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Abstract: Just as non-relativistic fluids, oftentimes we find relativistic fluids in situations where
random fluctuations cannot be ignored, with thermal and turbulent fluctuations being the most
relevant examples. Because of the theory’s inherent nonlinearity, fluctuations induce deep and
complex changes in the dynamics of the system. The Martin–Siggia–Rose technique is a powerful
tool that allows us to translate the original hydrodynamic problem into a quantum field theory one,
thus taking advantage of the progress in the treatment of quantum fields out of equilibrium. To
demonstrate this technique, we shall consider the thermal fluctuations of the spin two modes of a
relativistic fluid, in a theory where hydrodynamics is derived by taking moments of the Boltzmann
equation under the relaxation time approximation.

Keywords: relativistic hydrodynamics; quantum field theory; hydrodynamic fluctuations

1. Introduction

The success of hydrodynamics in the description of relativistic heavy ion collisions [1–3]
has brought to the fore the problem of the very early stages of the process, as hydrody-
namic behavior appeared on time scales that were not longer than the expected relaxation
times [4–11]. In a parallel development, the possibility of relativistic viscous fluids playing
an important role in the evolution of electromagnetic and gravitational background fields in
cosmological and astrophysical settings [12–19] has similarly brought attention to regimes
where the relaxation time is not the shortest time scale in the problem.

In this regime, not only is the fluid strongly out of equilibrium, but also its fluctua-
tions are not negligible. To mention two important instances of this phenomenon, these
fluctuations may be of thermal origin, or else due to the nonlinear amplification of external
influences leading to turbulence [20–26].

Field theory methods, through the so-called Martin–Siggia–Rose (MSR) approach [27–30],
have proven to be powerful tools in the analysis of fluctuating fluids. The method is
based on the construction of a generating functional for the correlation functions of the
fluid [31–38]. This functional has the same form as the generating functional for a non-
equilibrium quantum field [39], and this brings to bear the substantial tools available for the
study of these systems, particularly functional methods based on the one- or two-particle
irreducible effective action. The first choice is relevant when we are interested in the mean
values of the hydrodynamic variables, while the second is superior when the goal is the
description of correlations, which is the task at hand.
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In this paper, we shall present the MSR approach to fluctuating relativistic viscous
fluids. Hydrodynamics is conceived as an effective theory describing the long-lived modes
of a more fundamental description, which is usually either a field theory [39] (including
conformal field theories, which may be studied though holographic methods [40]) or
else a kinetic theory [41]. For concreteness, we shall assume the latter. We start from a
Boltzmann equation (as we shall discuss below, for the kind of problems we have in mind it
is enough to work within the relaxation time approximation for the collision term [42–46])
and derive hydrodynamics by taking moments of this equation [47,48] in a manner to be
fully described below.

As mentioned above, in applications, the emphasis is on the interaction of the fluid
with electromagnetic and gravitational fields; therefore, the main interest is on the spin 1
and 2 modes of the fluid. We have treated electromagnetic interactions elsewhere (including
the possibility of the fluid amplifying a seed field through the Weibel instability [49,50]); in
this paper, we shall focus on spin 2 modes.

The existence of non-hydrodynamic tensor modes in a relativistic fluid is a generic
prediction of kinetic theory [51–53]. To capture them, we must recur to a particular param-
eterization of the one-particle distribution function, including explicitly a second-order
tensor as an independent hydrodynamic variable; as we shall show below, to provide this
mode with a finite propagation speed, we must include a third-order tensor as well [53–55].
As a test case for the formalism, we shall formulate a minimal model including a dynami-
cal tensor mode and shall study how nonlinearities modify the spectrum of the thermal
fluctuation of this mode. Concretely, we shall show that the equal time thermal spectrum
is flat at long wavelengths (as it is in the linear theory) but becomes a power law at short
ones, resembling the spectra characteristic of relativistic turbulence [26].

This paper is organized as follows. In the next section, we formulate the MSR approach
in the language of the two-particle irreducible effective action (2PIEA). We conclude by
stating the concrete form of the dressed correlations, to be computed in the following.

We then switch to a presentation of stochastic hydrodynamics, as derived from the
moments of a stochastic kinetic equation [56–61] after a parameterization of the one-particle
distribution function, which includes, besides temperature and four velocity, the tensor
hydrodynamic variables required to capture the spin 2 non-hydrodynamic mode of the
fluid [53]. We consider a massless relativistic gas; so, we shall not include chemical potential
among the hydrodynamic variables.

Finally, we deploy the MSR tools to compute the dressed correlations of the tensor
modes to one-loop accuracy. This requires computing corrections to both the causal prop-
agator (the so-called self energy) and to the noise correlation (the so-called noise kernel);
together, they determine the tensor mode correlation. For easier comparison with the
correlation of the linear theory, we compute the equal time correlation, thus obtaining the
dressed spectrum of spin two fluctuations.

We conclude with some brief final remarks. The details of the calculation of the
relevant Feynman graphs are given in Appendix A.

2. The Martin–Siggia–Rose Approach
2.1. From Stochastic to Quantum Fields

Let us begin by reviewing how one can translate a stochastic field theory into a
quantum one [27–30]. One has a theory of fields Xα (the α index accounts for space-time,
Lorentz and species indexes) obeying nonlinear stochastic equations of motion

Pa = Da
βXβ + Λa

βγXβXγ + . . . = Fa (1)

The Fa are assumed to be a Gaussian noise with zero mean and self correlation〈
FaFb

〉
= Φab (2)
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The fields Xα become stochastic themselves, with a probability density functional

X [Xα] =
∫

DFb F
[

Fb
]
δ
[

Xα − Xα
[

Fb
]]

(3)

where Xα
[

Fb
]

is the solution to Equation (1) for a given realization Fb of the noise, and

F
[

Fb
]
= C exp

{
−1

2
FbΦ−1

bc Fc
}

(4)

is the probability density functional for the noise.
For simplicity, we assume that the Xα fields do not develop a nonzero expectation

value. Then, the interest lies on the self correlation

Gαβ
1 =

〈
XαXβ

〉
(5)

Gαβ
1 may be derived from a generating functional

Gαβ
1 = 2

δW
[
Kβγ

]
δKαβ

∣∣∣∣∣
Kαβ=0

(6)

eiW[Kβγ] =
∫

DXα X [Xα] exp
{

i
2

XαKαβXβ

}
=

∫
DXαDFb F

[
Fb
]
δ
[

Xα − Xα
[

Fb
]]

exp
{

i
2

XαKαβXβ

}
(7)

