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Loschmidt-echo approach to error estimation in Krylov-subspace approximation
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The Krylov subspace method is a traditional approach to approximate quantum evolution, allowing us to treat
systems with large Hilbert spaces. Despite its popularity, current bounds typically overestimate the error, which
translates into more expensive simulation routines. In this paper, we tackle this problem by realizing that the error
can be understood as a Loschmidt echo in a one-dimensional (1D) noninteracting tight-binding Hamiltonian. We
show that the different time regimes of the approximation can be understood using simple physical ideas. More
importantly, we obtain computationally cheap error bounds that describe with high precision the actual error in
the approximation.
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I. INTRODUCTION

Quantum devices capable of transmitting and processing
information have been established recently [1]. Laboratories
around the world are in a race to develop increasingly accurate
quantum devices. To carry this out successfully, it is necessary
to test their operation on classical devices. For this reason, it
is important to have efficient classical algorithms to perform
quantum simulations [2,3].

Several approaches for the efficient computation of quan-
tum time-evolution have been proposed in the literature [4–8].
The cost of the simulation usually depends on the specifics
of the system, e.g., the initial state, or on the information
that we want to know about the dynamics. For example, the
cost of the simulation can be greatly reduced if the amount
of entanglement developed by the system remains bounded
[7,8]. Less restrictive are the well-known Krylov-subspace
methods, constructed to provide approximations to the action
of the exponential of a matrix on a vector. In the context
of quantum simulation, the mechanics of the approximation
is the following: an initial state in a (possibly very) large
Hilbert space is first mapped to an effective subspace, the
Krylov subspace, that captures the most relevant features of
the dynamics. Within this low-dimensional subspace, time
evolution is (cheaply) computed. Finally, the evolved state
is mapped back to the large Hilbert space. Besides quantum
simulation, the method has other important applications like
solving systems of ordinary differential equations, large-scale
linear systems, and more [9,10].

The core challenge in Krylov-subspace methods is to keep
the error at low values and thus achieve a precise evolution.
For this reason, it is desirable to predict the time regime in
which the error will remain less than a given predetermined
tolerance. This problem has been approached in several ways
in the literature [11–17], and the provided bounds generally

overestimate the error (significantly). In a seminal paper [11],
Park and Light used the fact that the dynamics in the re-
duced subspace is that of an effective one-dimensional (1D)
lattice with a tridiagonal Hamiltonian. An initial state local-
ized at one end starts spreading and the error in the method
is approximated by the population at the other end of the
chain. Later, Saad [12] derived computable estimates of the
error using an expansion in the Krylov subspace exploiting
the Lanczos algorithm. Other error bounds include involved
computations, making it difficult to use in an operational
way [14].

The goal of this paper is to find tight and computation-
ally inexpensive error bounds for the approximation error in
Krylov schemes. We take advantage of a simple observation:
the error can be regarded as a Loschmidt echo in which both
the forward and backward evolutions are given by 1D non-
interacting tight-binding Hamiltonians. In a virtual chain, we
have an initial state that is localized at one end. The error is
related to an echo between evolutions in a D site chain and
a trimmed N << D chain, where N is the dimension of the
truncated Krylov subspace used for the approximation. This
analogy allows us to describe the time regimes of the error
using Loschmidt echo theory. In particular, we show that the
error remains negligible up to some time at which it starts
building up exponentially. This time is related to the tail of
the traveling wave packet hitting the end of the virtual chain
[11]. The core of our proposal is that, in this regime, the error
can be captured remarkably well by replacing the full-size
evolution with the one of a chain with a single extra site. As
we show, this provides an accurate and cheap bound for the
error. To motivate this behavior, we analytically solve for the
bound in the case in which the 1D noninteracting tight-binding
Hamiltonian has homogeneous diagonal and off-diagonal el-
ements. We test this solution in a one-dimensional Ising spin
chain with a transverse magnetic field. Finally, we give some

2469-9926/2022/106(4)/042423(9) 042423-1 ©2022 American Physical Society

https://orcid.org/0000-0001-5478-8364
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.042423&domain=pdf&date_stamp=2022-10-18
https://doi.org/10.1103/PhysRevA.106.042423


JULIAN M. RUFFINELLI et al. PHYSICAL REVIEW A 106, 042423 (2022)

physical insight that explains why this simple model works in
the general case.

