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Photon generation and entanglement in a double superconducting cavity
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We study the dynamical Casimir effect in a double superconducting cavity in a circuit quantum electrody-
namics architecture. Parameters in the quantum circuit are chosen in such a way the superconducting cavity
can mimic a double cavity, formed by two perfectly conducting outer walls and a dielectric wall, with arbitrary
permittivity separating both halves. We undertake a spectral analysis of the cavity, showing that the spectrum
varies significantly depending on the values of the susceptibility of the dielectric mirror and the relative lengths
of both cavities. We study the creation of photons when the walls oscillate harmonically with a small amplitude.
Furthermore, we explore the possibility of entangling two uncoupled cavities, starting from a symmetric double
cavity and having both of its halves become uncoupled at a later given instant. We consider both cases: (i)
when the field is initially in a vacuum state and (ii) the situation in which photon creation via the dynamical
Casimir effect has already taken place. We show that the cavities become entangled in both cases but, in the
latter, the quantum correlation between individual modes can be greatly increased at the cost of diminishing the
entanglement between most pairs of modes.
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I. INTRODUCTION

The dynamical Casimir effect (DCE), in which the me-
chanical oscillation of the position of a mirror inside a cavity
produces particles from an initial vacuum state [1–8], remains
one of the most surprising predictions of quantum field theory.
However, the magnitude of the frequencies at which mechan-
ical oscillations must occur to produce an appreciable number
of photons, cannot be reached with current technology for
massive mirrors [9]. Consequently no observations of this
phenomena has taken place to this date.

To bypass this complication, a lot of systems have been
studied to explore the possibility of varying the boundary
conditions of a field inside the cavity, without the mechanical
movement of the walls. One of the more promising systems
where this can be achieved is quantum superconducting cir-
cuits, which are already being used in quantum information
and quantum computing widely [10–12]. In such a case, an
external and time-dependent magnetic field is used to vary
the magnetic flux through a superconducting quantum inter-
ference device (SQUID), and, through it, change the effective
length of a superconducting waveguide, simulating a moving
mirror. This type of system has led to the observation of this
effect [13]. Even so, experiments have yet to show the conver-
sion of mechanical energy (associated with the movement of
mirrors) into photons.

In this work we present a study of a circuit conformed by
two waveguides that are coupled between them by a SQUID
and each waveguide has also another SQUID at its other
end. This system, under a certain choice of parameters, can

easily be linked to one composed by a one-dimensional dou-
ble cavity that has perfect conductors as its external walls
and a semitransparent dielectric wall between them. The
two systems share similar generalized boundary conditions
[14], which admits an equivalent mathematical description
of both. However, the cavity allows for a physically more
intuitive picture. Another interesting property of these sys-
tems is that, through the adjustable parameters they have, one
could, in principle, obtain different eigenfrequency spectrum
structures. This is of great importance when studying the
DCE, because different regimes of said structure can result
in different results for the photon production rate [8].

Finally, we have mentioned that superconducting circuits
are relevant for quantum information. The same can be said
for double cavity systems. It is a well-known fact that the
quantum vacuum presents entanglement between spatially
separated regions [15]. In Ref. [16], the authors studied the
possibility of harvesting entanglement from a vacuum state
in a simple cavity into a two-cavity system by quickly intro-
ducing a mirror. This might result in the generation of two
entangled cavities that could be spatially separated and used
in quantum communication applications. The double-cavity
system treated in the present paper presents a natural frame-
work to continue the study of this problem. It is also well
known that the DCE can allow for the creation of entangled
pair of photons [17], and even the redistribution of entangle-
ment between field modes that already present some degree
of quantum correlation [18]. This means that, in principle, the
DCE could be used to improve the results of entanglement
harvesting from an initial vacuum state.
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FIG. 1. Schematics of the superconducting quantum circuit and
its double-cavity analog.

