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Dynamics of the angular momentum in narrow quantum rings with Rashba
and Dresselhaus spin-orbit interactions
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The quantum dynamics of the electron’s spin and orbital angular momenta in semiconductor quantum rings is
analyzed. Both Rashba and Dresselhaus spin-orbit interactions (SOIs) in their quasi-two-dimensional forms are
taken into account. The narrow quantum rings are treated with models including one and two radial modes. We
find that when either Rashba or Dresselhaus SOI acts alone, the different angular momentum states are coupled
in blocks of two (for a single radial mode) or four (for two radial modes). We also show that the full Hilbert
space splits into two disjoint subspaces, which are not coupled by either of the two SOIs, thereby decoupling
accordingly the state evolution. When both SOI mechanisms are present, in principle infinitely many states are
coupled, but we find by numerical computation of the quantum dynamics that for typical evolution times in
practice only a few neighboring states are involved in the dynamics. Thus the exchange of angular momenta
proceeds only via very few states. Furthermore, we find a trend that when initially high orbital momenta are
prepared, the time evolution of spin and orbital momenta is almost unaffected by the availability of a second
radial mode, in sharp contrast to the case of preparing the system in low orbital angular momentum states. The
implications of our findings for the coherent control of angular momentum in quantum rings are pointed out.
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I. INTRODUCTION

The spin-orbit interaction (SOI) in quasi-two-dimensional
(quasi-2D) semiconductor systems has important conse-
quences in their electronic properties [1,2]. Many spin-based
devices rely on the spin-orbit interaction [3], since it allows
the control of the spin degree of freedom via applied voltages
(electric fields). On the other hand, sometimes this interaction
can hinder applications by causing dephasing and decoher-
ence, just by itself or in combination with the electron-phonon
interaction [4]. Another, physically obvious, effect of any SOI
is to generally produce an interchange between orbital and
spin angular momenta (OAM and SAM, respectively) during
the quantum evolution. This effect is rather small in the classic
case of the n = 2 shell of the hydrogen atom, but it can be
much more relevant for a single electron in the presence of
the Rashba interaction in semiconductor structures. Indeed,
the Rashba interaction, which appears when the structural
inversion symmetry is broken [1,5], cannot be considered a
small perturbation as it modifies the electron energy levels
noticeably. Despite this encouraging fact—from the point of
view of controlling the angular momenta—it has been shown
that in an extended quasi-2D electron gas the effective SOIs do
not induce a significant interchange between spin and orbital
angular momentum. This insensitivity of the spin dynamics
to the orbital angular momentum of the carriers in extended
systems, observed experimentally in Ref. [6] and explained
theoretically in Ref. [7], is due to the fact that, with increasing
system size, the set of total angular momentum eigenstates

within a narrow energy window resembles more and more
a translationally invariant manifold with respect to the total
angular momentum quantum number j. The concrete value of
j therefore plays no significant role in the subsequent spin
dynamics in extended systems. Yet, this can be overcome
in mesoscopic structures where finite confinement energies
break this translational invariance.

The most natural candidates to explore the dynamics
and control of angular momentum are then rotationally in-
variant quantum dots [8,9] and rings (QRs) [10]. Quantum
rings formed inside quasi-2D structures display Rashba and
Dresselhaus interactions like those of their host quantum
wells. (We mention that the Dresselhaus SOI was first
introduced to describe the spin-split conduction band of semi-
conductors lacking bulk inversion symmetry [11], but it also
manifests itself in semiconductor systems of reduced dimen-
sionality [1].) These systems have been modeled by Meijer
et al. [12] and by Shakouri et al. [13] considering one and
two lateral (radial) wave functions, respectively. The effects
of the Rashba and Dresselhaus SOIs on QRs have attracted
a great deal of attention in the last two decades [14–26]. A
solution to the energy eigenvalue problem within the model
of Meijer et al. including Rashba and Dresselhaus interactions
simultaneously has been found [27,28]. Here we study QRs
with SOI within the two cited models from the point of view of
quantum dynamics, in order to clarify and systematize the role
of the SOIs acting individually and simultaneously. We find
that the SOIs produce nonperturbative effects in the interplay
between OAM and SAM for realistic material parameters,
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which would enable meaningful quantum control operations.
At the same time we show that intrinsic limitations appear in
the dynamics due to the decoupling of the Hilbert space into
two- and four-level systems when only one SOI is present and
a single or two radial modes are accounted for, respectively.
Also, we show that the full Hilbert space is divided into two
disjoint subspaces not coupled by either SOI—a fact that
deeply affects the evolution of the angular momenta.

The work presented here attempts to contribute ultimately
to the important technological goal of optical control of
the magnetization [29–31]. Specifically, we have in mind a
scheme where OAM is transferred to the electrons in the
solid from optical vortices [32], and subsequently this OAM
is converted to SAM via the spin-orbit interaction. The latter
step is the one that we are elucidating here from a dynamical
point of view for a single electron in QR. In this way one
would manipulate the SAM of the charge carriers, which is
responsible for the interaction with the magnetic impurities in
dilute magnetic semiconductors [33,34], thereby controlling
indirectly the magnetization.