The paper is organized as follows. In Sec. II, we intro-
duce the general framework of the Krylov-subspace method
for quantum time evolution. In Sec. III, we describe the
different time-regimes of the error, focusing on the analogy
with Loschmidt echo dynamics under 1D noninteracting tight-
binding Hamiltonians. In Sec. IV, we use the connection
between the error and the Loschmidt echo of 1D noninter-
acting tight-binding Hamiltonians to propose a bound that
describes extremely well the inaccuracy of the approximate
evolution in the Krylov subspace. Finally, in Sec. V, we offer
some final remarks. Appendix A provides a brief description
of the Lanczos algorithm and Appendix B includes details
of the system used for the numerical simulations, a 1D Ising
spin chain with a transverse magnetic field. Appendix C offers
a study of the scaling of the time regimes with the size of
the Krylov subspace and Appendix D derives results for the
robustness of estimating the error using an approximation
for the next hopping term. In Appendix E, the error bound
is analytically solved for the simple case in which the 1D
noninteracting tight-binding Hamiltonian has homogeneous
diagonal and nondiagonal elements.

II. THE KRYLOV-SUBSPACE METHOD

Let us start by reviewing the so-called Krylov-subspace
method for approximating quantum dynamics. Consider a
state |ψ〉 in a D-dimensional complex Hilbert space H =
CD that evolves under a time-independent Hamiltonian H ∈
End(H). The N-dimensional Krylov subspace associated with
|ψ〉 and H is given by

KN = span{|ψ〉 , H |ψ〉 , . . . , HN−1 |ψ〉}. (1)

Here, without loss of generality, we consider that H and |ψ〉
share no symmetries, i.e., such that KD = H. If they did share
some symmetry, time evolution would occur constrained to
its respective subspace H j ⊂ H. In this case, the problem
is redefined to the one belonging within that subspace, e.g.,
H ← H j .

The Krylov approach aims at approximating the time-
evolved state |ψ (t )〉 with the best element |ψN (t )〉 ∈ KN . To
do so, we first have to build an orthonormal basis for KN ,
which we denote BN = {|v0〉 ≡ |ψ〉 , . . . , |vN−1〉}. This is usu-
ally done using Lanczos’s algorithm, a sort of Gram-Schmidt
procedure that harnesses the fact that orthonormalization only
needs to be enforced with respect to the last two vectors in
the basis (see Appendix A). Using BN , we approximate the
time-evolved state by projecting into KN :1

|ψ (t )〉 = e−iHt |ψ〉 ≈ PN e−iHtPN |ψ〉 = V †
N e−iTN tVN |ψ〉

≡ |ψN (t )〉 . (2)

1See Fig. 1(a) for a schematic representation of the method.

FIG. 1. Schematic Krylov approximation: (a) An initial state |ψ〉
(blue circle) evolves under Hamiltonian H , drawing some trajectory
on Hilbert space H (dashed line). At time t , the evolved state is
|ψ (t )〉 (red circle). The Krylov approach consists in approximating
this state with |ψN (t )〉, its projection into the Krylov subspace KN

(green circle), defined in Eq. (1). (b) The dynamics of |ψ〉 under H ,
from the Lanczos basis perspective, corresponds to the diffusion of
an initial state |0〉 that is completely localized at the leftmost end
of a virtual tight-binding chain. Here, the off-diagonal elements of
Lanczos tridiagonal matrix, βi, act as hopping amplitudes between
neighboring sites and the diagonal elements αi as local on-site po-
tentials (not depicted in the image). Using a truncated Lanczos basis
can be regarded as cutting the chain at site N .

Here, TN = VN HV †
N is the Hamiltonian H reduced to the

Krylov subspace KN , and

V †
N =

⎡
⎢⎣

...
...

...

|v0〉 , |v1〉 , , |vN−1〉
...

...
...

⎤
⎥⎦ (3)

and PN = V †
NVN are the reduction-to-the-subspace operator

and projector, respectively. By definition, VN maps, given an
initial state, into the first coordinate vector of an effective
N-dimensional system, VN |ψ〉 = (1, 0, · · · , 0)T ≡ |0〉N . It is
especially relevant to notice that the Hamiltonian reduced to a
Krylov subspace is tridiagonal,

TN =

⎛
⎜⎜⎜⎜⎝

α1 β1 0 · · · 0
β1 α2 β2 · · · 0
0 β2 α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · αN

⎞
⎟⎟⎟⎟⎠, (4)

and thus the system in the Krylov basis (henceforth, the
effective system) has the form of a 1D noninteracting tight-
binding model. An initial state localized in one end of an
effective chain evolves according to TN (i.e., with on-site
potential αi and hopping amplitude βi at the ith site), propa-
gating the excitation and populating the rest of the lattice [see
Fig. 1(b) for a schematic representation]. Finally, V †

N maps
the effective evolved state back to full Hilbert space. The effi-
ciency of the method resides in the fact that the time evolution
is solved with very few computational costs in the reduced
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space, i.e., one replaces the exponential of a D × D Hermitian
matrix H with the much more economical exponential of a
N × N symmetric tridiagonal TN . Of course, the assumption is
that N � D.