The article is organized as follows: In Sec. II we present
the model that will be used for the rest of the work. We
show how the mathematical description of the two systems is
equivalent, under certain choice of parameters set. In Sec. III,
we present an analysis of the eigenfrequency spectrum of the
double cavity for different choices of the electric susceptibility
of the dielectric wall and the positions of the three walls.
In Sec. IV, we show the results for photon creation as a
consequence of the harmonic oscillation of the perfectly con-
ducting walls of the double cavity. We carry out the study both
through analytical and numerical means. For the analytical
results, we employ a method known as multiple scale analysis.
The numerical method consists of an integration of the exact
differential equations that govern the state of the field with
time-dependent boundary conditions. Furthermore, in Sec. V,
we study the possibility of using the DCE to increase the
entanglement between cavities that have been decoupled with
respect to the previously studied case of an initial vacuum
state. Finally, in Sec. VI we present the conclusions of the
work.

II. THE MODEL

The system is a superconducting circuit of length L
schematized in the upper half of Fig. 1. It is composed of
two one-dimensional superconducting waveguides of length
L1 = (L + L0)/2 (left) and L2 = (L − L0)/2 (right) which are
coupled by a SQUID in x = 0. Both waveguides also have
SQUIDs in their other ends, located at x = −L1 (in the left’s
case) and x = L2 (in the right’s case). We consider both of
the waveguides to be characterized by the same capacitance
and inductance per unit length, ca and l , respectively. In
such a situation, it is convenient to describe the state of the
electromagnetic field inside the circuit in terms of the phase
field ϕ(x, t ) = ∫ t dt ′E (x, t ′). The Lagrangian density for the
system can be written as [19]

Lcircuit = 1

2

(
1

2e

)2[
C(∂tϕ)2 − v2

wca(∂xϕ)2
] − E (t )ϕ2, (1)

where we have defined vw = (lca)−1/2,

C = [
c + 2δ(x)C2

J + 2δ(x + L1)C1
J + 2δ(x − L2)C2

J

]
(2)

and

E (t ) = δ(x)E0
J cos [ f0(t )] + δ(x + L1)E1

J cos [ f1(t )]

+ δ(x − L2)E2
J cos[ f2(t )]. (3)

Here C0
J and E0

J are, respectively, the Josephson capaci-
tance and energy of the central SQUID. The SQUIDS at the
outer ends of the circuit are also characterized by their capac-
itance (C1

J and C2
J ) and energy (E1

J and E2
J ). The Josephson

energy of all three SQUIDs can be manipulated by modifying
the magnetic flux that goes through it. The variation of said
magnetic flux is characterized by fi(t ) (i = 0, 1, 2). In the
previous equations and for the rest of this work we consider
h̄ = c = 1.

The field equation for ϕ can be readily obtained from
Eq. (1) and reads

�ϕ(x, t ) = 0. (4)

The field must be continuous and satisfy the boundary con-
ditions imposed by the presence of the three SQUIDs. These
conditions can be obtained from Eq. (1) and consist of discon-
tinuities of the spatial derivative of ϕ, in x = −L1, x = L2, and
x = 0. Particularly, for x = 0 we get

∂xϕ(t, 0+) − ∂xϕ(t, 0−) =C0′
J ∂2

t ϕ(t, 0) + E0′
J (t )ϕ(t, 0). (5)

Herein, we have defined C0′
J = C0

J /v2
wca and E0′

J (t ) =
(2e)2(2E0

J /v2
wca) cos[ f0(t )].

The other two conditions are analogous to Eq. (5) and can
be used to decouple the field inside the circuit from any exter-
nal system by choosing E1

J = E2
J = EJ with e2EJ/v

2
wca � 1

[19]. This will allow us to consider that ϕ(x, t ) = 0 for x <

−L1 and x > L2. For simplicity, we also consider C1,2
J = 0 and

that both SQUIDs are subjected to a time-dependent magnetic
flux. Thus, the boundary condition simplifies, allowing us to
assume

0 = ϕ(∓L1,2) + 1

E ′
J (t )

∂xϕ(∓L1,2)

≈ ϕ

(∓L − L0

2
+ 1

E ′
J (t )

)
. (6)