The paper is organized as follows. In Sec. II we present
the QR system, its Hamiltonian in the model of Meijer et al.,
and explain the decouplings of the Hilbert space. In Sec. III A
we study the quantum dynamics with only one SOI and
in Sec. III B we consider the case with both Rashba and
Dresselhaus SOIs acting simultaneously. In Sec. IV we ex-
tend the previous results to the model of Shakouri et al. and
compare both models. Section V provides a summary of the
main results and concluding remarks.

II. QUANTUM RING SYSTEM

We write the single-particle Hamiltonian in the envelope-
function approximation as

H = − h̄2

2m∗ ∇2 + V (r) + HR + HD, (1)

where m∗ is the conduction-band effective mass and V (r) the
external confining potential of the ring. In what follows, we
will group these two terms under the name H0, that is, we
set H0 = −h̄2∇2/(2m∗) + V (r). The system is considered to
be quasi-two-dimensional and the z dependence is henceforth
integrated out as usual. The Rashba and Dresselhaus interac-
tions are taken into account separately through HR and HD,
respectively, which are linear in the momentum and read

HR = iα(k−σ+ − k+σ−) and HD = β(k+σ+ + k−σ−).

(2)

In these definitions α and β are the coupling constants, σ± =
(σx ± iσy)/2, where σx and σy are Pauli matrices, and k± =
kx ± iky, where kx, y = −i∂x,y are the in-plane components
of the momentum. It can be shown directly from the form
of HR and HD that the former conserves Jz, while the latter
conserves Lz − Sz; that is, [HR, Jz] = [HD, Lz − Sz] = 0 (see
Appendix A).

Here we will work with two effective Hamiltonians that,
although derived from quite different approximations to H ,
both respect the axial symmetry of the QR in the absence of
SOI. In other words, we will only consider approximations
to H0 that satisfy the condition [H0, Lz] = 0. Since H0 is

independent of spin, it also holds that [H0, Jz] = 0. Therefore,
an arbitrary rotation generated by the total angular momentum
operator around the axis of the ring leaves the effective H0

invariant. The inclusion of SOI does not break this symmetry
completely, but sharply reduces it to only rotations by π

around the same axis. This means that even when SOI is
present the effective full Hamiltonian satisfies RHR−1 = H ,
with R = e−iJzπ/h̄. This persisting symmetry splits the Hilbert
space into at least two disjoint subspaces, which correspond
to independent blocks in the matrix representation of H . To
see this, take the basis for the Hilbert space to be the set of
all Jz eigenstates with eigenvalues jz and notice that the action
of R on any of them only shifts its global phase by either ±i,
depending on whether jz + 1/2 is even or odd. Then, it is not
hard to show that 〈 jz|H | j′z〉 = 0 if this global phase shift is
different for | jz〉 and | j′z〉. In more formal terms, the electron
wave functions with definite jz transform according to two dif-
ferent irreducible representations (�3 and �4) of the (cyclic)
double group C2 (see Refs. [35,36]). The representation to
which each wave function belongs is given precisely by the
global phase it gains under the action of R, which coincides
with the character of this operation in that representation.

III. NARROW-RING APPROXIMATION

Let us now consider the method developed by Meijer et al.
[12]. This method allows us to obtain an effective Hamiltonian
for a very narrow, quasi-one-dimensional ring. For conve-
nience, in what follows we will express all operators in polar
coordinates (r, ϕ). In this method the eigenstates of the purely
transversal terms in H0 are separated from the remaining terms
in H and factorized into products of radial and azimuthal
modes. For very narrow QRs, the energy scale of the latter
is smaller than that of the former to such an extent that it is
reasonable to assume that electrons occupy only the lowest
radial mode, lacking the energy to make transitions to modes
of higher energy. An effective one-dimensional azimuthal
Hamiltonian is then obtained by taking the expectation value
of the remaining terms in H over this common radial mode.
Following this procedure, the operators k± in HR and HD be-
come k± = ia−1e±iϕ (±h̄−1Lz + 1/2), and the first two terms
of H reduce to H0 = E0L2

z /h̄2, with E0 = h̄2/2m∗a2. More-
over, it can be argued that the form of these operators does not
depend on the particular confinement in the radial direction
[12], which is assumed to have cylindrical symmetry.

To analyze the dynamics induced by this effective
Hamiltonian we will consider the space spanned by the set
of Jz eigenstates {|	, σ 〉 : 	 ∈ Z, σ = ±1/2}, which are also
eigenstates of H0. The individual action of HR and HD on any
state |	, σ 〉 is straightforward:

HR|	, σ 〉 = h̄ωR(	 + σ )|	 + 2σ, σ̄ 〉, (3)

HD|	, σ 〉 = 2σ ih̄ωD(σ − 	)|	 − 2σ, σ̄ 〉, (4)

where σ̄ = −σ , h̄ωR = α/a, and h̄ωD = β/a. The conserva-
tion of Jz in the Rashba case and of Lz − Sz in the Dresselhaus
one reduce the Hamiltonian to block-diagonal form when
either is turned off. In these cases, each block describes
the Hamiltonian of a two-level system that involves the
states |	, σ 〉 and either |	 ± 2σ, σ̄ 〉, depending on whether the
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(a)

(b)