The challenge in this approximate evolution scheme is to
keep the error bounded by a given tolerance. This has been
studied in different ways for more than three decades [11–17].
In the next section, we show that the error as a function of
time has regimes that can be well understood using physical
ideas based on Loschmidt echo theory and diffusion in a 1D
noninteracting tight-binding model [18].

III. TIME REGIMES OF THE ERROR

Let us review the time regimes of the error in the
Krylov-subspace method. Such an error is given by the in-
stantaneous infidelity between exact and approximate evolved
states:

εN (t ) = 1 − | 〈ψN (t )〉 ψ (t )|2. (5)

Any actual implementation of the approximation method
has to keep track of this error. Notoriously, its exact
computation is out of the question because it involves
solving the problem one is trying to approximate, e.g.,
constructing |ψ (t )〉.

A closer inspection of Eq. (5) allows for an interesting
interpretation. Rewriting the overlap as

| 〈ψN (t )〉 ψ (t )|2 = ∣∣ 〈ψ |V †
N eiTN tVN e−iHt |ψ〉 ∣∣2

= ∣∣ 〈ψ |V †
N eiTN tVNV

†
De−iTDtVD |ψ〉 ∣∣2

= ∣∣ 〈ψ |V †
DeiT̃N tVDV

†
De−iTDtVD |ψ〉 ∣∣2

= ∣∣ 〈0| eiT̃N t e−iTDt |0〉 ∣∣2
, (6)

where T̃N = VDPN HPNV
†
D has the form

T̃N =
(

TN 0
0 0

)
, (7)

it is noticed that 1 − εN (t ) is described by a Loschmidt echo
[18] on which both backward and forward evolutions are
described by tight-binding Hamiltonians. We start with |0〉 ≡
VD |ψ〉, a completely localized state at one end of the virtual
chain. This state evolves subject to TD for some time t , then
evolves backward subject to T̃N (a perturbed TD where the ef-
fective on-site potentials and hoppings of sites N + 1, . . . , D
are turned off) and is finally overlapped with the initial
state |0〉.

The Loschmidt echo can measure the characteristic revival
occurring after forward and backward time evolutions gener-
ated by two slightly different Hamiltonians [18–20]. As far
as we know, the case of tight-binding Hamiltonians has not
been explicitly considered in the literature so far. We note that
one of the evolutions happens with a chain of length D, while
the other evolution corresponds to the case in which the chain
gets clipped at site N (the hoppings and on-site potentials at
the second part of the chain are set to zero, i.e., αi = 0 and
βi = 0 for i = N + 1, . . . , D).

To gain insight into the time regimes of the approxima-
tion, we show in Fig. 2 the Loschmidt echo | 〈ψN (t )| |ψ (t )〉 |2

FIG. 2. Time regimes of the echo. Loschmidt echo
| 〈ψN (t )〉 ψ (t )|2 = | 〈ψN (t )〉 ψD(t )|2 (top panel) and error εN (t )
(bottom panel) for an Ising spin chain with transverse magnetic
field. We use N = 30 and D = 2L = 1024, and the time is measure
in units of J−1. We have marked with dashed vertical lines the times
that correspond to the snapshots shown in Fig. 3. We also highlight
the relevant times texp and tcoll. The initial state |ψ〉 is a random state
in the even subspace. See text for more details.

(top panel) and the error εN (t ) (bottom panel) for an Ising
spin chain with ten sites and a transverse magnetic field (see
Sec. IV for more details). From now on, we set h̄ = 1, such
that energies are measured in units of the interaction strength
J , and times in units of J−1. The parameters of the chain
are J = 1, hx = 1, and hz = 0.5, corresponding to a quantum
chaotic case, i.e., the distribution of energy levels matches
the one in random matrix theory [21] (see Appendix B for
more details). The initial state |ψ〉 is drawn randomly from
the even subspace. The same results were obtained with initial
states in the odd or even subspaces. We use a Krylov subspace
of N = 30 sites. We can see that the Loschmidt echo has
two very different time regimes. Until the time of collision
between the wave package and the end of the chain t ≈ tcoll,
the echo remains roughly one and the approximate evolu-
tion faithfully captures the exact one. After this first faithful
regime, an abrupt decrease is observed and from there on it
decays in a monotonous way.