We now proceed as follows. First, we use the identity

δ
[

Xα − Xα
[

Fβ
]]

= Det
[

δPa

δXβ

]
δ[Pa − Fa] (8)

The δ-functions may be added to the exponent by introducing auxiliary fields Ya and to
the determinant by adding ghost fields. It can be shown that ghosts play no role in the
discussion below; so, we shall simply assume that the determinant is a constant [62]. So,
we obtain

eiW[Kβγ] =
∫

DYaDXαDFb F
[

Fb
]

exp
{

iYa(Pa − Fa) +
i
2

XαKαβXβ

}
(9)

Finally, we integrate over the noises Fa to obtain

eiW[Kβγ] =
∫

DYaDXα exp
{

iYaPa − 1
2

YaΦabYb +
i
2

XαKαβXβ

}
(10)

At this point, it is convenient to consider XA = (Xα, Ya) as a single field and add sources
as necessary so that we obtain a generating functional for the correlations GAB =

〈
XaXb

〉
,

namely,

eiW[Kβγ] =
∫

DXA exp
{

iS
[
XA
]
+

i
2

XAKABXb
}

(11)

where
S
[
XA
]
= YaPa +

i
2

YaΦabYb (12)
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The “doubling of degrees of freedom” gives this the structure of the classical action for a
quantum field defined on a closed time-path [39]. By performing a Lagrange transform with
respect to KAB, we obtain the two-particle irreducible effective action (2PIEA)

Γ
[
GAB

]
= W[KAB]−

1
2

KABGAB
∣∣∣∣
W,K=G/2

(13)

The variation of the 2PIEA yields the Schwinger–Dyson equations

δΓ
δGAB = 0 (14)

which are the most efficient way to find the correlations.
The effective action approach has points in common with the non-equilibrium gener-

ating functional introduced by Zubarev [63–66]; however, the goal here is not to compute
the correlation functions directly from a generating functional, but rather, the equations of
motion thereof, which are similar to the Schwinger–Dyson equations from field theory.

We should emphasize that the reason to appeal to functional methods is to make
efficient use of the information already encoded in the equations of motion. In principle,
one could use field theory methods without introducing path integrals, as was conducted by
Wyld [67]. However, the path integral formulation makes it easier to implement powerful
methods such as the functional renormalization group [68–70], which we aim to discuss in
future publications. For further discussion of path integral methods, see [71].

2.2. Mining the 2PIEA

The 2PIEA has the structure [39]

Γ
[
GAB

]
=

1
2

δ2S
δXAδXB

∣∣∣∣
XA=0

GAB − i
2

ln
[

Det GAB
]
+ ΓQ

[
GAB

]
(15)

where ΓQ is the sum of all two-particle irreducible vacuum graphs with the full propagator
GAB and vertices derived from the interaction action

SQ = Ya

{
Λa

βγXβXγ + . . .
}

(16)

therefore, the Schwinger–Dyson equations are

δ2S
δXAδXB

∣∣∣∣
XA=0

− iG−1
AB + 2

δΓQ

δGAB = 0 (17)

The analysis of these equations is greatly simplified by the observation that

Gab = 〈YaYb〉 = 0 (18)

Then, the obvious identity(
G−1

αβ G−1b
α

G−1a
β G−1ab

)( 〈
XβXγ

〉 〈
XβYc

〉
〈YbXγ〉 0

)
=

(
δ

γ
α 0
0 δa

c

)
(19)

shows that
〈

XβYc
〉

is invertible, since

G−1a
β

〈
XβYc

〉
= δa

c (20)
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and then, the further equation G−1
αβ

〈
XβYc

〉
= 0 shows that G−1

αβ = 0. So, there are only two
families of nontrivial Schwinger–Dyson equations, Equation (20) and

G−1a
β

〈
XβXγ

〉
+ G−1ab〈YbXγ〉 = 0 (21)

or else, reading the inverse propagators from the Schwinger–Dyson equations,

(−i)

[
Da

β + 2
δΓQ

δ
〈
YaXβ

〉]〈XβYc

〉
= δa

c

(−i)

[
Da

β + 2
δΓQ

δ
〈
YaXβ

〉]〈XβXγ
〉
+

[
Φab − 2i

δΓQ

δ〈YaYb〉

]
〈YbXγ〉 = 0 (22)

The propagator 〈
XβYc

〉
= i
〈

δXβ

δFc

〉
(23)

is causal. It is the retarded propagator of the theory. By symmetry, 〈YbXγ〉 is the advanced
propagator. The propagator

〈
XβXγ

〉
= Gβγ

1 is the physical correlation function of the

theory. We now see that we could derive Gβγ
1 from a stochastic equation[

Da
β + Σa

β

]
Xβ = Fa

dressed (24)

where the self-energy

Σa
β = 2

δΓQ

δ
〈
YaXβ

〉 (25)

and the dressed noise has a self-correlation〈
Fa

dressedFb
dressed

〉
≡ Nab = Φab − 2i

δΓQ

δ〈YaYb〉
(26)

where Nab is the so-called noise kernel.

2.3. The Lowest-Order Correlation

To make the analysis above more concrete, we shall compute the lowest-order correc-
tion to the self-energy and to the noise kernel. Keeping only the quadratic terms in the
original stochastic equation, and assuming that Λa

βγ is symmetric on (β, γ), the lowest-order
contribution to ΓQ is

ΓQ =
i
2

Λa
βγΛa′

β′γ′

〈(
YaXβXγ

)(
Ya′X

β′Xγ′
)〉

2PI

= 2iΛa
βγΛa′

β′γ′

〈
YaXβ′

〉〈
XβYa′

〉〈
XγXγ′

〉
+ iΛa

βγΛa′
β′γ′〈YaYa′〉

〈
XβXβ′

〉〈
XγXγ′

〉
(27)

and so

Σa
β = 4iΛa

β′γΛa′
βγ′

〈
Xβ′Ya′

〉〈
XγXγ′

〉
Nab = Φab + 2Λa

βγΛb
β′γ′

〈
XβXβ′

〉〈
XγXγ′

〉
(28)
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On the right-hand side of (28), we may use the lowest-order propagators〈
Xβ′Ya′