FIG. 1. Schematic diagram showing how the spin-orbit interac-
tions couple the states {|	, σ 〉}, forming two unconnected chains. In
each, every state is linked to two adjacent others with which it shares
the same 〈Jz〉 or 〈Lz − Sz〉. When one interaction is turned off, the
chains split into collections of independent pairs of states (two-level
systems) with either definite Jz (if β = 0) or Lz − Sz (if α = 0). The
chains A and B may be constructed by applying the Hamiltonians HR

and HD alternately on any state |	, σ 〉. They remain disjoint during
time evolution even when both HR and HD are present.

conserved quantity is Jz or Lz − Sz, respectively. If only one
interaction is present, then an arbitrary one-electron state can
be interpreted as a superposition of states belonging to differ-
ent two-level systems that are dynamically independent from
one another. This independence is lost when both interactions
act simultaneously. In this situation, the state |	, σ 〉 couples to
both |	 ± 2σ, σ̄ 〉, and thus effectively connects the two-level
systems {|	, σ 〉, |	 ± 2σ, σ̄ 〉} together. Notice that the three
states |	, σ 〉 and |	 ± 2σ, σ̄ 〉 all gain the same global phase
under R, since either they share the same Jz eigenvalue or
differ in it by an even multiple of h̄. This latter condition
defines, in fact, the set of all Jz eigenstates that transform
similarly under R. The SOI can therefore only couple such
states. As there is nothing special about |	, σ 〉, the same may
be said about, for instance, the states |	 ± 2σ, σ̄ 〉. Following
this reasoning, the structure of the effective Hamiltonian in the
general case may be described schematically as in Fig. 1, by
rearranging the Jz eigenstates into two separate chains. Notice
that states in different chains differ in their Jz eigenvalue by
an odd multiple of h̄. This diagram can be constructed by
alternately applying the operators HR and HD on any |	, σ 〉.
The symmetry operation R therefore splits the basis states
into two groups (the chains in Fig. 1) that remain unconnected
during time evolution.

A. Single spin-orbit interaction

Let us concentrate on the dynamics of an electron in the
presence of either the Rashba or the Dresselhaus interaction.
The results of this section can be obtained analytically, and as
such provide also some basic insights into the many-electron
dynamics and its conserved quantities. We will consider first
an electron in a Jz eigenstate that can only make transitions
between states of a two-level system with either definite Jz or
Lz − Sz (see Fig. 1). This choice of initial state serves the pur-
pose of simplifying conceptually the analysis. Nevertheless,
such state can be prepared with high fidelity by applying an
external magnetic field in the z direction and transferring or-
bital angular momentum to the electron via optical excitation
with twisted light [37]. Additionally, in the case of Rashba
SOI, this interaction can be controlled and quenched to some
extent with an applied voltage [38]. This feature could be used
to facilitate the preparation of the initial state. Afterwards, we
will relax this choice of initial state in order to analyze the
transfer between OAM and SAM in more general terms.

As is well known, the time-evolution operator for an ar-
bitrary two-level system can be computed exactly. If the
basis of states spanning the two-level system considered is
{|	, σ 〉, |	 + 2εR,Dσ, σ̄ 〉}, where εR = 1 for the Rashba in-
teraction and εD = −1 for the Dresselhaus one, then the
operators UR,D(t ) are

UR,D(t ) = e−i[(	+εR,Dσ )2+1/4]ω0t [cos(ϑR,Dt )

− iR,D sin(ϑR,Dt )], (5)

where ω0 = E0/h̄, ϑR,D =
√

ω2
0 + ω2

R,D|	 + εR,Dσ |, R =
(ωRσx − 2σω0σz )(	 + σ )ϑ−1

R , and D = −2σ (ωDσy −
ω0σz )(	 − σ )ϑ−1

D . Notice that the transition frequencies
ϑR,D are respectively proportional to the absolute value of
the total angular momentum and of the eigenvalue 	 − σ

of the operator Lz − Sz. They are also invariant under the
transformation (	, σ ) → (−	,−σ ). This last property is
related to the time-reversal invariance of the full Hamiltonian.
While the operators R,D depend thus on 	 and σ , it can be
inferred from Eq. (5) that the absolute values of the transition
amplitudes are independent of both, and remain limited to

|〈	, σ |R,D|	 + 2εR,Dσ, σ̄ 〉| = ωR,D√
ω2

R,D + ω2
0

. (6)

This is seen graphically in Fig. 2, where we pick a pair
of H0 eigenstates for each SOI and compare the time evo-
lution of their occupation probabilities. An electron excited
initially into a pure state |	, σ 〉 will therefore exchange back
and forth a maximum of h̄ω2

R,D/(ω2
0 + ω2

R,D) between OAM
and SAM, regardless of its initial OAM. In experimentally
feasible cases with typical values for the SOI couplings, this
amount is enough to observe a macroscopic change in the
electron’s spin orientation. As an example, consider a GaAs
QR (m∗ = 0.063 me) of radius a = 50 nm and a Rashba cou-
pling of α = 10.8 meV nm. In this case h̄ω2