In this first time-regime t < tcoll, where the echo practically
does not change, the error has two relevant subregimes. First,
until some time t < texp, the error is essentially zero. Then,
at t = texp the error suddenly starts to build up exponen-
tially. We can interpret this transition as the tail of the wave
packet starting to impact the end of the trimmed chain. The
interval texp � t � tcoll precisely delimits the region where a
proper approximation must happen to obtain a low error. We
note that the noisy plateau of εN (t ) for t < texp is due to
round-off errors in the floating-point arithmetic used in the
computations.

To understand the time regimes of Fig. 2, we plot in
Fig. 3 the square of the amplitudes in the Lanczos basis for
both the exact and approximate evolved states of Eq. (6),
i.e., |〈vi | ψN (t )〉|2 and |〈vi | ψD(t )〉|2 for i = 1, . . . , N and i =
1, . . . , D, respectively. For the rest of the paper, we call the
amplitudes 〈vi | ψK (t )〉 ≡ ψK,i(t ). We provide snapshots of
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FIG. 3. Time evolution of exact and approximate states in
the Lanczos basis. We draw | 〈vi(t )| |ψD(t )〉 |2 = |ψD,i(t )|2 (black
line) and | 〈vi(t )| |ψN (t )〉 |2 = |ψN,i(t )|2 (solid blue) at times t =
10, 25, 42, 60vv, and 80 (top to bottom). Remark: The represen-
tation in the figure takes a cubic interpolation between each site to
smooth out the discrete sites effect for an easier visualization.

these virtual traveling wave packets at times t = 10, 25, 45,
and 70. As mentioned before, we start with localized states at
one end of the effective tight-binding chain. In the first panel
of Fig. 3, corresponding to time t = 10, both wave packets are
traveling to the right and are essentially equal. However, at t =
texp ≈ 25, the exponential tail reaches the site N = 30, and the
error starts to build up rapidly. This process continues until
t = tcoll ≈ 42, where one of the packets bounces with the end
of its chain and starts returning to its original position. This
difference in the behavior of the wave functions is reflected
in an abrupt decay of the echo (see Fig. 2). At t = 60 and
t = 80, the wave packets continuously grow apart and become
more and more orthogonal. Although here we have chosen to
illustrate the regimes of the error using a quantum chaotic spin
chain, similar behavior is observed in the integrable setting
(see Appendix B for more details). Furthermore, Appendix C
provides a study of the scaling of the time regimes with the
size of the Krylov subspace. We observe a quasilinear scaling,
indicating that the dynamics slightly deviates from that of a
wave packet propagating at a constant speed (where both texp

and tcoll would scale linearly).

IV. FROM LOSCHMIDT ECHOES TO ERROR BOUNDS

In the previous section, we have shown that the error in
the Krylov method can be seen as a Loschmidt echo. Let us
now show how this description can help derive tight and com-
putationally cheap bounds for the error, providing advantages
for future implementations of the approximation method. In
particular, we will focus on the time regime that is relevant

FIG. 4. Loschmidt echo | 〈ψN (t )〉 ψK (t )|2 with K = N + 1 (light
blue dashed line), K = N + 5 (green dotted line), and D (black
solid line). Here, we use D = 210-dimensional Ising spin chain with
transverse magnetic field. Inset: The error εK

N (t ) in the shaded region
of the main plot.

for such implementations: the one between texp and tcoll. In this
region, the traveling packet has its center between sites 1 and
N , and only a small, exponentially suppressed population tail
surpasses site N . With this in mind, we can ask ourselves: Is
it really necessary to consider the entire chain to describe the
behavior of the error? Given that in the [N + 1, D] region, we
have exponentially suppressed populations, isn’t it possible
to capture the essential features of the error by considering
instead an echo where we replace the full chain with one
with K = N + i sites, i.e., where i is a small number of
extra sites? To answer this question, we compare the echo
| 〈ψN (t )| |ψ (t )〉 |2 with | 〈ψN (t )| |ψK (t )〉 |2, using K = N + 1
and K = N + 5 (see Fig. 4). Here, we can see that both cases
(with one extra and five extra sites, respectively) accurately
capture the important region between texp and tcoll (shaded
region of Fig. 4). In the inset of Fig. 4, we plot the error
εK