We have defined E ′
J (t ) = (2e)2 2EJ

v2
wca

cos[ f (t )] and f (t ) =
f1(t ) = f2(t ). It can be noted that the boundary conditions
introduced in (6) can be interpreted as in-phase changes in
the effective lengths of the two waveguides which can be
characterized by

�L(t ) = L0 − 2

E ′
J (t )

. (7)

This fact can be seen as a consequence of the mathematical
analogy between superconducting circuits and cavities. For
the particular choice of parameters made for our circuit, an
analogous system can be found in a one-dimensional dou-
ble cavity of length L = L1 + L2 (as schematized in Fig. 1),
with perfectly conducting outer walls and a semitransparent
dielectric wall separating both halves in x = 0. This wall is
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considered to be infinitesimally thin, which is a reasonable
approximation if we consider this type of systems [20]. This
configuration results in a left cavity of length L1 and a right
cavity of length L2, both sharing the central dielectric wall.
The dielectric membrane is characterized by its electric per-
mittivity ε. A time-dependent electric potential V (t ) is also
applied on this wall.

Furthermore, we consider a scalar field φ̂ inside of the
cavity (as a simplified model of the electromagnetic field). It
can be described by the following Lagrangian density [14]:

L = 1
2 [ε(∂t φ̂)2 − (∂xφ̂)2 − V (t )φ̂2], (8)

where

ε = 1 + δ(x)α (9)

and

V (t ) = δ(x)v(t ). (10)

From now on, we use α and v(t ) to characterize the dielectric
membrane. For simplicity, we refer to α as the wall’s electric
susceptibility, and v(t ) as the electric potential applied to it,
despite the difference in units of both parameters with said
quantities.

Herein, we have taken a coordinate system with its origin in
the position of the dielectric wall, which results in the position
of the perfectly conducting walls being set at x = −L1 for the
left one, and x = L2 for the one in the right.

We consider the case where the position of the perfectly
conducting walls may vary in time [L1(t ), L2(t )] while the
dielectric wall stays static at x = 0. Particularly, we assume
that the movement of the external walls is such that the total
length of the double cavity does not vary, i.e., L1(t ) + L2(t ) =
L remains a constant. Then, it is convenient to characterize
the movement of the walls through a displacement parameter
�L(t ) such that,

�L(t ) = L1(t ) − L2(t ). (11)

This definition also allows us to write L1,2 = (L ± �L)/2.
�L(t ) defined here is completely analogous to the one de-
fined in Eq. (7). It is important to note that this equivalence
means the moving walls can be simulated by a variation of
the magnetic flux through the SQUIDs at the extremes of the
circuit.

From Eq. (8) we can derive the field equation, which is
equivalent to that obtained for the circuit [Eq. (4)]. Similarly,
the field φ̂ must also be continuous for all values of x along
the double cavity. The boundary conditions appear as a conse-
quence of the presence of the external perfectly conducting
mirrors and the central dielectric wall. For the former, we
assume Dirichlet conditions in x = −L1(t ) and x = L2(t ). For
the latter, located at x = 0, we ask for the continuity of the
field and a discontinuity of the spatial derivative of the field
obtained from Eq. (8), which reads

∂xφ̂(t, x = 0+) − ∂xφ̂(t, x = 0−) = α∂2
t φ̂(t, 0) + v(t )φ̂(t, 0).

(12)

By comparing Eq. (5) with (12), we obtain a direct analogy
between the susceptibility α of the dielectric wall with the ca-
pacitance of the central SQUID C0′

J , and the potential applied

to the membrane v(t ) with the Josephson energy of that same
SQUID E0′

J (t ).
As we have shown the equivalence between both systems,

in the following we refer to the mechanical cavity because it
provides a more intuitive picture.