R/(ω2
0 + ω2

R) ≈
0.44h̄ ≈ h̄/2. What helps the SOI induce such a noticeable
change in the spin orientation is the close confinement of the
electron in this particular geometry, which essentially restricts
the in-plane momentum to k‖ = kϕ = Lz/ah̄. An electron can
therefore change its momentum only by changing its OAM.
In particular, transitions between adjacent energy levels imply
gaining or losing a unit of h̄. Furthermore, the conservation
of either Jz (if β = 0) or Lz − Sz (if α = 0) forces the spin
to adapt, especially to such significant changes. Notice that,
compared to the usual quasi-2D quantum well [39], the en-
ergy and momentum scales are not too different in this case
for electrons in the lower end of the spectrum (small |	|).
The effect of the annular confinement manifests itself instead
in the eigenstates of HR,D, which in our case gives rise to
a nonvanishing 〈Sz〉 [14,17,28]. This first result is by itself
significant in our search of control tools for the transfer of
angular momentum from orbital to spin degrees of freedom,
the latter being the one that mediates the interaction between
charge carriers and doped magnetic impurities. Indeed, it is
telling us that a significant transfer between orbital and spin
angular momentum is perfectly attainable in semiconductor
structures via both spin-orbit interactions. Also, regarding the
coherent-control goal, we remark on the independence of the
amplitude of the oscillations in Fig. 2 with respect to 	. In
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FIG. 2. Time evolution of the occupation probabilities under the action of the Rashba (left column) and Dresselhaus (right column)
interactions for an electron initially in two different H0 eigenstates. We consider for these calculations a GaAs QR (m∗ = 0.063me) of radius
a = 50 nm. For typical values of α and β, the SAM converted into OAM in one cycle is significant (nearly 50% of the initial spin polarization),
and independent of the electron’s energy, as higher energy ones (i.e., those of higher |	|) have the same transition amplitudes as their lower
energy counterparts.

this sense the importance of 	 rests on the sensitive frequency
of the oscillations, which should provide enough time for
the exchange interaction between electron and impurity spins
to take place. On the other hand, a higher frequency of the
oscillations between OAM and SAM (obtained by choosing
a higher value of 	) might be desirable in contexts where
the control dynamics needs to be accelerated to overcome
decoherence.

Let us now consider an electron initially in a more general
state

|ψ〉 =
√

1
2 + p |	,↑〉 + eiφ

√
1
2 − p |	 + εR,D,↓〉, (7)

with |p| � 1/2, which corresponds to an initial spin polariza-
tion of 〈ψ |Sz|ψ〉 = h̄p. A discussion of the possible strategies
to prepare this initial state is beyond the scope of this work, but
the reader may consult available quantum control strategies
like, for example, the ones considered in Ref. [40]. In Fig. 3
we vary the relative phase eiφ and the polarization p to study
how the maximum angular momentum exchanged varies with
the initial state. To do this, we let the system evolve under
UR,D(t ) and compute the maximum deviation of 〈Sz〉(t ) with
respect to h̄p, which occurs for some 0 � t < 2π/ϑR,D in
a cycle. We remark that, as before, this amount does not
depend on 	 at all (see Appendix B). The results of Fig. 3
are meant to guide possible control strategies leading to a
maximum transfer between OAM and SAM, and thereby to a

more efficient exchange interaction between the electron and
magnetic impurities added to the QR.

The above results for a single electron can be used to draw
conclusions regarding the angular momentum dynamics in
many-electron Slater determinants. Some essential aspects of
the behavior of the system as a whole can be inferred just
by inspecting how the electrons are initially distributed on
the chains in Fig. 1, without resorting to numerical computa-
tions. As a simple example, consider two electrons occupying
initially the states |	, σ 〉 and | − 	, σ̄ 〉. The total OAM and
SAM vanish permanently for this configuration. This stems
directly from the conservation of 〈Jz〉 or 〈Lz − Sz〉 for each
electron, and physically it is related to the fact that one spin
precesses with the same frequency as the other, due to time-
reversal invariance, but in the opposite direction, and thus their
contributions to the total 〈Sz〉 cancel out.

B. Simultaneous Rashba and Dresselhaus interactions

When both spin-orbit interactions are present the sepa-
ration in two-level systems is lifted (see Fig. 1). Then, in
principle, an electron initially in an eigenstate of H0 can visit
all the states in its chain (transitions between chains A and
B are still forbidden). In practice, however, for timescales
of processes like optical excitation of carriers with twisted
light [41,42] and their interaction with impurities in diluted
magnetic semiconductors [43,44], even when a SOI is taken
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FIG. 3. Maximum deviation (in units of h̄) of the electron’s SAM
from its initial polarization p, max0�t<2πϑ−1

R,D
|h̄−1〈Sz〉(t ) − p|, as a

function of its initial state |ψ〉, which we express parametrically as
|ψ〉 = √

1/2 + p |	, ↑〉 + eiφ
√

1/2 − p |	 + εR,D, ↓〉, with eiφ a rela-
tive phase. The ring parameters are the same as those in Fig. 2. The
centers of the purple puddles correspond to eigenstates of the two-
level system, for which as expected no change in the polarization is
observed. In contrast, the largest deviations (0.7h̄ > h̄/2) correspond
to symmetric and antisymmetric combinations of these eigenstates.
The deviation observed in most cases indicates that the change in-
duced by the SOI in the electron’s polarization is macroscopic.

into account [45], we find that the wave function of such an
electron does not spread beyond the first few neighbors of
the initial state. This is a consequence of the fact that, for
experimentally feasible QRs with typical values for α and
β, the matrix elements of the SOI Hamiltonian connecting
adjacent states are proportional to but smaller than the energy
difference between them [see Eqs. (3) and (4)]. This is an
important conclusion in the search for control strategies of the
angular momenta in QRs.