〉
= i

[
D−1

]β′

a′〈
XβXβ′

〉
= (−1)

[
D−1

]β

a
Φaa′

[
D−1

]β′

a′
(29)

Finally, the dressed propagators read〈
Xβ′Ya′

〉
dressed

= i[D + Σ]−1β′

a′ (30)

〈
XβXβ′

〉
dressed

= (−1)[D + Σ]−1β
a Naa′ [D + Σ]−1β′

a′ (31)

=
〈

XβYa

〉
dressed

Naa′
〈

Ya′X
β′
〉

dressed
(32)

3. From Stochastic Kinetic Theory to Stochastic Hydrodynamics
3.1. Relativistic Kinetic Theory

Hydrodynamics is usually conceived as an effective theory that captures the dynamics
of the long-lived modes of a more fundamental description [72,73]—in practice, either field
theory (including holographic models) or kinetic theory. In this article, we shall take the
latter viewpoint; so, it is convenient to start with a brief comment on relativistic kinetic
theory [41].

We shall consider the kinetic theory of massless, neutral particles. They are described
by the one-particle distribution function f (xµ, pν), where p2 = 0 and p0 ≥ 0. The energy-
momentum tensor is

Tµν =
∫

Dp pµ pν f (33)

and the entropy is

Sµ =
∫

Dp pµ f [1− ln f ] (34)

Here,

Dp =
2d4 pν

(2π)3 δ
(
−p2

)
θ
(

p0
)

(35)

is the invariant momentum space measure. Once Tµν is given, we define the fluid velocity
uµ, temperature T and inverse temperature vector βµ = uµ/T from the Landau–Lifshitz
prescription Tµνuν = −ρuµ, where ρ = 3T4/π2 is the energy density and u2 = −1.
The equation of motion is Boltzmann’s

pµ ∂ f
∂Xµ = Icol . (36)

The collision integral is restricted by energy-momentum conservation∫
Dp pµ Icol = 0 (37)

and the H theorem ∫
Dp ln f Icol ≤ 0 (38)

for any solution of Equation (36); this enforces the Second Law Sµ
,µ = σ ≥ 0.

We shall assume that the collision integral expanded to linear order around an equi-
librium solution defines a symmetric operator on the space of linear perturbations to the
one-particle distribution function. Then, because of (37), this operator must have four
null eigenvectors associated to the momenta pµ. Since we are considering a massless
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gas, we do not enforce particle number conservation. We assume these are the only null
eigenvectors—they are the hydrodynamic modes.

The rest of the eigenvectors to the collision operator have negative eigenvalues. We
shall consider “hard” collision terms, where there is a finite gap between zero and the first
nonzero eigenvalue, as opposed to “soft” collision terms where there is a continuous spec-
trum stretching away from zero [74–76]. For the present discussion, a hard collision term
may be accurately approximated by an Anderson–Witting or relaxation time approximation
collision term [42,43,77–80]

Icol =
−1
τ

(−uσ pσ)[ f − f0] (39)

where f0 is an equilibrium solution. Momentum conservation requires f0 to be the equilib-
rium distribution built from the inverse temperature vector derived from f , and uµ to be
the corresponding Landau–Lifshitz velocity.

Of course, this is not the only possible linear approximation to the collision term,
just one of the best known, together with Marle’s [81]. Over time, other proposals have
been advanced, with the goal of allowing for a momentum dependence of the relaxation
time [45,46,73,82] and/or to account for both elastic and inelastic collisions [83].

The non-null eigenvectors of the collision operator are associated to the non-hydrodynamic
modes. The existence of a spin 2 non-hydrodynamic mode is a generic prediction of
kinetic theory [53]. For example, if the velocity lies in the z direction, then a perturbation
proportional to px py would contribute to the spin 2 part of the energy momentum tensor.
This perturbation must have some nontrivial expansion in terms of collision operator
eigenvectors, since it is orthogonal to the hydrodynamic modes.

Most importantly, tensor modes mediate the interaction between the fluid and gravita-
tional waves, both in cosmological scenarios such as the post-inflationary Universe [13,18,19]
or the phase transitions era [16] and in astrophysical scenarios such as rotating compact ob-
jects [14,17] and merging neutron stars [12]. Therefore, we must understand the dynamics
of those modes to correctly describe these phenomena.

3.2. The Moments Approach to Hydrodynamics

To obtain hydrodynamics from kinetic theory, we begin by expanding ln f in a set of
functions fα(xµ, pν) [84]

ln f = ∑
α

Xα fα(xµ, pν) (40)

It is customary to choose βµ as one of the Xα, with pµ as the corresponding fα. Hydrody-
namics follows from the truncation of this development to a (hopefully) few terms; the Xα

then become the hydrodynamic variables. To obtain the hydrodynamic equations, we take
moments of the Boltzmann equation with suitable functions Ra

∫
Dp Ra(xν, pν)

[
pµ ∂ f

∂xµ − Icol

]
= 0 (41)

The problem is that the truncated f is not a solution of the Boltzmann equation and, so, we
cannot appeal to the H theorem to enforce the Second Law. The way out is to choose the Ra

as the fα themselves. In particular, energy-momentum conservation Tµν
,ν = 0 becomes one

the equations of motion.
It is clear that this scheme is still too general; to proceed, we must consider a particular

realization. In this work, we shall restrict ourselves to

ln f = βµ pν + Xµν
pµ pν

(−uσ pσ)
+ Xµνρ

pµ pν pρ

(−uσ pσ)2 (42)

It is assumed that the Xµν and Xµνρ tensors are totally symmetric, transverse with respect
to uµ and traceless on any two indexes. The Xµν field captures the tensor mode, which is
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our main concern; the Xµνρ field is then necessary to obtain nontrivial dynamics for those
modes [53,55]. The model where Xµνρ is not included has been analyzed in [85].

The powers of −uσ pσ in the denominators are included to avoid the non-equilibrium
terms dominating the equilibrium one. If these powers are not included, the theory becomes
a divergence-type model [86–91] but the momentum integrals become divergent and must
be renormalized [92]. In any case, the application of these models to Bjorken and Gubser
flows, where exact solutions to kinetic theory are available, and to relativistic shock waves,
shows that including the denominators in (42) greatly improves the concordance with the
exact results [54,84].