N (t ) = 1 − | 〈ψN (t )| |ψK (t )〉 |2 in the shaded region to high-
light this last conclusion. This remarkable fact, i.e., that only a
single extra site is enough to capture the behavior of the error
in the relevant region, will be the main building block of our
error bound proposal. Let us note that, although here we have
used a spin chain model, the behavior appears to be the same
for other fundamentally different systems. Among others, we
have confirmed this observation in random Hamiltonians that
belong to the Gaussian orthogonal ensemble and Gaussian
unitary ensemble [22] (see, for example, Appendix C).

Now, suppose we have computed the Krylov subspace KN

and want to estimate the error. As we have argued in the previ-
ous paragraph, one can effectively approximate the error with
| 〈ψN (t )| |ψN+1(t )〉 |2. To do so, one would have to perform
an extra iteration of the Lanczos algorithm, i.e., to compute
this extra site approximation |ψN+1(t )〉. Alternatively, it is
possible to approximate the new site in the tight-binding chain
without having to do such extra iteration. This is based on
the fact that, as we show in Appendix D, the error in the
β coefficient propagates quadratically into the approximation
for the error of the Krylov method,

εK
K+1(t ) ≈

(
β̃

β

)2

[1 − | 〈ψ̃K+1(t )〉 ψK (t )|2], (8)
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FIG. 5. Ratio of the bounds 〈ε〉N+1
N (dashed line), ε̃N+1

N (dotted
line) and the a posteriori bound of Ref. [12] (solid line) with the the
actual error εN versus εN . See text for more details.

where |ψ̃K+1〉 is the solution that corresponds to keep-
ing the first K coefficients unchanged and replacing the last
one with β̃.

A simple yet effective way of estimating the coefficients of
this new site is to average over the previous sites. That is,

αN+1 ≈ ᾱ ≡ 1

N

N∑
1

αi,

βN+1 ≈ β̄ ≡ 1

N

N∑
1

βi. (9)

Finally, all the elements needed to test our error bound and
compare it with the established ones from the literature, e.g.,
of Ref. [12], are ready. In Fig. 5, we show the ratio between
the error bounds 〈ε〉N+1

N and the actual error εN of Eq. (5). We
bracket the bound 〈ε〉N+1

N to denote that we use the averaged
estimation of Eq. (9) for the coefficients of site N + 1. In
the inset of Fig. 5, we shade the region of the bound εN+1

N
in which the elements αN+1 and βN+1 are the maximum or
the minimum of αi and βi with i = 1, ...N . We also show the
ratio of the bound of Ref. [12] with the actual error. We see
that both the proposed bounds provide an overestimation that
remains constant throughout the evolution, and is quite lower
than Ref. [12].

Interestingly, the echo | 〈ψN (t )| |ψN ′ (t )〉 |2 can be solved
analytically in the particular case of homogeneous coeffi-
cients, ∀i : αi = α and ∀i : βi = β, which corresponds to the
Toeplitz tridiagonal matrix [23] (see Appendix E for the
derivation). Using such analytical expression, we compute a
new bound ε̃N+1

N (with a tilde) where we use Eq. (E6) with
α = ᾱ and β = β̄ in Eq. (9). We finally show in Fig. 5 that
this approximation also works very well.

V. CONCLUSIONS

In this paper, we have established a connection between
the behavior of the error in Krylov-subspace approximations

for quantum simulation, and a Loschmidt echo between effec-
tive wave packets traveling in effective tight-binding chains.
One such chain has D sites and the other one N << D. The
packages start at the leftmost end of the chain, and for some
time their profile is identical. Then, at t ≈ texp, the tail of the
approximate packet starts colliding with the end of the chain
and bouncing back, while the true packet’s tail continues its
journey unaltered. This discrepancy causes errors to build up
exponentially. At a later time,t ≈ tcoll, the center of this packet
arrives at the end of the chain and bounces back. Here, the
error reaches significant values and the echo forever departs
from unity. Hereafter, the packages travel in opposite direc-
tions and they become ever more orthogonal.