Let us roughly estimate the extent of the departure
from an initial state |	, σ 〉 caused by the Rashba and
Dresselhaus SOI. In order to simplify the discussion, let us
assume α, β/2aE0 � 1, so that spectrum and eigenstates of
H do not differ significantly from those of H0. On this as-
sumption, energy conservation and the existence of a ground
state together limit the spread of the initial wave function
over states of larger OAM. We can estimate this limit by
approximating the first nonvanishing contribution to the prob-
ability amplitude of transitioning to a state |	 + 2kσ, (−1)kσ 〉
(k �= 0) on the same chain as |	, σ 〉, using time-dependent
perturbation theory. This contribution is of order |k| in the
SOI coupling constants. For our purposes, it suffices to take
into account only those transitions that do not invert the OAM
sign, since states of OAM differing only in sign are degenerate
and energetically above the ground state, which in this case
corresponds to the (perturbed) state of OAM 	 + 2kσ = 0.
Assuming, then, that 	(	 + 2kσ ) � 0, we obtain

|〈	 + 2kσ, (−1)kσ |U (t )|	, σ 〉|

≈ 2

(
αβ

4a2E2
0

)|n|[
δm,0 + α

2aE0
δm,1 + β

2aE0
δm,−1

]
, (8)

| − 3, ↑〉
| − 2, ↓〉
| − 1, ↑〉

|0, ↓〉
|1, ↑〉
|2, ↓〉
|3, ↑〉
|4, ↓〉
|5, ↑〉

α = 1
2β = 5.4 meV nm α = β = 10.8 meV nm

0 20 40 60 80 100
Time [ps]

|1, ↓〉
|2, ↑〉
|3, ↓〉
|4, ↑〉
|5, ↓〉
|6, ↑〉
|7, ↓〉
|8, ↑〉
|9, ↓〉

0 20 40 60 80 100
Time [ps]

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Occupation probability over time for an electron initially
in |1, ↑〉 (top row) and |5,↓〉 (bottom row), for fixed Dresselhaus and
two different Rashba coupling constants. Here it is seen that the ini-
tial wave function does not spread beyond the first few neighboring
states, even for large α. Also, the extent of the spread is similar for
both initial states, as suggested by Eq. (8).

where we write k = 2n + m (with n, m integers satisfying
nm � 0 and m = −1, 0, 1). Let us now consider the same
QR as in Fig. 2, for which E0 ≈ 0.24 meV, and α = β =
10.8 meV nm (α, β/a ≈ 0.216 meV). Following Eq. (8), we
expect the first |k| < 3 adjacent states to |	, σ 〉 to have a
significant probability of being occupied.

Figure 4 shows exact numerical results that validate
the previous perturbative analysis, for evolution under joint
Dresselhaus (β = 10.8 meV nm) and Rashba SOIs (α =
β/2, β). As in Fig. 2, we consider two initial states, |1,↑〉 and
|5,↓〉. We plot the occupation probability over time and we
see that the initial wave function does not spread beyond the
first few neighboring states, even for a large coupling constant
α and long times. Note that the extent of the spread is similar
for both initial states in spite of their very different values
of OAM, as suggested by Eq. (8), similarly to what we saw
in Fig. 2. These findings also bear on the design of possible
control methods to manipulate the OAM and SAM of carriers
via the SOIs.

In physical terms, the above analysis indicates that the
change in the electron’s total angular momentum is restricted
to |�Jz| � 2h̄|n − δm,−1|. We mention here again that, ad-
ditionally, transitions to states |	 + 2σk, (−1)k+1σ 〉 are not
possible since these belong to the chain uncoupled from that
of |	, σ 〉. A practical consequence of these results is that
the dynamics of an electron in a more complex initial state
could also be accurately described using a reduced (finite-
dimensional) Hamiltonian.

With the help of Figs. 5 and 6 we now analyze in more
detail the exact evolution of the occupation of neighboring
states for the same pair of initial states as in Fig. 2, with
Rashba and Dresselhaus SOIs present. We consider β =
10.8 meV nm and three values of the Rashba coefficient:
α = β/2, β, 2 β.

In Fig. 5 we take |1,↑〉 as initial state, that is, a low
value of OAM, 	 = 1. In the top panel we have the smallest
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FIG. 5. Occupation probability over time for an electron initially
in the pure state |1, ↑〉 of a GaAs (m∗ = 0.063me) QR of radius
a = 50 nm. Notice that the occupation of the second-nearest neigh-
bor state | − 1, ↑〉 reaches 30% only when Rashba coupling is large
enough (α/a � E0 ≈ 0.24 meV). That the optimal configuration is
α = β in this case is related to the fact that transitions from |0,↓〉
into and out of this state have the same probability.

