
Coherent Transfer of Transverse Optical Momentum to the
Motion of a Single Trapped Ion

Felix Stopp ,1 Maurizio Verde,1 Milton Katz ,2 Martin Drechsler,2,3

Christian T. Schmiegelow ,2,3,* and Ferdinand Schmidt-Kaler 1

1QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
2Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina

3CONICET—Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina

(Received 4 July 2022; revised 28 October 2022; accepted 22 November 2022; published 23 December 2022)

Using a structured light beam carrying orbital angular momentum, we demonstrate excitation of the
center-of-mass motion of a single atom in the transverse direction to the beam’s propagation. This
interaction enables quantum control of atomic motion in all axes with a single beam direction, which leads
to applications in quantum computing and simulations with ion crystals. Here we demonstrate all the key
features required for these applications, namely, coherent dynamics and strong carrier suppression in a
configuration with the ion centered in the beam, which allows for single ion addressing and also provides
robustness against pointing instabilities. To quantify transverse momentum transfer, we observe coherent
dynamics on the sidebands of the S1=2 to D5=2 transition near 729 nm of a singly charged 40Caþ ion, cooled
near the ground state of motion in the 3D harmonic potential of a Paul trap, and placed at the center of a
first-order Laguerre-Gaussian beam. Exchange of quanta in the perpendicular direction to the beam’s wave
vector k is observed with a centered vortex shaped beam, together reduction of the parasitic carrier
excitation by a factor of 40. This is in sharp contrast to the vanishing spin-motion coupling at the center of
the Gaussian beam. Further, we characterize the coherent interaction by an effective transverse Lamb-Dicke
factor ηexp⊥ ¼ 0.0062ð5Þ which is in agreement with our theoretical prediction ηtheo⊥ ¼ 0.0057ð1Þ.
DOI: 10.1103/PhysRevLett.129.263603

Light can transfer both linear and angular momentum to
massive particles. The angular momentum of a light beam
is determined not only by its polarization, but also by its
spatial structure. For example, vortex beams such as
Laguerre-Gaussian beams have been shown to carry orbital
angular momentum (OAM), associated with their spatial
structure [1]. Since then, the use of structured beams has
become a commonly applied technique for imaging,
communications, optical manipulation mechanics [2],
and control and manipulation of cold atomic gases [3].
After the pivotal work in 1995 by Rubensztein-Dunlop and
her team, showing that trapped micron-sized particles could
be set to rotate with the sense sign of the beam’s singularity
[4], various kinds of platforms have been used to prove
light’s orbital angular momentum transfer to classical
objects [5,6] and to cold atomic gases [3,7]. Following
these ideas into the single atom quantum regime, here we
show that the angular momentum coming from the beam’s
structure can coherently excite the center-of-mass motion
of a trapped ion. In particular, we show that, when placed at
the center of a vortex beam, the ion can be coherently
driven in the plane perpendicular to the incident direction.
This strikingly contrasts with the cases where the plane
wave approximation holds and transversal momentum
exchange is not possible, such as in the case of the center
of Gaussian beams.

Here, we use a single trapped ion which can be
positioned with nanometer precision with respect to a
structured beam [8]. After laser cooling of the motion,
the ion’s center of mass dynamics can be adequately
described as a three-dimensional quantum harmonic oscil-
lator [9]. Then, on a narrow hertz-wide electric quadrupole
transition, the internal electronic and external vibrational
quantum states of the ion can be prepared, manipulated, and
read out via coherent driving in the resolved sideband
regime [10]. These prerequisites allow for pushing the
seminal experiments where light’s orbital angular momen-
tum can be transferred to the motion of a single trapped
particle to the quantum regime. In a previous experiment,
we showed that orbital angular momentum can be trans-
ferred to the valence electron of an ion [11]. Interestingly,
such a transfer is also possible for the external motional
degrees of freedom. For example, when an ion is placed at
the side of a Gaussian beam, spatial gradients can excite
motion transversely to the beam’s propagation direction
[12]. However, using a misaligned Gaussian beam neces-
sarily leads to problems with respect to pointing stability,
single ion addressing, as well as ac Stark shift and carrier
suppression, hindering its applicability for quantum con-
trol. Here, we overcome these limitations and demonstrate
coherent driving of the ion’s transverse center-of-mass
motion by using a vortex beam with a field null at the
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center, where the ion is aligned. Moreover, we show a
strong suppression of parasitic carrier transition—the
excitation without change in motion—when the ion is at
the center of the vortex beam. These are all the prerequisites
needed to achieve addressed quantum gates and cooling or
thermometry on modes transverse to the laser’s propagation
direction.
We start by briefly presenting the fundamental equations