Eigenfunctions

Let us now consider the case where the double cavity is
in a static regime, meaning neither �L nor v vary in time. In
this case, all of the boundary conditions for the field inside
the cavity become independent of time. In this case, we can
find a basis of eigenfunctions that are solutions to the field
equation [Eq. (4)] and satisfy the boundary conditions. These
functions are given by [21]

um = e−iωmt

√
2ωmNm

[θ (−x) sin (kmL2) sin [km(x + L1)]

− θ (x) sin (kmL1) sin [km(x − L2)]], (13)

where km corresponds to the eigenfunction’s wave number, ωm

to its temporal frequency (which in the one-dimensional case
is equal to km), and Nm is a normalization factor. The functions
form an orthogonal basis if the following generalized Klein-
Gordon inner product is satisfied [21]

( f , g)KG = i
∫ L2

−L1

[ ḟ (t, x)g∗(t, x)

− f (t, x)ġ∗(t, x)][1 + δ(x)α]dx. (14)

The normalization factor Nm is defined in such a way that the
basis is orthonormal [(un, ul )KG = δnl ] and reads

N2
m = 1

2

[
L1 sin2 (kmL2) + L2 sin2 (kmL1)

+ 1

km
sin (kmL) sin (kmL1) sin (kmL2)

]
. (15)

The values of km are such that the eigenfunctions are consis-
tent with Eq. (12). This condition implies that

cos (km�L) − cos (kmL) = 2 sin (kmL)

km
(
α + v

k2
m

) , (16)

which defines the admissible values of km. This transcendental
equation will be studied further in Sec. III.

By using these eigenfunctions we can expand the field
operator as [22]

φ̂(t, x) =
∑

m

[âmum(t, x) + â†
mu∗

m(t, x)], (17)

where âm are the bosonic operators corresponding to the dif-
ferent photon modes.

If we then consider moving boundaries or a time-varying
potential applied to the central wall, the functions um(t, x) can
be expressed in terms of an instantaneous basis [5,23]

um(t, x) =
∑

n

Qm
n (t )�n(x, t ), (18)
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where Qm
n (t ) are time-dependent coefficients and

�n(x, t ) = 1

Nn
[θ (−x) sin[kn(t )L2(t )] sin{kn(t )[x + L1(t )]}

− θ (x) sin[kn(t )L1(t )] sin{kn(t )[x − L2(t )]}].
(19)

It is important to note that the wave-number dependence on
time comes from the time dependence of �L and v in Eq. (16).
The functions given in (19) form an orthonormal basis corre-
sponding to the generalized inner product

( f , g) =
∫ L2

−L1

f (x)g(x)[1 + δ(x)α]dx, (20)

that we use throughout the work.

III. DOUBLE-CAVITY SPECTRUM

To make a complete description of the double cavity, we
need to study the solutions to Eq. (16). For simplicity, we
consider the case where v(t ) = 0, i.e., there is no potential
applied at the dielectric wall, and, thus, the solutions will
only depend on L, �L, and α. We assume the value of L
to be fixed and use it to define the dimensionless quantities
�L/L and α/L. Additionally, we consider that the walls of
the cavity are not moving, which implies that �L is constant.
We must note that as Eq. (16) is a transcendental equation, it
cannot be solved analytically for general values of �L/L and
α/L. There are however, two sets of values of α/L where ap-
proximate analytical solutions can be found, namely kmα � 1
and kmα � 1. Furthermore, in the limiting cases α/L = 0 and
α/L → ∞, the analytical solutions become exact.

We note now that, in general, we must consider the value
of kmα instead of just α/L when approximating because of
the way α appears in Eq. (16), multiplied by km. This caveat
is particularly important when dealing with lower values of α,
as we will see later.

We shall start with the general case of the dielectric wall,
and show later the cases where analytical solutions can be
applied.