value of α, equal to β/2. Nevertheless, the occupation of
the initial state |1,↑〉 (green solid line) drops significantly to
about 50%. Most of the occupation goes to the neighboring
Dresselhaus-connected |0,↓〉 state (short-dashed orange line).
Also the transfer to the neighboring Rashba-connected |2,↓〉
state (long-dashed red line) is significant. The state | − 1,↑〉
(dotted blue line) increasingly draws occupation from |0,↓〉
via Rashba SOI, as a second order, Dresselhaus plus Rashba
effect. The other second-nearest neighbor state, |3,↑〉 (dash-
dotted violet line), clearly remains less populated in this time
window of 10 ps. Thus we see that the evolution remains
largely confined to this group of five neighboring states cen-
tered around and including the initial state. In the middle panel
of Fig. 5 we have α = β. Here the stronger Rashba coupling
causes the state |2,↓〉 to compete advantageously with the
state |0,↓〉, and both states together drain almost completely
the occupation out of the initial state by t ≈ 8 ps. The second-
nearest neighbor states also start to play a more significant
role, but still the occupation of these five states combined
adds up roughly to one at all times (not shown). Finally, in the
bottom panel of Fig. 5 we have a strong Rashba coupling of
α = 2β. Here the occupation of the initial state |1,↑〉 suffers
multiple strong changes and the Rashba-coupled first neigh-
bor |2,↓〉 plays a central role. In particular, it rapidly feeds the
occupation of |3,↑〉 via their Dresselhaus connection. By the
final time of t ≈ 10 ps a fairly complex scenario is reached,
where all five states are similarly occupied.

FIG. 6. Occupation probability over time for an electron initially
in the pure state |5, ↓〉. The ring parameters are the same as in
Fig. 5. Again, only for large Rashba couplings is there a considerable
occupation of the second-nearest neighbor states, |3, ↓〉 and |7, ↑〉.
In contrast to the transition frequencies, these probabilities do not
differ significantly from their counterparts in the case |1, ↑〉 in Fig. 5.
This is in line with the bound in Eq. (8), which shows that their
dependence on 	 cannot be too strong.

In Fig. 6 we present analogous results for |5,↓〉 as initial
state, this time with a high value of OAM, 	 = 5. As remarked
earlier, for higher values of 	 the whole dynamics becomes
more rapid, but the effects on the amplitudes of the various
occupations remain similar to the 	 = 1 case. Again we see
that as the Rashba constant α increases, the exchange of
populations becomes more fluid and evenly shared among the
initial state and its two first-nearest neighbors in the chain.
Since the high value of 	 = 5 accelerates the dynamics, these
results allow us to see a (relatively speaking) bigger time win-
dow of evolution. Even for the strongest Rashba coupling we
see nevertheless that the occupation remains largely confined
in the restricted group of five states including the initial state.
In other words, we see a sort of localization in spite of the
strong and influential Rashba and Dresselhaus SOIs.

IV. INFLUENCE OF EXCITED RADIAL STATES

Let us now study how the inclusion of an excited radial
state influences the dynamics of the observables studied in
Secs. II and III. To this end, we will consider in this section the
model developed by Shakouri et al. [13], which offers a
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FIG. 7. Ladder A of states connected by the Hamiltonian in the
Shakouri et al. model. Notice that the addition of an excited radial
mode in this model is completely transparent to the action of R,
and then ladders A and B (B not shown) remain disjoint during the
time evolution, as did chains A and B in the Meijer et al. model.
(The states shown in this figure all gain the same global phase when
rotated by R.) For very narrow QRs (d/a � 1), as considered by the
authors (where d/a ≈ 1/8 in [13]), inter-RM transitions are much
faster than intra-RM ones. The rates of the latter are exactly the same
as in the Meijer et al. model (see Sec. III).

different treatment of the ring’s width while considering
the same linear Rashba and Dresselhaus Hamiltonians as in
Eq. (2).

The authors assume a narrow QR of effective width d
(related to the parameter a3 in their paper). The eigenstates
of H0 now form an extended basis {|n, 	, σ 〉}, where n = 0, 1
indicates the radial level. Transitions between basis states will
be called inter-radial-mode (inter-RM) and intra-radial-mode
(intra-RM) transitions depending on whether n changes or
not, respectively. In the absence of an external magnetic field,
the ring’s width is proportional to a

√
E0/h̄ωr , where h̄ωr is

the strength of the confining potential, which is assumed to
be harmonic and isotropic (ϕ independent). In the effective
Hamiltonian now obtained, the intra-RM matrix elements are
exactly the same as those deduced in Eqs. (3) and (4). In con-
trast, inter-RM matrix elements are proportional to α, β/d ,
and depend only on the ring’s parameters and the SOI cou-
pling constants (and not on 	 or σ ) [13].

As before, the quantities Jz and Lz − Sz are conserved in
the pure Rashba and Dresselhaus cases, respectively, even in
inter-RM transitions. In the extended basis {|n, 	, σ 〉}, the way
the full Hamiltonian connects the states can be represented
schematically as in Fig. 7. Notice that all the transitions,
including the inter-RM ones, involve spin flips, since they
are all induced by the SOIs. Also, we point out that each of
the disjoint chains A and B shown in Fig. 1 now becomes a
sort of ladder (or double chain). In Fig. 7 we draw only the
“ladder A” (corresponding to the chain A) which contains the
states |n, 	, σ 〉 with n = 0, 1, and omit the “ladder B” which
contains the states |n, 	, σ̄ 〉. These two ladders remain disjoint
during the evolution, like the chains A and B in the model
of Meijer et al. The justification for this separation runs as
before, now with the unperturbed (without SOIs) Hamilto-
nian being H0 = E0L2

z /h̄2 + h̄ωr (Nn + 1/2), where Nn gives
the occupation of the radial state n. The diagram in Fig. 7
shows that, as before, the absence of one SOI divides the
Hamiltonian into a collection of independent blocks, each
block consisting now of four states. In Fig. 8 we give the
general structure of these blocks for the pure Rashba and
Dresselhaus cases.