The corresponding equations of motion are

Sµν
µ′ν′

∫
Dp

pµ′ pν′

(−uσ pσ)

[
pλ ∂ f

∂xλ
− Icol

]
= 0

Sµνρ
µ′ν′ρ′

∫
Dp

pµ′ pν′ pρ′

(−uσ pσ)2

[
pλ ∂ f

∂xλ
− Icol

]
= 0 (43)

where Sµν
µ′ν′ and Sµνρ

µ′ν′ρ′ are projectors over the space of totally symmetric, transverse with
respect to uµ and traceless tensors. They can be built from the projector ∆µν = ηµν + uµuν.

With an integration by parts, we may write

Sµν
µ′ν′

[
Aµ′ν′λ

,λ − Kµ′ν′σλuσ,λ − Iµ′ν′
]

= 0

Sµνρ
µ′ν′ρ′

[
Aµ′ν′ρ′λ

,λ − 2Kµ′ν′ρ′σλuσ,λ − Iµ′ν′ρ′
]

= 0 (44)

where

Aµ′ν′λ =
∫

Dp
pµ′ pν′

(−uσ pσ)
pλ f

Kµ′ν′σλ = Aµ′ν′σλ =
∫

Dp
pµ′ pν′(
−uσ′ pσ′

)2 pλ pσ f

Iµ′ν′ =
∫

Dp
pµ′ pν′

(−uσ pσ)
Icol

Kµ′ν′ρ′σλ =
∫

Dp
pµ′ pν′ pρ′(
−uσ′ pσ′

)3 pλ pσ f

Iµ′ν′ρ′ =
∫

Dp
pµ′ pν′ pρ′

(−uσ pσ)2 Icol (45)

With the Anderson–Witting collision term (39), we obtain

Iµ′ν′ =
−1
τ

[
Tµ′ν′ − Tµ′ν′

0

]
Iµ′ν′ρ′ =

−1
τ

[
Aµ′ν′ρ′ − Aµ′ν′ρ′

0

]
(46)

The second terms, where f is replaced by f0, will not survive the projector operators and
may be discarded.

3.3. Stochastic Hydrodynamics

The above framework is incomplete in that it does not account for thermal fluctua-
tions. We may fix that by adding a noise term to the Boltzmann equation as derived from
fluctuation–dissipation considerations [56–61].
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Let us first consider the fluctuation–dissipation theorem in an abstract setting. Suppose
a theory with variables xα whose probability density, in equilibrium, takes the form

f (xα) = eΦ(xα) (47)

For example, if the system is in thermal equilibrium, then the potential Φ is −F/T, where
F is the free energy F = E− TS.

Equation (47) implies that the system is not just sitting at the equilibrium state, which
is the maximum of the potential—which we identify as xα = 0—but fluctuates around it,
in a way that is prescribed by the classical equipartition theorem

〈xα Jβ〉 = δα
β (48)

where
Jβ = − ∂Φ

∂xβ
(49)

is the so-called thermodynamic force.
The dynamics of the system has a deterministic and a random component

ẋα = Fα
det + ζα (50)

The deterministic part drags the system towards xα = 0; for linear deviations from
equilibrium, it may be parameterized as

Fα
det = −γαβ Jβ (51)

where the matrix γαβ is positive definite. Then, the fluctuation–dissipation theorem
states that

〈ζαζβ〉 = γαβ + γβα (52)

Let us apply this general scheme to kinetic theory. The relevant thermodynamic potential
is the Massieu function

Φ = −
∫

d3x UµΦµ (53)

where Uµ is the equilibrium four velocity, namely, the velocity of an observer at rest with
respect to the thermal bath (which we take as (1, 0, 0, 0)) [93]

Φµ = Sµ + β0νTµν = −
∫

Dp pµ f [ln f − 1− β0ν pν] (54)

Upon a perturbation f = f0 + δ f , we have [94]

Φµ = −
∫

Dp pµ
(

f0 + δ f

)[ δ f
f0
− 1

2

(
δ f
f0

)2
− 1

]

= Φµ
0 −

1
2

∫
Dp pµ δ f 2

f0
(55)

The thermodynamic force is derived from the variational derivative of the global Massieu
function (53).

J((t,~x),~p) = − δΦ
δ f ((t,~x),~p)

=
1

(2π)3
δ f
f0
((t,~x),~p) (56)

To write the Anderson–Witting collision term (39) to the required order, we need to
compute the corrections to f0. We start from

Tµν = Tµν
0 + δTµν (57)

so, writing uµ = Uµ + δuµ, T = T0 + δT and Uµδuµ = 0 we have
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[
Tµν

0 + δTµν
]
[Uν + δuν] = −[ρ0 + δρ][Uµ + δuµ] (58)

To first order
Tµν

0 δuν + δTµνUν = −ρ0δuµ − δρUµ (59)

Therefore,

δρ = δTµνUµUν

δuµ = −
∆µ

ρ δTρνUν

ρ0 + p0
(60)

where we have used that Tµν
0 = ρ0UµUν + p0∆µν, ∆µν = ηµν + UµUν and finally, using the

Stefan–Boltzmann relation,
δT
T0

=
1
4

δρ

ρ0
(61)

δβν =
1
T0

δuν −
Uν

T2
0

δT = −
∆ν

ρδTρσUσ

T0(ρ0 + p0)
− Uν

4T0ρ0
δTρσUρUσ (62)

Putting it all together,

δIcol =
1
τ

Uµ pµ[δ f − δ f0]

= −(2π)3 p0

τ
f0

[
J +

3
4ρ0T0

pν

[
∆νρ +

1
3

UνUρ

] ∫
Dp′ p′ρUσ p′σ f0 J

]
(63)

where we have used the equation of state p0 = ρ0
3 .