A. Dielectric wall

For cases in which the susceptibility is such that kmα ≈
1, we can use neither approximation and so we must solve
Eq. (16) numerically. To do this we use a similar method to
that employed in Ref. [19]. In Fig. 2 we show the first five
wave numbers, corresponding to k0, k1, k2, k3, and k4 for
different lengths of the left cavity (L1/L). All of the wave
numbers are also plotted for different values of the electric
susceptibility (α/L) according to the colors detailed in the
legend. In Fig. 2, we can see that, for α/L = 0, the wave
numbers are given by straight horizontal lines which are in-
teger multiples of π/L and, thus, for this case km ends up
being independent of the relative size of the left cavity, and
in extension of �L/L. This is consistent with the fact that, for
α/L = 0, the dielectric wall becomes completely transparent,
and, thus, the wave numbers are those corresponding to the
case of a single cavity of length L. On the other hand, for
high values of the susceptibility (α/L = 120), we note that

FIG. 2. Wave-number spectrum as a function of the length of the
left cavity (L1/L) for different values of α/L between 0 and 120. The
figure shows said values for the first five modes (k0, k1, k2, k3, k4).

the wave numbers (except k0) are proportional to either L−1
1

or (L − L1)−1 = L−1
2 . In this case, the value of α/L turns

the dielectric wall into an almost perfectly conducting wall.
This results in the system becoming one of two cavities with
perfectly conducting walls at their ends one of which they
share among each other. As a consequence of this, the wave
numbers (with m > 1) become either integer multiples of
π/L1 or π/L2. In the particular case of the first mode (k0),
we see that as the value of α/L increases, its value decreases.
As we see in Sec. III C, this mode becomes irrelevant as the
susceptibility becomes larger.

For intermediate values of α/L we get a continuous con-
nection between the two limiting cases where, as the value
of α/L increases (starting from α/L = 0), the wave numbers
gain a dependence on L1 and, consequently, on �L. As the
value of the susceptibility rises, the dependence becomes
more apparent, until we get km ∝ L−1

1,2. Another feature is that
the more energetic modes coincide with the latter extreme
value (km ∝ L−1

1,2) for lower values of α/L (α/L = 0.9 for k4)
than those that are less energetic (α/L = 3.6 for k1). Finally,
the “zeroth”-mode’s wave number tends to vanish at a slower
rate than that at which the rest obtain their extreme value. This
can be seen, for example, in the fact that, while for α/L = 3.6
all of the higher modes have already taken their ∝L−1

1,2 shape,
k0 has only decreased to approximately a third of its value at
α/L = 0.

An important factor to consider, mostly for the study of
particle creation via the DCE, is that of the spacing between
modes, as an equidistant spectrum (i.e., km+1 − km is constant
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FIG. 3. Difference between wave numbers as a function of α/L
for L1/L = 0.6. The differences considered are those between wave
numbers corresponding to eigenfunctions that, in the case of α/L →
∞, localize either in the left cavity (up) and in the right cavity
(down).

for a given set of m) leads to very different results than for one
that is nonequidistant [8]. From the previous results, we can
see that for both limiting cases, we get equidistant spectra. In
the case of α = 0 we get km+1 − km = k0 for all m, while for
α/L → ∞ two different equidistant spectra k±

m+1 − k±
m = k±

1 .
For more general values of α we again use the numerical
solutions to Eq. (16). Figure 3 shows the difference between
pairs of wave numbers that, for large enough values of α/L,
correspond to localized modes in either the right or left cavity.
The values shown in Fig. 3 correspond to the case where
L1/L = 0.6, the spacing between the modes will vary with the
value of L1/L.

We can see that the behavior both for low and high values
of α/L are what we would expect. In the first case, we tend
to have km − kn = (m − n)π/L, while in the latter, we have
the same value for the difference of all subsequent modes
corresponding to the same cavity. For values of α/L ≈ 10
we get equidistance for the spectra corresponding to each
of the cavities, however, for values of this order, the mode
corresponding to m = 0 is still far from fulfilling this con-
dition. This is another consequence of k0 reaching its limit
value of zero for values of α/L much higher than the rest
of the modes. Anyway, for the rest of the modes, we can
consider that the spectrum inside of each of the perfectly con-
ducting cavities is equidistant for values of α/L of the order
of 10.

In the following, we discuss the approximate solutions that
can be obtained for kmα � 1 and kmα � 1. These solutions

lead to a more accurate explanation of the behavior of km as a
function of α and �L related to what we have been discussing
in this section.