In practice, any approximation method must be accom-
panied by an efficient and accurate error estimator. Yet,
error estimation for the Krylov-subspace method has been
an elusive subject for more than 30 years [11–17]. Thus, the
Loschmidt echo picture offers, apart from a nice physical
insight on the mechanics of the error, an elegant and simple
solution to the error-tracking problem. Remarkably, we show
that one can capture with extreme precision the behavior of
the error in the relevant region, without having to incur extra
computations.

Typical implementations of Krylov-subspace methods in-
volve a time-stepping schedule [15]. The reason for this is
that Lanczos’s algorithm suffers from instabilities when the
Krylov basis is large. Thus, the common workaround is to
approximate the evolution using an iterative approach: the
actual trajectory in Hilbert space is efficiently followed us-
ing a sequence of patches [24]. That is, we build a Krylov
subspace, evolve for a small time, map back, and start over. In
this framework, our error bounds provide a cheap and accurate
way of computing optimal time intervals for the time-stepping
schedule. An open-source implementation in Python of the
Krylov evolution using the error bound developed in this
paper can be found in the GitHub repository at Ref. [25].
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APPENDIX A: LANZCOS METHOD

The Lanczos method (see Algorithm 1) is a well-known
strategy for the construction of BN = {|v0〉 , . . . , |vN−1〉}, an
orthonormal basis spanning the Krylov subspace KN . One of
the most appealing features of this approach is that, unlike,
e.g., a Gram-Schmidt procedure where orthonormalization at
each step involves the whole current basis, the new candidate
vector |x j〉 only needs to be orthonormalized with respect to
the previous two basis vectors |v j−1〉 and |v j−2〉. The reason
for this is that the Hamiltonian, by construction, is tridiagonal
in the Lanczos basis [see Eq. (4)].
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Algorithm 1 Lanczos algorithm. Receives state |ψ〉 and Hamil-
tonian H and returns a set of N orthonormal vectors {|vi〉} spanning
the Krylov subspace KN .

1: |v0〉 = |ψ〉 (assume normalized)
2: |x1〉 = H |ψ〉
3: α1 = 〈x1〉 v0 (the component of |x1〉 in |v0〉)
4: |w1〉 = |x1〉 − α1 |v0〉
5: for j = 1, 2, . . . do
6: β j = √〈ω j〉 ω j

7: if β j > 0 then
8: |v j〉 ← 1

β j
|ω j〉.

9: else
10: break
11: |x j+1〉 = H |v j〉
12: α j+1 = 〈x j+1〉 v j

13: |ω j+1〉 = |x j+1〉 − α j+1 |v j〉 − β j |v j−1〉

APPENDIX B: ISING SPIN CHAIN IN A TRANSVERSE
MAGNETIC FIELD

Let us describe the system used in the numerical simula-
tions. Consider a 1D Ising spin chain with transverse magnetic
field and open boundary conditions, described by

H =
L∑

k=1

(hxσ̂
x
k + hzσ̂

z
k ) − J

L−1∑
k=1

σ̂ z
k σ̂ z

k+1, (B1)

where L is the total number of spin-1/2 sites of the chain,
σ̂

j
k to the Pauli operator at site k ∈ {1, 2, ..., L} with direction

j ∈ {x, y, z}, and J represents the interaction strength within
the sites k and k + 1. The parameters hx and hz are, respec-
tively, the strength of the magnetic field in the (transverse)
x direction, and in the (parallel) z direction. We set h̄ = 1, such
that energies are measured in units of the interaction strength
J , and times in units of J−1.

The Hamiltonian of Eq. (B1) has parity conservation.
The parity is defined through the permutation operators 	̂ =
P̂1,LP̂2,L−1 . . . P̂L/2−1,L/2+1 for a chain of odd length L and for
the even case it is analogous. The spanned space is divided
into odd and even subspaces with dimension D = Deven +
Dodd (Deven/odd ≈ D/2). This symmetry must be taken into
account for studying the effect of quantum chaos transition.
While this model is integrable in the limit of hz � hx and
hx � hz, it exhibits quantum chaos when the longitudinal and
the transverse field are of comparable strength. In Fig. 2, we
illustrate the behavior of the error εN (t ) when the system is
in the quantum chaos regime, that is, the statistical distribu-
tion of eigenenergies and eigenfunctions are well described
by random matrix theory [21]. For the computations, we fix
hx = 1 and we consider the most chaotic case hz = 0.5.

