose resolvent
has no poles that can be looked as resonance poles, there is no
decoherence in proper sense as τDU �−→ ∞. Only systems with
finite decoherence time decohere. In the case that U reaches the
equilibrium, also S ⊂ U reaches equilibrium and therefore S
statistically decoheres.
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