B. Transparent wall

We shall start with kmα � 1. We consider that the dielec-
tric wall is almost transparent, with α/L = 0 corresponding to
a fully transparent wall, which corresponds to a system con-
sisting of a single cavity. The particular case of the transparent
wall can be represented by the equations sin(kmL) = 0, with
km = (m + 1)π/L as the solutions. As we have already men-
tioned, in this case the wave numbers become independent
of �L and thus independent of the difference between the
individual cavity sizes (L1 and L2). This is consistent with the
fact that as the wall becomes fully transparent, we are left with
a single cavity instead of two. Furthermore, by introducing
km = (m + 1)π/L in Eq. (13) we obtain

u0
m(t, x) = e−iω0

mt√
2ω0

m

√
2

L
sin

(
(m + 1)π

L
x

)
, (21)

where ω0
m = (m + 1)π/L. These eigenfunctions are similar to

those corresponding to a one-dimensional single cavity with
perfectly conducting walls. Here, the first spatial derivative of
u0

m becomes continuous in x = 0, because that point looses its
physical importance when the wall is transparent.

For the more general case, we can consider km =
(mπ/L)(1 + κ0

m) with κ0
m � 1 and (mπ/L)α � 1 and solve

Eq. (16) for κ0
m to the first order. Hence, we obtain

km = (m + 1)π

L

×
{

1 − α

2L

[
1 + (−1)m cos

(
(m + 1)π

L
�L

)]}
. (22)

As we can see in the expression above, the first-order term
is proportional to (m + 1)α/L which grows as we consider
higher wave numbers (higher values of m). This means that,
for nonzero values of α, this approximation will be worse
for modes that are more energetic. We can see that the
behavior described by Eq. (22) is also similar to the case
α/L = 0.03 for all modes, where we essentially get oscilla-
tions with respect to the horizontal line of amplitude ∝α/L
and a frequency that depends on the mode we are considering
[∝(m + 1)].

C. Perfectly conducting wall

In the opposite case, kmα � 1, we assume a very reflective
dielectric wall, which may be considered to be an “imperfect”
conductor (a mirror). Particularly, the limit case of α/L → ∞
corresponds to a perfectly conducting wall separating both
cavities. In this case, we obtain a system consisting of two
perfectly conducting cavities that share one of their walls.
The transcendental equation here simplifies to cos(km�L) −
cos(kmL) = 0. This equation has “three” sets of solutions: the
first two solutions are of the form k±

m = 2mπ/(L ± �L) and
the other one is the trivial solution k0 = 0. By introducing k±

m
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in the eigenmodes of Eq. (13), we get

u±
m (t, x) = e−iω±

m t√
2ω±

m

√
4

L ± �L

× θ (∓x) sin

[
2mπ

L ± �L

(
x ± L ± �L

2

)]
, (23)

where ω± = k±
m . Here we can see that, depending on which

subset of solutions we choose, the eigenfunctions become lo-
calized in either the left cavity (x < 0) or the right one (x > 0).
This result will be important when studying entanglement in
Sec. V.

When considering [2mπ/(L ± �L)]α � 1, we can solve
the transcendental equation with k±

m = [2mπ/(L ± �L)](1 +
κ±

m ) for κ± � 1 and we find the following solution up to first
order:

k±
m = 2mπ

(L ± �L)

(
1 ∓ (L ± �L)

2α(mπ )2

)
. (24)

In this case, the approximations for the more energetic modes
will be better than for those with lower m. This can be seen in
Eq. (24) where the first-order term is proportional to L/(mα).

As for the solution k0 = 0, we assume k0 = (π/L)κ0 with
κ0 � 1 (instead of α/L � 1), and hence obtain a nontrivial
solution

k0 =
√

4L

α(L2 − �L2)
. (25)

We note that this “zeroth” mode wave number depends dif-
ferently on L/α in comparison with the other modes. Herein,
we do not have a linear dependence like for k±

m , but
√

L/α

instead. Not only does this mean that the approximation will
be valid for higher values of α/L than for the rest of the
modes, but also that it takes on its limiting value (k0 = 0)
for higher values of said parameter. It is important to note
that the eigenfunction corresponding to this wave number
does not localize in either cavity when the susceptibility in-
creases. Particularly, it decreases in amplitude, vanishing as
α/L → ∞. The fact that this mode will not become localized,
while also reaching its limit value at a slower pace, indicates
that, although all eigenfunctions corresponding to m � 1 are
localized, there still is a nonlocalized eigenfunction for m = 0
that may allow us to “couple” the two cavities. As we shall see
in a later section, this feature leads to interesting results both
for particle creation and entanglement.