The question now is to establish what happens when the
system is in the integrable regime. For this reason, in Fig. 6
we plot the error for an Ising spin chain with L = 10 sites
with J = 1, hx = 1, hz = 0, and hz = 10, which corresponds
to integrable cases, that is, the energy levels follow a Poisson
distribution. We can see that the error in both limits has the
same behavior as the chaotic case of hz = 0.5 (which we also
plot for convenience).

FIG. 6. εN (t ) for an Ising spin chain with transverse magnetic
field. We use N = 30, D = 2L = 1024 J = 1, hx = 1, and hz = 0
(purple), 0.5 (light blue), and 3 (green). The initial state |ψ〉 is
random state in the even space.

APPENDIX C: SCALING OF THE TIME REGIMES

The regimes of the error εN (t ) and of the echo
| 〈ψN (t )〉 ψ (t )|2 of Fig. 2 depend on texp and tcoll. We want
to study how these time regimes depend on dimension N of
the Krylov subspace and the number of states D of the Hilbert
space of the system. In Fig. 7, tcoll (top panel) and texp (bottom
panel) are plotted as a function of N for spin chain of length
L = 6 (circles) and 10 (squares) [the parameters of the chain
are J = 1, hx = 1, and hz = 0 (purple symbols), 0.5 (green
symbols), and 3 (light-blue symbols)]. These time regimes
were computed averaging over 100 initial states and are scaled
with the Hilbert norm of the Hamiltonian to avoid spurious
dependencies. We can see a smooth quasilinear dependence

FIG. 7. Upper panel: Scaled tcoll for the transverse field Ising
model with fixed parameter hx = 1 and hz = 0 (purple), 0.5 (green),
and 3 (light blue). The different markers represent chains of length
L = 6 (circles) and L = 10 (squares) with dimensions D = 64 and
D = 1024, respectively. Calculations are done using 100 random
initial state conditions to smooth out statistical fluctuations. Bottom
panel: The same plot but for the scaled texp quantity.
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FIG. 8. Upper panel: Scaled tcoll for a Hamiltonian with random
entries taken from a N (0, 1) distribution. The different markers
represent Hamiltonians with dimensions with dimensions D = 64
(circles) and D = 1024 (squares). Calculations are done using 100
random initial state conditions to smooth out statistical fluctuations.
Bottom panel: The same plot but for the scaled texp quantity.

of these regimes with N . We also see a small dependency
with the Hamiltonian and with the number of states of the
Hilbert space. This quasilinear dependence shows how robust
these times are for estimating our bound. Same calculations
of tcoll and texp were done for a Hamiltonian with random
entries taken from a N (0, 1) distribution (i.e., draw from the
Gaussian Unitary Ensemble). This is shown in Fig. 8. We
plot tcoll (top panel) and texp (bottom panel) averaging over
100 initial states and are scaled with the Hilbert norm of
the Hamiltonian. The Hilbert space dimensions are D = 64
(circles) and 1024 (squares.) Again, a clear smooth depen-
dence with N is seen. This guarantees the possibility of using
these times to develop a bound to control the error.

APPENDIX D: QUADRATIC BEHAVIOR OF THE BOUND
WITH NEXT HOPPING COEFFICIENT

This Appendix is devoted to present Eq. (8) of the main
text. Let us suppose first that the chain is in a state where
the Krylov approximation is valid, that is, the occupation of
the site N + 1 is close to zero, |ψK,N+1|2(t ) ∼ 0. The solution
|ψN (t )〉 can be decomposed in the Lanczos basis as a sum of
two components,

ψN,i(t ) = ψ
(0)
K,i (t ) + ψ

(1)
K,i (t ), (D1)

where ψ
(0)
K,i (t ) is the Krylov approximation of order N , that

is,βi = 0 with i > N . In the regime where the Krylov ap-
proximation holds, the relation |ψ (0)

K,i (t )|2 � |ψ (1)
K,i (t )|2 is also

valid, with i � N . It is straightforward to show the equation of
motion for ψ

(0)
K,i (t ),

i
d

dt
ψ

(0)
i = αNψ

(0)
i + βN−1ψ

(0)
i−1 + βNψ

(0)
i+1, (D2)

ψ
(0)
i (t ) = 0 i f i > N, (D3)

where we have omitted the temporal dependence and the index
K of the amplitudes ψ

(0)
K,i (t ). The same simplification of the

notation is used in the rest of the Appendices. The Schrodinger
equation for the full solution is

i
d

dt

[
ψ

(0)
i + ψ

(1)
i

] = αN
(
ψ

(0)
i + ψ

(1)
i

)