that determine the possible interaction terms for a struc-
tured beam to show that it can transfer its orbital angular
momentum to a single trapped ion [13]. The quadrupole
term of the light-matter interaction Hamiltonian reads
[14–16]

Ĥ ∼
X

i;j

q̂iq̂j
∂EðþÞ

j

∂qi

����
Q̂i

e−iωt þ H:c:; ð1Þ

where q̂i ¼ fx̂; ŷ; ẑg are the position operators pertaining to
the valence electron, qi are the coordinates of the electric
field components Ej with angular frequency ω and the
Q̂i ¼ fX̂; Ŷ; Ẑg are operators acting on the ion’s center-of-
mass coordinates. We consider a beam traveling in the ez
direction at 45° to respect of both radial trap coordinates
frR1; rR2g and orthogonal to the axial trap direction rax ¼ x
as shown in Figs. 1(a) and 1(b).
For the case of a traveling wave, as in the center of a

Gaussian beam, the electric field being EðþÞ
Gauss ∼ E0ðex þ

σieyÞ expðikzÞ with circular polarization σ ¼ �1 and wave
number k, one obtains the usual quadrupole transition
selection rules for thevalence electron [17,18]. The sideband
transitions are governed by the term ĤGauss ∼ expfikẐg.
Since Ẑ ¼ ðR̂R1 − R̂R2Þ=

ffiffiffi
2

p
only projects on the radial

eigendirections of the ion’s motion, radial sidebands are
excited, while axial ones are forbidden, being orthogonal to
k, see Figs. 1(a) and 1(c). The coupling strength of these
transitions will be governed by a longitudinal Lamb-Dicke
parameter ηk ¼ kr0, with r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mω1;2

p
for a quantum

harmonic oscillator, beingm the mass of the ion andω1;2 the
secular frequencies in the radial directions rR1 and rR2. Thus,
at the center of a Gaussian beam, sideband transitions are
driven by the longitudinal electric field gradient, strictly
oriented along the propagation direction k.
The situation is entirely different for a vortex beam

carrying OAM, where transverse electric field gradients,
perpendicular to the propagation direction, can also medi-
ate sideband excitations, as show in Figs. 1(b) and 1(d). At
its center, the electric field of a Laguerre-Gaussian beam is

EðþÞ
LG ∼ E0

ffiffiffi
2

p
w−1
LGðex þ iσeyÞ expðikzÞðxþ ilyÞ, with waist

wLG where the intensity drops to 1=e2, l ¼ �1 units of
orbital angular momentum and σ ¼ �1 units of intrinsic
angular momentum. Upon evaluating the interaction
Hamiltonian for this field using Eq. (1), one can sort the
result in two terms. The first one contains the coordinates

pairs of the transverse directions fxx; xy; yx; yyg and
accounts for two units of angular momentum of the beam
being transferred to its valence electron, as has been
demonstrated [11]. Here, the coupling to the external
vibrational degrees of motion to the light field is identical
as for a Gaussian beam: only sideband excitations in the
direction parallel to k are allowed.
The second term, that contains the crossed longitudinal-

transverse coordinate pairs fxz; yzg, reads

Ĥ⊥
LG ∼ expfikẐg

ffiffiffi
2

p

wLG
ðX̂ þ iŶÞ: ð2Þ

This Hamiltonian has a linear dependence on the position
operators X̂ ¼ R̂ax and Ŷ ¼ ðR̂R1 þ R̂R2Þ=

ffiffiffi
2

p
. This results

in coupling to all the eigendirections of the trap, now
enabling the axial sideband transition, corresponding to
motion transverse to the beam’s propagation direction.