IV. PARTICLE CREATION

Previously, we have made a thorough study of the spectrum
of the field inside the double cavity for different values of
the significant parameters. We have further studied the be-
havior of the field’s eigenfunctions. Hence, in this section,
we can analyze the particle creation process. The results of
the previous section will greatly impact the creation rate. We
show the benefit of having such a system in order to get, for
example, the exponential growth of the number of photons in
a one-dimensional cavity (parametric resonance), a result that
is not usually obtained in this type of system [8,24]. We also
analyze the particular behavior of the zeroth mode, obtaining

interesting solutions that cannot be obtained in a double cavity
with three perfectly conducing walls.

We consider the situation where the double cavity is ini-
tially at rest, with the difference between cavity sizes given
by �L(t < 0) = L0. At a given instant t = 0 the walls of the
cavity oscillate, following a trajectory such that the distance
among the walls is kept fixed. The walls oscillate for a period
of time t f , at a constant frequency � and an amplitude Lε,
modeled by

�L(t ) = L0 + Lε sin (�t ). (26)

For times larger than t = t f , the walls stop moving and the
cavity becomes static again. For simplicity, we consider that
there is no potential difference being applied over the dielec-
tric wall [v(t ) = 0 for all t].

For t < 0, the cavity can be described in terms of the static
basis um(t, x) defined in Eq. (13) and bosonic operators that
correspond to photon modes in that region of the space-time,
ain

m . This reads

φ̂ =
∑

m

[
um(t, x)âin

m + u∗
m(t, x)âin †

m

]
. (27)

We consider the field to be in a state |in〉, which has a well-
defined number of photons of well-defined wave number km

in t < 0 (〈N̂m〉 = 〈âin †
m âin

m〉 = N0
m).

As the walls move, the original basis gets continually de-
formed into a new one satisfying the boundary conditions
um(t, x) → vl (t, x). The field can be expanded in this new
basis

φ̂ =
∑

l

[
vl (t, x)âout

l + v∗
l (t, x)âout †

l

]
, (28)

where we have defined new bosonic operators âout
n corre-

sponding to a new notion of particles. The connection between
the two bases is given by vn = √

2ωn
∑

m(Bm
n um + Am

n u∗
m).

This can be introduced in Eq. (28) to find

âout
l =

√
2ωl

∑
m

(
Bm

l âin
m + Am ∗

l ain †
m

)
, (29)

which is known as a Bogoliubov transformation [5,25]. By
using this relation among operators, we can find the number
of particles of well-defined momentum kn in the region corre-
sponding to t > t f :

〈N̂l〉 =
√

2ωl

∑
m

[(
1 + N0

m

)∣∣Am
l

∣∣2 + N0
m

∣∣Bm
l

∣∣2]
. (30)

The result implies that the number of particles inside the
cavity can vary with the movement of the walls, even yet for
the case of an initial vacuum (N0

m = 0 for all m) particles can
be created by the movement of the external walls. This is what
is commonly known as dynamic Casimir effect [5,8].