In summary, if we assume the collision integral acquires a stochastic component

Icol → Icol + I
((

t, xj
)

, pj

)
(64)

then, from the fluctuation–dissipation theorem (52),〈
I
((

t, xj
)

, pj

)
I
((

t′, yk
)

, qk

)〉
=

2
τ

(
−uµ pµ

)(
−uµqµ

)
f0(p)δ(x− y)δ

(
t− t′

)
{
(2π)3δ(p− q)− 3 f0(q)pνqρ

4ρ0T0

[
∆νρ +

1
3

uνuρ

]}
. (65)

After taking moments, the hydrodynamic equations obtain noise terms [85,95]

Iµ =
∫

Dp pµI

Iµν = Sµν
µ′ν′

∫
Dp

pµ′ pν′

(−uσ pσ)
I

Iµνρ = Sµνρ
µ′ν′ρ′

∫
Dp

pµ′ pν′ pρ′

(−uσ pσ)2 I (66)

Now, we find 〈
Iµ(x)Iν

(
x′
)〉

=
〈
Iµ(x)Iνρ

(
x′
)〉

=
〈
Iµ(x)Iνρσ

(
x′
)〉

= 0 (67)

so, we may simply take Iµ = 0. The noise does not feed energy, but entropy, into the
system [25,26].
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The remaining correlations are

〈
Iµν(x)Iλτ

(
x′
)〉

=
4

15τ
ρ̃Sµν

λτδ
(
x− x′

)
〈
Iµν(x)Iλτω

(
x′
)〉

= 0〈
Iµνρ(x)Iλτω

(
x′
)〉

=
4

35τ
ρ̃Sµνρ

λτωδ
(
x− x′

)
(68)

where ρ̃ = 12T5/π2.
We observe that the noise in the hydrodynamic equations is additive; however, for a

more realistic collision integral [96,97] there will be multiplicative noise too [98,99]. We aim
to discuss this issue in future publications.

3.4. MSR Hydrodynamics

To set up the MSR action corresponding to a viscous relativistic fluid, we introduce
Lagrange multipliers Yµ, Yµν and Yµνρ, the latter being transverse and traceless. Then,
the action reads

S =
∫

d4x
{
−Yµ,νTµν −Yµν,ρ Aµνρ −Yµν

[
Kµνσλuσ,λ + Iµν

]
−Yµνρ,σ Aµνρσ

− Yµνρ

[
2Kµνρσλuσ,λ + Iµνρ

]
+ 2i

ρ̃

τ

[
1
15

YµνYµν +
1

35
YµνρYµνρ

]}
(69)

So far, the treatment is fully nonlinear. However, we know from the Navier–Stokes equa-
tions that the most relevant nonlinear terms are those related to convective derivatives,
over and above corrections to the viscous energy momentum tensor. To capture that kind
of behavior, we shall linearize on Xµν and Xµνρ, while leaving uµ arbitrary; then, we define

uµ = µUµ + vµ (70)

where Uµ = δ
µ
0 , Uµvµ = 0 and µ = 1 + 1

2 vµvµ+ higher order. Then, ∆00 = vkvk, ∆0k = µvk,
∆jk = δjk + vjvk. Observe that, similarly, UµXµν = −vµXµν is a second-order quantity,
while UµUνXµν = vµvνXµν is of third order.

Given the complexity of the theory, we shall produce a demonstrative calculation
retaining only some of the relevant Feynman graphs.

Our goal is to see how radiative corrections affect the tensor fluctuations. We cannot
build the theory out of tensor modes alone, because tensor modes couple to each other
through vector modes. The simplest nontrivial theory has two vector modes and two tensor
modes, namely, the vector part of vk (therefore, we assume that vk

,k = 0), the vector and

tensor parts of X jk (to single out, which we assume Xjk = xj,k + xk,j + x̄jk, with xj
,j = x̄jk

,k = 0)

and the tensor part of Xjkl = x̄′jk,l + x̄′kl,j + x̄′l j,k where x̄′ jk
,k = 0. To obtain equations for

them, we perform a similar decomposition of the Lagrange multipliers, namely, Yj = yj,
Yjk = y′j,k + y′k,j + ȳjk and Yjkl = ȳ′jk,l + ȳ′kl,j + ȳ′l j,k. Because of rotation invariance, there
are no nontrivial correlations between vector and tensor variables. Finally, we shall keep
only one interaction, namely, the coupling between vk, x̄jk and ȳjk, which comes from the
convective term. Now, the action reads
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S =
∫

d4x
{

yj

[
4
3

ρv̇j +
2

15
ρ̃ ∆xj

]
− 2y′j∆

[
2

15
ρ̃

[
ẋj +

1
τ

xj
]
+

4ρ

15
vj
]

+ ȳjk

[
2

15
ρ̃

[
˙̄xjk +

1
τ

x̄jk
]
+

2
35

ρ̃ ∆x̄
′ jk
]

− ȳ′jk
6
35

ρ̃∆

[
˙̄x
′ jk +

1
τ

x̄
′ jk +

1
3

x̄jk
]

+ 2i
ρ̃

15τ

[
−2y′j∆y′j + ȳjk ȳjk

]
− 2i

ρ̃

35τ
y
′ jk∆y′jk + ȳjk

2
15

ρ̃vl x̄jk
,l

}
(71)

Integrating out the xj and x̄
′ jk fields, we obtain the constraints

2
15

ρ̃ ∆yj +
4
15

ρ̃∆

[
ẏ′j −

1
τ

y′j

]
= 0

2
35

ρ̃ ∆ȳjk +
6
35

ρ̃∆

[
ẏ′jk −

1
τ

y′jk

]
= 0 (72)

We use these constraints to elliminate yj and ȳjk, whereby

S =
∫

d4x
{

8
3

ρy′j

[(
∂

∂t
+

1
τ

)
v̇j − 1

5
∆vj
]

+
2
5

ρ̃y′jk

[(
∂

∂t
+

1
τ

)2
x̄jk − 1

7
∆x̄jk

]

+ 2i
ρ̃

15τ

[
−2y′j∆y′j + 9

[
∂

∂t
− 1

τ

]
y′jk

[
∂

∂t
− 1

τ

]
y
′ jk − 9

7
y
′ jk∆y′jk

]
− 2

5
ρ̃

[
ẏ′jk −

1
τ

y′jk

]
vl x̄jk

,l

}
(73)

4. Perturbative Evaluation of the 2PIEA

We shall now evaluate the corrections to the “classical” correlations derived from the
action (73), to first order in the loop expansion.