FIG. 1. Intensity profile and wave vector k (orange) traveling
along the z direction for (a) a Gaussian beam and (b) an OAM-
carrying vortex beam. Correspondingly in (c) and (d) the energy
levels and possible motional transitions for each beam, on a
subspace where the magnetic number changes in Δm ¼ �1. In
(a), for the Gaussian beam, the longitudinal variation of the
traveling wave (gray sinusoidal) can only drive transitions with
projection along the beam’s z direction, i.e., in the ion’s radial
directions rR1 (green) and rR2 (cyan). Consequently transitions,
shown in (c), will be allowed for the carrier and the radial
sidebands, while axial sidebands will be forbidden, due to the
orthogonality of the wave vector k with respect to the ion’s axial
direction rax (purple). Conversely in (b), for the OAM-carrying
vortex beam, the transverse variation of the beam’s intensity (gray
curve) lies in its x-y plane and can now drive transitions in the
ion’s axial rax direction. Here, as shown in (d), the carrier is
forbidden but the axial sideband, which lies transversal to be
beam’s propagation direction is now allowed. Indeed, both axial
and radial sideband modes are excited, because of their non-
vanishing projection onto the transversal x-y plane.
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Moreover, the carrier excitation is vanishing, resembling
what happens in a standing wave [19], where either carrier
or first sidebands along the direction of the beam have
been suppressed by placing a single ion on its nodes or
antinodes [20].
The strength of the transverse sideband, in the vortex

beam center, is governed by a transverse Lamb-Dicke
parameter η⊥ ¼ ffiffiffi

2
p

x0=wLG, which now depends on the
beam waist wLG and by the spatial wave packet spread x0 in
the axial direction rax ¼ x. This describes a quadrupole
excitation of the valence electron, changing its magnetic
number by Δm ¼ �1, together with an excitation of the
external degree of freedom which can acquire or give a
phonon Δnax ¼ �1. The excitation of a transversal
motional degree is enabled by the crosswise spatial gradient
of the beam, as illustrated in Figs. 1(b) and 1(d), while the
change in internal angular momentumΔm is determined by
its polarization.
To demonstrate this anomalous momentum transfer, we

use an experimental setup where a single 40Caþ ion is
confined in an harmonic potential of quadruple trap
mounted in a UHV chamber [21]. We use a radio-frequency
Paul trap producing a radial harmonic confinement with
secular frequencies of ωR1;R2 ¼ 2π × ð1.70; 2.05Þ MHz.
The axial confinement is generated by an electrostatic
potential, yielding an axial secular frequency of ωax≃
2π × 700 kHz, corresponding to a ground state wave

packet size of r0;ax ¼ 15 nm. The ion is Doppler cooled
in all three trap axes using the dipole transition 4S1=2 ↔
4P1=2 close to 397 nm with an additional 866 nm repump
laser to form a closed cooling cycle. Single ion imaging is
achieved on an EMCCD camera, by collecting the laser-
induced fluorescence through an objective with numerical
aperture NA ¼ 0.3 and focal distance of 66.9 mm, which
leads to a diffraction limited image with magnification
M ¼ 15.6ð5Þ.
The setup is equipped with two 729 nm laser beams to

drive the 4S1=2 ↔ 3D5=2 quadrupole transition. A prepa-
ration beam, with a Gaussian shape and k-vector projection
onto all three trap axes is used to initialize the ion in the
ground state jS1=2; mJ ¼ −1=2i and for optional sideband
cooling of the axial vibration mode. A second 729 nm beam
is used as a probe and can be set to have either a Gaussian
or a Laguerre-Gaussian transverse mode profile with a
holographic pitch-fork pattern [22]. This beam is focused
onto the ion though the imaging lens to a beam waist of
wLG ¼ 3.34ð7Þ μm propagating perpendicular to the trap’s
axial direction, i.e., along z, as seen in Fig. 1. Two steering
mirrors allow for the perpendicular alignment of the beam
to the axial direction with a precision of < 1°. Moreover,
the beam can be scanned across the ion with a range of
≈1 μm in all three spatial directions by using a closed-loop
piezo stage. A Zeeman splitting of 5 MHz between the
sublevels in the D5=2 state is generated by a magnetic field