Let us compare the evolutions computed with the models
of Meijer et al. and Shakouri et al.. To this end, in Fig. 9 we

FIG. 8. General diagram of a four-level system making up an
independent block in the pure Rashba (I) and Dresselhaus (II) cases.
Inter-RM transitions depend on the width of the ring and the coupling
constant only [13], whereas intra-RM ones depend on 	 and σ but not
on n [see Eqs. (3) and (4)].

plot the expectation values 〈Lz〉 and 〈Sz〉 calculated for six
different initial states, i.e., |n = 0, 	,↑〉, with 	 = 0, . . . , 5.
We consider a narrow GaAs (m∗ = 0.063me) QR of radius
a = 50 nm and width d/a ≈ 1/8, with β = 10.8 meV nm
and a large Rashba coupling of α = 2β. Each row in the
figure corresponds to a given initial state, and it includes a plot
of the ratio of occupations of the radial states, 〈N1〉/〈N0〉. It is
seen that in all cases the occupation of the excited radial state
is very low compared to that of the lower state (less than 3%).
In spite of that, we find that for low values of 	 the excited
radial state does play an important role in the evolution of 〈Lz〉
and 〈Sz〉. Starting at 	 ≈ 3 and above, the two models produce
very similar results, thus favoring the use of the simpler model
of Meijer et al..

Three questions arise: Why does the upper radial level
remain largely unpopulated for all initial values of 	? How
can it still affect strongly the dynamics for low 	? Why does
it become irrelevant for higher 	? Essentially the existence
of the small upper bound for the occupation 〈N1〉 is due to
the fact that the inter-RM matrix elements are much smaller
than the energy h̄ωr associated to the radial confinement, even
for large SOI couplings. The influence of the largeness of |	|
comes from the fact that the intra-RM matrix elements are
proportional to 	 [see Eqs. (3) and (4)] and become more
relevant and eventually dominant for large |	| (the inter-RM
matrix elements are independent of 	). In other words, when
the intra-RM transitions become dominant over the inter-RM
ones (thanks to a high value of |	|), the presence of the excited
radial level in the model becomes superfluous.

When systems with more than one electron are considered,
the inclusion in the model of the second radial state would
likely become necessary in general, since Pauli blocking is es-
pecially restrictive in effectively one-dimensional situations.
We leave that interesting problem for future work.

V. CONCLUSION

We studied the dynamics of a single electron under the
action of the Rashba and Dresselhaus spin-orbit interactions
in narrow quantum rings. To this end, we considered first
the model by Meijer et al., originally developed for very
narrow quantum rings with only the Rashba interaction, and
then included the extended model worked out by Shakouri
et al. for narrow but finite-width rings. In the former, only
the ground transversal mode is considered, whereas the lat-
ter allows for transitions within the ground and first excited
transversal modes. When only one SOI is taken into account,
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FIG. 9. First two columns: Time evolution of the expectation values 〈Lz〉 and 〈Sz〉 for an electron initially in an eigenstate of H0, |n =
0, 	, ↑〉, with 	 = 0, . . . , 5. Each row corresponds to a different value of 	. Third column: Occupation of the excited radial level relative to the
ground level. Following Shakouri et al., we assume a GaAs ring of radius a = 50 nm and a parabolic radial confinement that gives an effective
ring width of d ≈ a/8. The SOI coupling constants are α = 2β = 21.6 meV nm.

a conserved quantity appears (either Jz or Lz − Sz) that allows
the Hamiltonian to be written in block-diagonal form, where
each block is of dimension two, if only one radial mode is
considered, or four, if the excited mode is also included. We
showed in Sec. II and will show in Appendix A that the
conservation of Jz and Lz − Sz is a property of the Rashba and
Dresselhaus linear Hamiltonians, independent of any particu-
lar approximation. Furthermore, we showed that, if the bare
Hamiltonian H0 conserves Jz, these interactions reduce the
symmetry to a rotation by π about the axis of the ring. From
the existence of this symmetry we concluded that an effective
Hamiltonian that meets the above condition always splits into
two independent blocks, even if both interactions are included
in the dynamics.

An important result from the point of view of quantum
control, presented in Sec. III A, is that for experimentally
feasible rings, the presence of one SOI is enough to observe a
temporary but macroscopic change in the spin orientation of
an initially spin-polarized electron with definite OAM. This
macroscopic change is favored by the quasi-one-dimensional
geometry.

The calculations and analysis presented here are meant as
a stepping stone towards the goal of controlling the angular
momentum of light, charge carriers, and magnetic impurities
in nanostructures. Photoexcitation with optical vortices carry-
ing orbital angular momentum and the exchange interaction

between the electron spin and magnetic impurities are two
other important elements towards the optical control of mag-
netic impurities. Here we have explored the effectiveness of
the Rashba and Dresselhaus spin-orbit interactions to produce
a significant and rapid interchange between orbital and spin
angular momenta for the charge carriers. Also we examined
in detail the diffusion of the occupation from an initial state
with well-defined spin and orbital angular momentum, and
found that it is fairly limited and insensitive to the initial value
of orbital angular momentum in realistic systems. In other
words, large changes in orbital angular momentum are not to
be expected through the action and Rashba and Dresselhaus
spin-orbit interactions.