We are building graphs with three kinds of internal lines, corresponding to the velocity
symmetric correlation 〈vv〉, the tensor symmetric correlation 〈x̄x̄〉 and the tensor causal
propagator 〈x̄y′〉; cubic vertices where the incoming lines are one of each kind; and external
lines that may be of two types, x̄ or y′. We are interested in contributions to the self-energy,
whereby one external line is of y′jk type and the other of x̄jk, and corrections to the noise
kernel, where both external lines are of the y′jk kind. Therefore, we have the relationships

V = 2IVV

V = IXY + 2IXX + EX

V = IXY + EY

IVV + IXX + IXY −V = L− 1 (74)

where V is the number of vertices, L of loops, IXX the internal lines of the XX kind and EX
the external lines of the X kind. The solution to this system reads
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IVV = L− 1 +
1
2

EX +
1
2

EY

IXX = −1
2

EX +
1
2

EY

IXY = 2(L− 1) + EX

V = 2(L− 1) + EX + EY (75)

As τ → ∞, the poles of the propagators move closer to the real axis, and this causes each
loop integral to diverge linearly in τ in the free streaming limit. Therefore, we estimate the
contribution of each loop integral as (kτ)k4. Including this factor, a given graph scales as(

ρ̃

τρ2k2

)IVV
(

1
τρ̃k2

)IXX
(

1
ρ̃k2

)IXY(
ρ̃k2
)V(

τk5
)L

(76)

Rearranging, we obtain (
τρ2k2

ρ̃

)(
ρ̃

ρ

)EX
(

ρ̃

τρ

)EY
(

ρ̃k3

ρ2

)L

(77)

Self energy graphs have EX = EY = 1; so,

Σ ≈ ρ̃k2
(

ρ̃k3

ρ2

)L

(78)

A noise kernel graph has EX = 0, EY = 2

N ≈
(

ρ̃k2

τ

)(
ρ̃k3

ρ2

)L

(79)

We see that the loop expansion is reliable for all momenta k ≤ T. In the following, we shall
consider the first corrections to the self energy and the noise kernel as we approach the free
streaming limit τ → ∞.

In the opposite limit τ → 0, the tensor modes disappear and the equations for the
scalar and vector modes become constitutive relations appropriate to the Chapman–Enskog
theory. Therefore, in that limit, we recover the analysis of refs. [100,101].

4.1. “Classical” Propagators

We define the Fourier transform in both time and space as

hj(x) =
∫ dω

2π

d3k
(2π)3 e−i(ω t−~k·~x) hj(ω,~k) (80)

Due to isotropy and time-translation symmetry, the vector propagators read (where hi and
gj are just two generic divergenceless vector fields)〈

hi(x) gj(x′)
〉
=
〈

higj
〉
(t− t′,~x−~x′) (81)

and, consequently,〈
hi(ω,~k) gj(ω′,~k′)

〉
= (2π)4 δ(~k +~k′) δ(ω + ω′) 〈higj〉(ω,~k) (82)

where

〈higj〉(ω,~k) = Ghg(ω, k) Pij(k̂) (83)
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with

Pij(k̂) = δij − kikj

k2 (84)

the vector spatial projector. In case of having tensor propagators, Pij must be replaced by
the tensor spatial projector

Pijkl =
(

PikPjl + Pil Pjk − PijPkl
)

/2 . (85)

After Fourier transforming, the relevant propagators are

〈
vjy′l

〉
=

(
−3
8ρ

)
iPj

l (k̂)[
ω
(

ω + i
τ

)
− 1

5 k2
] (86)

〈
x̄jky′lm

〉
=

(
−5
2ρ̃

)
iPjk

lm(k̂)[(
ω + i

τ

)2
− 1

7 k2
] (87)

and the linear fluctuations are〈
vjvk

〉
=

(
3ρ̃

40τρ2

)
k2Pjk(k̂)[(

ω2 − 1
5 k2
)2

+ ω2

τ2

] (88)

〈
x̄jk x̄lm

〉
=

15
τρ̃

(
ω2 + 1

τ2 +
1
7 k2
)

Pjklm(k̂)[(
ω2 − k2

7 −
1

τ2

)2
+ 4ω2

τ2

] (89)

At equal times, the fluctuation spectra are〈
vjvk

〉
t=t′

=

(
3ρ̃

16ρ2

)
Pjk(k̂) (90)〈

x̄jk x̄lm
〉

t=t′
=

(
15
2ρ̃

)
Pjklm(k̂) (91)

which do not depend on τ as expected since, in equilibrium for equal times, the thermody-
namic behavior is dominant over the dynamical effects.

4.2. Feynman Graphs

The lowest-order contribution to ΓQ is (cfr. Equation (27))

ΓQ =
i
2

(
2
5

ρ̃

)2 ∫
d4xd4x′

〈[(
ẏ′jk −

1
τ

y′jk

)
vl x̄jk

,l

]
(x)
[(

ẏ′j′k′ −
1
τ

y′j′k′
)

vl′ x̄j′k′

,l′

](
x′
)〉

2PI
(92)

namely,

ΓQ =
2i
25

ρ̃2
∫

d4xd4x′
{(

∂

∂t
− 1

τ

)
∂

∂x′l′
〈

y′jk(x)x̄j′k′(x′)〉(
∂

∂t′
− 1

τ

)
∂

∂xl

〈
x̄jk(x)y′j′k′

(
x′
)〉〈

vl(x)vl′(x′)〉
+

(
∂

∂t
− 1

τ

)(
∂

∂t′
− 1

τ

)〈
y′jk(x)y′j′k′

(
x′
)〉

∂2

∂xl∂x′l′
〈

x̄jk(x)x̄j′k′(x′)〉〈vl(x)vl′(x′)〉} (93)
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4.2.1. The Self Energy

The self energy is

Σjk
j′k′ =

4i
25

ρ̃2Pjk
rs Pr′s′

j′k′

(
∂

∂t
+

1
τ

)
∂

∂x′l′
∂

∂xl

[(
∂

∂t′
− 1

τ

)〈
x̄rs(x)y′r′s′

(
x′
)〉〈

vl(x)vl′(x′)〉] (94)

In Fourier space,

Σjk
j′k′(k) =

(
3iρ̃2

100τρ2

)
Pjk
(k)rsPr′s′

(k)j′k′

(
−ik0 +

1
τ

)
klkl′

∫ dωd3 p

(2π)4

Prs
(p)r′s′

(
ω + i

τ

)
[(

ω + i
τ

)2
− 1

7 p2
] (k− p)2Pll′

(k−p)[(
(ω− k0)

2 − 1
5 (k− p)2

)2
+ (ω−k0)

2

τ2

] (95)