(a)

(b)

FIG. 2. Spectrumof the transition jS1=2; mJ ¼ −1=2i ↔ jD5=2; mJ0 ¼ −3=2iwith (a) aGaussian beam and (b) a vortex beam.Thegraph
shows the dark state populationPD for the carrier, axial sidebands (δ ¼ �2πνax), and radial sidebands (δ ¼ �2πνR1;R2). Black dots depict
our measurements in frequency steps ofΔν ¼ 1 kHz, while the red continuous lines map numerical calculations (based on Eq. (6) of the
supplementary material). The selected fixed values for the calculations are taken from our pulsed laser beam parameters: PLG ¼ 10 μW,
PGauss ¼ 310 nW,wGauss ¼ 2.8 μm,wLG ¼ 3.3 μm, and τ ¼ 150 μs, as well as values for Doppler-cooled ion: hnaxi ¼ 15, hnR1;R2i ¼ 7.

PHYSICAL REVIEW LETTERS 129, 263603 (2022)

263603-3



aligned parallel to the propagation direction of the probe
beam. The beam’s polarization and frequency are set to
drive the Δm ¼ −1 transition jS1=2; mJ ¼ −1=2i ↔ jD5=2;
mJ0 ¼ −3=2i [17].
We measure the resolved sideband spectra of the

Gaussian and the Laguerre-Gaussian with l ¼ −1 beam
by scanning the probe laser frequency, see Fig. 2. An
experimental sequence consists of Doppler cooling, spin
initialization, pulsed excitation and state dependent fluo-
rescence readout. For the Gaussian beam, Fig. 2(a), we
observe strong coherent oscillations on the carrier, radial
sidebands determined by the longitudinal Lamb-Dicke
parameter and absent axial sidebands. The experimental
data (black) are in good agreement with a model (red)
generated by independently measured parameters. The
spectra pertaining to the Laguerre-Gaussian probe beam
shown in Fig. 2(b) show clearly visible axial sidebands,
determined by the transverse Lamb-Dicke parameter. From
the independently measured beam waist and secular fre-
quency, we compute a transverse Lamb-Dicke parameter of
ηtheo⊥ ¼ ffiffiffi

2
p

x0=wLG ¼ 0.0057ð1Þ. The difference in strength
between axial and radial sidebands is explained by the
projection geometry of each eigendirection onto the beam’s
propagation direction and from the wave packet sizes for
different mode frequencies. As the transversal electric field
gradients are smaller by a factor of

ffiffiffi
2

p
=kwLG as compared

to the longitudinal ones, the value of the transversal Lamb-
Dicke parameter is reduced. Accordingly, we increased the
laser power by a factor of 30. Note that also for the vortex
beam we observe a residual carrier excitation which is
reduced by a factor 40 as compared to that for a Gaussian
beam shape. This is quantitatively explained by accounting

for the finite wave packet spatial extension, which explores
an extended region around the center of the beam and then
senses an effective nonvanishing electric field intensity [8].
We stress that in all of Fig. 2 the model was not fitted to the
data, but ran with independently measured parameters, see
Supplemental Material [23] for details.
Next, we precisely measure the transverse Lamb-Dicke

parameter ηexp⊥ for the Laguerre-Gaussian beam by analyz-
ing Rabi oscillations on the axial red and blue sidebands,
see Fig. 3. The ion was cooled near to the ground state of
axial motion to a mean phonon number hnaxi ¼ 0.19ð10Þ to
obtain good contrast of the sideband Rabi oscillations.
From the data of the red and blue sidebands, we extract
ηexp⊥ , using the independently measured Rabi frequency and
mean phonon number as fixed parameters, by a simulta-
neous fit of both curves. Measurements were taken for five
different beam powers between 78 μW and 3.5 mW, in
order to exclude any dependence on the beam power. By
averaging, we obtain a value of ηexp⊥ ¼ 0.0062ð5Þ being in
agreement with the theoretical value of ηtheo⊥ ¼ 0.0057ð1Þ,
all shown in Fig. 3.
Using the ion as a well-localized electrical field probe,