+βN−1
(
ψ

(0)
i−1 + ψ

(1)
i−1

)
+βN

(
ψ

(0)
i+1 + ψ

(1)
i+1

)
. (D4)

We are interested in Eq. (D4) for i = N + 1; in this case,
the terms ψ

(0)
N+1 and ψ

(0)
N+2 vanish and |ψ (0)

N | � |ψ (1)
N |; then the

equation of motion for ψ
(1)
N+1 results in

i
d

dt
ψ

(1)
N+1 = αN+1ψ

(1)
N+1 + βNψ

(0)
N . (D5)

Equation (D5) can be solved taking the Laplace transform,

ψ̂
(1)
N+1 = βN

{ ψ̂
(0)
N

is − αN+1

}
, (D6)

and then, using some properties of the Laplace transform,

ψ
(1)
N+1 = iβN

∫ t

0
eiαN+1tψ

(0)
N = βN I (t ). (D7)

The full solution, throwing the order one for the sites i � N is

ψN+1,i =
⎧⎨
⎩

Aψ
(0)
i i � N

Aψ
(1)
N i = N

0 i > N,

(D8)

with A = 1/

√
1 + |I (t )|2β2

N a normalization factor. Then, the
overlap between the solution for the Lanczos approximation
and the next order is

| 〈ψK | |ψ̃K+1〉 |2 = A2, (D9)

where ψ̃K+1 is the solution using βN = β̃. Finally, it is
straightforward to show

1 − | 〈ψK | |ψ̃K+1〉 |2
1 − | 〈ψK | |ψK+1〉 |2 ∼ 1 − Ã2

1 − A2
∼

(
β̃

β

)2

. (D10)

In Fig. 9, the validity of the quadratic behavior of Eq. (D10)
is shown for an Ising spin chain with L = 10 sites with J =
1, hx = 1, hz = 0.5, and T = 25 (circles), 35 (squares), and
40 (triangles).

APPENDIX E: ANALYTICAL SOLUTION OF THE ERROR:
SPECIAL CASE OF HOMOGENEOUS HOPPING

In this Appendix, we solve a simplified model for the
evolution on the Krylov subspace KN . Let us assume that after
mapping |ψ〉 and H to |0〉N and TN , we find a homogeneous
tridiagonal matrix,

TN = α

N∑
n=1

|n〉 〈n| + β

N−1∑
n=1

|n〉 〈n + 1| + H.c. (E1)

Here, |n〉 ≡ |n〉N (here and hereafter we drop the sub-
script) denotes the localized site states of the N-dimensional
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FIG. 9.
1 − | 〈ψK | |ψ̃K+1〉 |2
1 − | 〈ψK | |ψK+1〉 |2 versus β̃

β
for an Ising spin chain with

L = 10 sites with J = 1, hx = 1, and hz = 0.5. T = 25 (circles),
35 (squares), and 40 (triangles). The function x2 is plotted with
solid line.

tight-binding chain associated with the dynamical system
(ψ, H). The Hamiltonian in Eq. (E1) corresponds to the so-
called Toeplitz tridiagonal matrix [23,26,27], and has well
documented analytical expressions for its eigenstates and
eigenenergies,

〈n|Ek〉 =
√

2

N + 1
sin

(
nkπ

N + 1

)
, (E2)

and

Ek = α + 2β cos

(
nkπ

N + 1

)
. (E3)

The time evolution of an arbitrary initial state
|ψ (t = 0)〉 = ∑N

n=1 cn |n〉 is given by

|ψ (t )〉 =
N∑

n,n′
cnSN

n,n′ (t ) |n′〉 , (E4)

where the transition matrix SN
n,n′ (t ) is defined as

SN
n,n′ (t ) =

√
2

N + 1

N∑
k=1

sin

(
nkπ

N + 1

)
sin

(
n′kπ

N + 1

)
eitEk .

(E5)

Finally, the amplitude of the echo of two time evolutions
with Toeplitz matrices of lengths N and N ′ yields

〈0|e−itT ′
N eitTN |0〉 = 1 −

N ′∑
n=1

SN
1,n(t )SN ′

n,1(−t ). (E6)

It is clear from Eq. (E3),that the parameter α will not affect
the value of the echo and β acts as a rescaling of time. Thus,
one can limit itself to study the behavior of the chain with
parameters α = 0 and β = 1, and then rescale time by βt .
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