By symmetry, Σjk
j′k′ = ΣPjk

(k)j′k′ ; then,

Σ =
1
2

Σij
ij =

(
3ρ̃2

200τρ2

)(
k0 +

i
τ

)
∫ dωd3 p

(2π)4

Pr′s′
(k)rsPrs

(p)r′s′

(
ω + i

τ

)
[(

ω + i
τ

)2
− 1

7 p2
] (k− p)2Pll′

(k−p)klkl′[(
(ω− k0)

2 − 1
5 (k− p)2

)2
+ (ω−k0)

2

τ2

] (96)

We may take ki = δi
3k and then pi =

(
pa
⊥, p3), a = 1, 2, whereby

Pll′
(k−p)klkl′ =

k2 p2
⊥

(k− p)2 (97)

We also find

Pr
(k)r′P

r′
(p)s = Pr

(k)s −
pr
⊥ps

p2 (98)

Pr′s′
(k)rsPrs

(p)r′s′ = 2− 2
p2
⊥

p2 +
1
4

(
p2
⊥

p2

)2

(99)

We can assume approximate isotropy and obtain

Pr′s′
(k)rsPrs

(p)r′s′ ≈
4
5

(100)

so, now,

Σ =

(
3ρ̃2

250τρ2

)(
k0 +

i
τ

)
k2 I (101)

where

I =
∫ dωd3 p

(2π)4

p2
⊥

(
ω + i

τ

)
[(

ω + i
τ

)2
− 1

7 p2
][(

(ω− k0)
2 − 1

5 (k− p)2
)2

+ (ω−k0)
2

τ2

] (102)

We give details of the evaluation of the integral (102) in Appendix A. From the results there
and the previous analysis (78), we find in the free streaming limit

Σ =
2iρ̃
5

(
k0 +

i
τ

)2( ρ̃k3

ρ2

)
σ2
[

k0

k

]
(103)

We will not need the precise form of the σ function in what follows, see Appendix A.
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4.2.2. The Noise Kernel

The noise kernel is

N jk
j′k′(k) =

(
9ρ̃2

100τ2ρ2

)
Pjk
(k)rsPj′k′

(k)r′s′

((
k0
)2

+
1
τ2

)
klkl′

∫ dωd3 p

(2π)4

(
ω2 + 1

τ2 +
1
7 p2
)

Prsr′s′
p[(

ω2 − p2

7 −
1

τ2

)2
+ 4ω2

τ2

] (k− p)2Pll′
(k−p)[(

(ω− k0)
2 − 1

5 (k− p)2
)2

+ (ω−k0)
2

τ2

] (104)

We assume N jkj′k′ = NPjkj′k′ . Proceeding with the self energy, we find

N =

(
9ρ̃2

250τ2ρ2

)((
k0
)2

+
1
τ2

)
k2 IN (105)

where

IN =
∫ dωd3 p

(2π)4

(
ω2 + 1

τ2 +
1
7 p2
)

[(
ω2 − p2

7 −
1

τ2

)2
+ 4ω2

τ2

] p2
⊥[(

(ω− k0)
2 − 1

5 (k− p)2
)2

+ (ω−k0)
2

τ2

] (106)

In the free streaming limit, we find

N =
12ρ̃

5τ

((
k0
)2

+
1
τ2

)(
ρ̃k3

ρ2

)
N
[

k0

k

]
(107)

see Appendix A and (79).

4.3. The Spectrum

The results so far may be summarized by saying that the self energy takes the form (103)
while the correction to the noise kernel is (107). Therefore, the corrected symmetric propa-
gator reads

〈x̄jk x̄jk〉 =
15
τρ̃

[((
k0)2

+ 1
τ2

)[
1 +

(
ρ̃k3

ρ2

)
N
[

k0

k

]]
+ c2

Tk2
]

∣∣∣∣(k0 + i
τ

)2(
1 +

(
ρ̃k3

ρ2

)
σ2
[

k0

k

])
− c2

Tk2
∣∣∣∣2

(108)

where c2
T = 1/7. We may speculate about the spectrum in a case where loop corrections

would be dominant. In that case, we would obtain

〈x̄jk x̄jk〉 =
15ρ2

τρ̃2k3

N
(

k0

k

)
(

k02 + 1
τ2

)∣∣∣σ( k0

k

)∣∣∣2 (109)

To compute the equal time correlation, we must integrate over k0, which in the free stream-
ing limit adds a further factor of 1/k, and then at equal times

〈x̄jk x̄jk〉 ∝
ρ2

τρ̃2k4 (110)

Remarkably, power law spectra such as this are associated to entropy cascades, with a
scale-invariant spectrum k−3 corresponding to fully developed relativistic turbulence [26].

5. Final Remarks

When a nonlinear system is coupled to a random force, mode–mode coupling affects
both the inertia of the system and the effective force felt by it. This shows up in such effects
as long time tails.
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The MSR approach is an efficient tool to incorporate these effects in a consistent way,
and takes full advantage of methods developed to treat similar problems in quantum
field theory.

In this paper, we have demonstrated the MSR approach by applying it to the cal-
culation of the dressed thermal fluctuations of the non-hydrodynamic tensor mode of a
relativistic viscous fluid.

The existence of such modes is a generic prediction of kinetic theory. Those modes play
a leading role in the interaction between fluids and gravitational waves both in cosmological
and astrophysical settings.

The dressing by loop corrections changes a flat spectrum for long wavelengths to a
power law one at short wavelengths.

We believe these techniques will play an important role in the further analysis of
phenomena involving relativistic viscous fluids and electromagnetic and gravitational
fields, and look forward to report on further progress soon.
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Appendix A. One Loop Feynman Graphs

In this appendix we give further details about the evaluation of the one-loop contribu-
tions to the self energy (102) and the noise kernel (106).