we explore the structural dependence of the sideband and

FIG. 3. Comparison of transversal Lamb-Dicke parameters
determined by different methods. Points with error bars were
determined by fits to red and blue oscillations of the transverse
sideband, as exemplified in the inset for PLaser ¼ 1 mW. The
black and dashed lines at ηexp⊥ ¼ 0.0062ð6Þ show the mean value
and 1σ range for all measured powers. In green, the 1σ range of
the theoretically expected value of ηtheo⊥ ¼ 0.0057ð1Þ is drawn
with an uncertainty which is dominated by the error in the
determination of the beam waist wLG.
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FIG. 4. Excitation profiles in x and y directions. First, second
and third rows refer, respectively, to blue sideband, carrier, and
red sideband of the jS1=2; mJ ¼ −1=2i ↔ jD5=2; mJ0 ¼ −3=2i
transition. The first and second columns show, respectively, the
measurements for a Doppler-cooled and a sideband-cooled ion
close to the ground state. They have been obtained by scanning
the vortex beam through the ion using step sizes of 32 (x) and
64 nm (y), a pulse duration of τ ¼ 55 μs, corresponding to the
blue sideband’s π time of the near ground-state cooled ion, and
two different powers for the carrier Pcar ¼ 45 μW and the
sidebands Psb ¼ 2.8 mW. Using the same parameters, numerical
calculations for a sideband-cooled ion are shown in the third
column.
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the carrier transitions excited by the Laguerre-Gaussian
beam. We vary the wave packet size using an ion either
Doppler cooled with hnaxi ≈ 15 or alternatively, cooled
close to its motional ground state in the axial direction, as
shown in Fig. 4. We scan the beam over the ion in the
transverse x and y directions, and record the excitation
probability for an effective pulse area of about π for
ground-state cooled axial blue sideband, corresponding
to a rectangular pulse with a duration of 55 μs. The carrier
shows a ring structure, due to the increase of the electric
field amplitude radially from the beam’s center [8].
Conversely, the sidebands display maximum excitation at
the center of the vortex beam, due to the transversal
gradient. This is observed for all cases except for the red
sideband jnaxi → jnax − 1i of the sub-Doppler cooled ion,
where excitation is suppressed by the fact that the oscillator
state is near jnax ¼ 0i. The strongest sideband excita-
tion is achieved on the transversal blue sideband jnaxi →
jnax þ 1i in the dark center of the vortex beam. Moreover,
we note all the sidebands exhibit a halo structure, which is
caused by the off-resonant excitation of the carrier, as we
verify by numerical calculations of the expected profiles,
see right column in Fig. 4.
In conclusion, we demonstrated the spatial gradients at

the center of a structured laser beam can be used to
coherently drive center-of-mass motion modes while
strongly reducing carrier modes. This technique might find
various applications. For example in quantum computing
with linear ion chains where addressing beams control
single- and multi-qubit operations [24–26]. In order to
provide adequate ion addressing, control beams have to be
focused from a radial direction onto one ion in the linear
crystal. Using a plane wave, this configuration only allows
acting on the ion’s motion along the beam’s wave vector
direction, i.e. the radial direction. Now, using a vortex beam
one can combine single ion addressing capabilities with
control over the transverse (axial) direction, allowing one to
drive quantum gate operations, cooling and general motion
control on the axial modes. This is beneficial as axial
modes are less prone to spectral crowding as compared to
radial modes [27] and are amenable to sympathetic cooling
[28]. Also, the diminished parasitic carrier excitation might
help reduce the overhead caused by AC Stark-shifts [29] in
light mediated quantum gates and in the exploration of
sideband cooling limits for trapped ions. Similarly, in
planar ion crystals, as those intended for quantum simu-
lations [30–32], one could now sense and manipulate the
in-plane phonon occupation numbers locally using address-
ing beams impinging from the normal direction. Also, this
can be beneficial for ion traps where one direction is
inaccessible by lasers. Finally, we note that, by using
dipolar transitions, one could observe torques and coher-
ently manipulate single ions or ion crystals by resonant and
off-resonant forces generated by the transverse field gra-
dients of vortex beams.
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