Quasi-1D quantum rings are only one example of nanos-
tructures in which quantum control of information-holding
variables holds promise to be implemented. Different types
of quantum dots are also classic candidates in this sense.
An approach to these important systems, and also perhaps a
more realistic treatment for existing quantum rings, consists
of relaxing the strict quasi-1D nature of the our ring model.
For this reason, in Sec. IV we studied rings with two radial
modes, following the model of Shakouri et al. By monitoring
the mean values of the orbital and spin angular momenta, we
found that, for high values of the initial OAM, the model of
Meijer et al. captures accurately the evolution. On the other
hand, large discrepancies appear for low initial OAM between
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the two models. This limitation of the simpler model ought
to be taken into account when modeling the quantum control
of states of even single electrons. We speculate that in the
presence of more than one electron the second radial level
would become necessary even for high values of the initial
OAM due to the influence of Pauli blocking and Coulomb
repulsion.
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APPENDIX A: CONSERVATION OF Jz AND Lz − Sz

We wish to show that [HR, Jz] = [HR, Lz + Sz] =
[HD, Lz − Sz] = 0. Because [Lz, Sz] = [Lz, σ±] = 0, this
reduces to computing the commutators [k±, Lz] and
[σ±, Sz], and showing that [HR, Lz] = −[HR, Sz] and
that [HD, Lz] = [HD, Sz]. As it is not hard to show that
[σ±, Sz] = ∓σ±, we will concentrate only on the commutators
[k±, Lz].

The general form of the operators k± in cylindrical-polar
coordinates is

k± = kx ± iky = −ie±iϕ
[
∂r ± i

r
∂ϕ

]
. (A1)

Given that Lz = −ih̄∂ϕ , the commutators [k±, ∂ϕ] =
ih̄−1[k±, Lz] are

[k±, ∂ϕ] = k±∂ϕ − ∂ϕk±

= k±∂ϕ + i(±ie±iϕ + e±iϕ∂ϕ )
[
∂r ± i

r
∂ϕ

]
= ∓ik±.

(A2)

Therefore,

[HR, Lz] = iα([k−, Lz]σ+ − [k+, Lz]σ−) = iαh̄(k−σ+ + k+σ−)

= − iαh̄[k−(−σ+) − k+σ−]

= − iαh̄(k−[σ+, Sz] − k+[σ−, Sz]) = −[HR, Sz].

(A3)

Similarly, for the commutator [HD, Lz − Sz] we have

[HD, Lz] = β([k+, Lz]σ+ + [k−, Lz]σ−) = h̄β(k−σ− − k+σ+)

= h̄β[k−σ− + k+(−σ+)]

= h̄β(k−[σ−, Sz] + k+[σ+, Sz]) = [HR, Sz]. (A4)

APPENDIX B: INDEPENDENCE OF THE EXTREMA OF
〈Sz〉(t ) FROM � IN THE PURE RASHBA AND

DRESSELHAUS CASES

In order to make the analysis clearer, in this Appendix we
consider only the Rashba case; an analogous argument applies
to the Dresselhaus case. Let us consider the time-dependent
state |ψ (t )〉 ≡ UR(t )|ψ〉, where |ψ〉 = |ψ (0)〉 is the initial
state defined in Eq. (7) for the Rashba case (recall that εR =
1). We wish to show that the extrema of 〈ψ (t )|Sz|ψ (t )〉 do not
depend on 	. The expectation value of Sz taken with respect to
|ψ (t )〉 can be written as

〈ψ (t )|Sz|ψ (t )〉 = 〈ψ |Sz|ψ〉 cos2(ϑRt )

+〈ψ |i[R, Sz]|ψ〉 cos(ϑRt ) sin(ϑRt )

+〈ψ |RSzR|ψ〉 sin2(ϑRt ). (B1)

It follows from Eq. (B1) that the expectation value
〈ψ (t )|Sz|ψ (t )〉 attains its extrema at times ϑRt that satisfy the
condition

tan(2ϑRt ) = 〈ψ |i[R, Sz]|ψ〉
〈ψ |Sz|ψ〉 − 〈ψ |RSzR|ψ〉

=
h̄〈ψ |σy|ψ〉

√
ω2

0 + ω2
R

2ωR〈ψ |Sz|ψ〉 + h̄ω0〈ψ |σx|ψ〉
	 + 1/2

|	 + 1/2| . (B2)

The right-hand side of Eq. (B2) depends on the sign of
	 + 1/2, which coincides with that of 	 if 	 �= 0. It can be
shown by direct computation that this dependence comes
solely from the numerator 〈ψ |i[R, Sz]|ψ〉, because the quan-
tities 〈ψ |Sz|ψ〉 and 〈ψ |RSzR|ψ〉 do not depend on 	 at all.
By properly inverting the relation in Eq. (B2) and substituting
the result for ϑRt into Eq. (B1), it can be shown that each term
of the latter is independent of the sign of 	 + 1/2. Choosing
a particular 	 therefore sets the sign of 	 + 1/2 and the fre-
quency ϑR, and thus affects the location of each extremum,
but has no effect on their amplitudes. We conclude that all the
extrema of 〈ψ (t )|Sz|ψ (t )〉 are independent of 	.
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