Appendix A.1. Self Energy

We write Equation (102) as

I =
∫ dωd3 p

(2π)4 p2
⊥

(
ω +

i
τ

)
〈xy〉ret〈vv〉1 (A1)

where

〈xy〉ret =
1[(

ω + i
τ

)2
− 1

7 p2
]

〈vv〉1 =
1[(

(ω− k0)
2 − 1

5 (k− p)2
)2

+ (ω−k0)
2

τ2

] (A2)



Entropy 2022, 24, 1790 18 of 23

I has units of k. We factorize

〈vv〉1 =
−iτ

2(ω− k0)
[〈vv〉ret − 〈vv〉adv] (A3)

where

〈vv〉ret =
1[(

ω− k0 − i
2τ

)2
− 1

5 (k− p)2 + 1
4τ2

]
〈vv〉adv =

1[(
ω− k0 + i

2τ

)2
− 1

5 (k− p)2 + 1
4τ2

] (A4)

Now ∫ dωd3 p

(2π)4 p2
⊥

(
ω +

i
τ

)
−iτ

(ω− k0)
〈xy〉ret〈vv〉adv = 0 (A5)

so

I =
1
2

∫ dωd3 p

(2π)4 p2
⊥

(
ω +

i
τ

)
−iτ

(ω− k0)
〈xy〉ret〈vv〉ret (A6)

It is convenient to write (
ω + i

τ

)
(ω− k0)

= 1 +
(

k0 +
i
τ

) (
ω + k0)

(ω2 − k02)
(A7)

so correspondingly

I =
1
2
(−iτ)

[
I1 +

(
k0 +

i
τ

)
I2

]
(A8)

where

I1 =
∫ dωd3 p

(2π)4 p2
⊥〈xy〉ret〈vv〉ret (A9)

I2 =
∫ dωd3 p

(2π)4 p2
⊥

(
ω + k0)

(ω2 − k02)
〈xy〉ret〈vv〉ret (A10)

I1 has units of k2, I2 has units of k.

Appendix A.2. Noise Kernel

The noise kernel (106) may be analyzed in a similar way.

N =

(
9ρ̃2

250τ2ρ2

)((
k0
)2

+
1
τ2

)
k2 IN (A11)

where IN is dimensionless

IN =
∫ dωd3 p

(2π)4

(
ω2 +

1
τ2 +

1
7

p2
)

p2
⊥〈xx〉1〈vv〉1 (A12)

〈vv〉1 as in Equation (A2), and

〈xx〉1 =
1[(

ω2 − p2

7 −
1

τ2

)2
+ 4ω2

τ2

] (A13)



Entropy 2022, 24, 1790 19 of 23

〈vv〉1 may be handled as in Equation (A3), and

〈xx〉1 =
iτ
4ω
{〈xy〉ret − 〈xy〉adv} (A14)

〈xy〉ret =
1[(

ω + i
τ

)2
− c2

T p2
]

〈xy〉adv =
1[(

ω− i
τ

)2
− c2

T p2
] (A15)

It follows that

IN =
τ2

4
Re

∫ dωd3 p

(2π)4

(
ω2 + 1

τ2 +
1
7 p2
)

p2
⊥

ω(ω− k0)
〈vv〉ret〈xy〉ret (A16)

The integral is equal to I1 + I3, where I1 is given by (A9), and I3, which scales as k2,

I3 =
∫ dωd3 p

(2π)4

(
ωk0 + 1

τ2 +
1
7 p2
)

p2
⊥

(ω2 −ωk0)
〈vv〉ret〈xy〉ret (A17)

Appendix A.3. Computing the Integrals

We now elaborate on the computation of I1. Introducing Feynman parameters [102]

I1 =
∫ 1

0
dx
∫ dωd3 p

(2π)4
p2
⊥

D2
Σ1

(A18)

DΣ1 =

(
ω +

i
τ

(
1− 3

2
x
)
− k0x

)2
+ Ω2 +

3ik0

τ
x(1− x) (A19)

Ω2 = M2 −
[

xc2
V + (1− x)c2

T

](
(pz − δpz)

2 + p2
⊥

)
(A20)

cT = 1/
√

7, cV = 1/
√

5,

δpz =
xc2

Vk[
xc2

V + (1− x)c2
T
] (A21)

M2 = x(1− x)

[
k02 −

c2
Vc2

T[
xc2

V + (1− x)c2
T
] k2

]
− 1

τ2 2x
(

1− 9
8

x
)

(A22)

We shift ω → ω + xk0 and pz → pz + δpz.

I1 =
∫ 1

0
dx
∫ dωd3 p

(2π)4
p2
⊥[(

ω + i
τ

(
1− 3

2 x
))2

+ M2 − C2[x]p2 + 3ik0

τ x(1− x)
]2 (A23)

where
C[x] =

√
xc2

V + (1− x)c2
T (A24)

We rescale p and go to polar coordinates

I1 =
4
3

∫ 1

0

dx
C5[x]

∫ dωdp

(2π)3
p4[(

ω + i
τ

(
1− 3

2 x
))2

+ M2 − p2 + 3ik0

τ x(1− x)
]2 (A25)
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Then the integral has (double) poles at

ω± = − i
τ

(
1− 3

2
x
)
± iω0 (A26)

ω0 =

√
M2 − p2 +

3ik0

τ
x(1− x) (A27)

If both poles lie on the same half plane, then the integral vanishes.
If x < 2/3, we close the countour from above, catching the pole at ω = ω+

I<1 =
1
3

∫ 2/3

0

dx
C5[x]

∫ dp p4

(2π)2
1

ω3
0

(A28)

The integral is dominated by the value p0 of p such that Im ω+ is barely above zero.
We approximate ∫

dp
p4

ωα
0
=

p3
0

(α− 2)ωα−2
0

(A29)

We then have ∫
dp

p4

ω3
0
≈

p3
0

ω0
(A30)

Write

ω0[p0] =
1
τ

(
1− 3

2
x
)
+ iξ (A31)

Taking the square of both terms and equating the imaginary parts

2ξ

τ

(
1− 3

2
x
)
=

3k0

τ
x(1− x) (A32)

Observe that ξ is independent of τ

ξ =
3k0

2
x(1− x)(
1− 3

2 x
) (A33)

and so

p2
0 = M2 + ξ2 − 1

τ2

(
1− 3

2
x
)2

(A34)

In the τ → ∞ limit we get

∫ dp p4

(2π)2
1

ω3
0
≈ −i

[
M2 + ξ2]3/2

(2π)2ξ
(A35)

Which is finite when x → 0 but diverges when x → 2/3. This latter divergence is canceled
by a divergence with opposite sign coming from the integral with x > 2/3.

We see that the leading term (A35) is imaginary, so the contribution to the noise kernel
comes from the next to leading order in the expansion

1
ω0

[p0] =
−i
ξ

+
1

τξ2

(
1− 3

2
x
)
+ . . . (A36)

I2 (A10) and I3 (A17) are computed in the same way. The presence of extra factors in
the denominators is handled by adding one more Feynman parameter.
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