As for the computation of the number of particles after hav-
ing moved the walls, we need to know Am

l and Bm
l . To do this,

we need to give a continuous description of the field during
the time interval when the walls move. Hence, we introduce
the expansion of the um(t, x) functions in the instantaneous
basis (19) into (27). Furthermore, we introduce that particular
expression of φ̂ into the wave equation. By considering the
fact that the instantaneous basis is orthonormal, we find the
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following differential equation for the time-dependent coeffi-
cients:

Q̈(m)
l + k2

l Q(m)
l = −

∑
n

[
gnl

(
2λQ̇(m)

n + λ̇Q(m)
n + hnlλ

2Q(m)
n

)]
,

(31)

where

λ = �L̇(t )

L
, (32)

gnl = L(∂�L�n,�l ), (33)

and

hnl = L2(∂2
�L�n,�l

)
. (34)

This set of infinite coupled differential equations does not
admit exact analytical solutions and so it must be solved
by either employing analytical approximations or numerical
methods [26–28]. We have used both of these approaches,
which we shall briefly discuss in the following.

A. Multiple scale analysis

We first consider some analytical approximations. To em-
ploy these methods, we assume that the walls perform small
harmonic oscillations [ε � min{L1, L2}/L in Eq. (26)] and
search for solutions of the form

Q(m)
n = Am

l (τ )eiωl t + Bm
l e−iωl t , (35)

where we have introduced a second slower timescale τ = εt
following the multiple scale analysis (MSA) procedure [27].
After introducing these expressions in Eq. (31) and solving
for the first order in ε, we obtain a system of infinite coupled
differential equations for Am

l (τ ) and Bm
l (τ ) which reads

dAm
l

dτ
= −ηl

2
δ(� − 2ωl )B

m
l

− �

2ωl

∑
n �=l

gnl

(
ωn − �

2

)
δ(� − (ωn + ωl ))B

m
n

− �

2ωl

∑
n �=l

gnl

[(
ωn + �

2

)
δ(� − (ωl − ωn))

+
(

ωn − �

2

)
δ(� − (ωn − ωl ))

]
Am

n (36)

and

dBm
l

dτ
= −ηl

2
δ(� − 2ωl )A

m
l

− �

2ωl

∑
n �=l

gnl

(
ωn − �

2

)
δ(� − (ωn + ωl ))A

m
n

− �

2ωl

∑
n �=l

gnl

[(
ωn + �

2

)
δ(� − (ωl − ωn))

+
(

ωn − �

2

)
δ(� − (ωn − ωl ))

]
Bm

n . (37)

Additionally, we consider initial conditions Am
l (0) = 0 and

Bm
l (0) = δm

l /
√

2ωl , so that the description of the field is con-
tinuous with the one given by Eq. (27) [8].

We can note that there are three conditions for the fre-
quency of oscillations of the walls [� in Eq. (26)] in Eqs. (36)
and (37) that provide us with nontrivial solutions for A(m)

l and
B(m)

l . The first of these conditions is often known as single-
mode resonance and reads

� = 2ωn. (38)

Furthermore, there are two other conditions which are respon-
sible of coupling different modes of the field, namely,

� = ωm + ωn, (39)

� = |ωm − ωn|. (40)

The first two of said conditions, Eqs. (38) and (39), are
responsible for the creation of particles. The third condition,
Eq. (40), leads to the redistribution of photons between cou-
pled modes but, by itself, cannot lead to particle creation.
Once � is set, more than just one of these conditions can be
met. This is determined by the structure of the wave-number–
eigenfrequency spectrum, and greatly affects both the rate at
which the particles are created and the energy of said particles.

It is also important to note that the weight of terms asso-
ciated with the single-mode resonance of mode n is given by
∂�Lkn, which is to say, the slope of the wave number regarding
the displacement �L. This quantity can be obtained from the
transcendental equation [Eq. (16)]

∂�Lkn = kn sin (kn�L)

[(
L + 2

αk2
n

)
sin (knL)

− �L sin (kn�L) − 2L

αkn
cos (knL)

]−1

. (41)

On the other hand, the strength of the coupling between modes
n and l is given to a first-order approximation by gnl [Eq. (33)].

B. Numerical method

We can generally solve Eq. (31) by means of numerical
methods. Herein, we consider a method similar to the one
used in Ref. [29], where some of us integrate the differential
equations by employing a Runge-Kutta fourth-order method
between t = 0 and tmax > t f . Hence, for t > t f the analytical
solution to Eq. (31) reads

Q(m)
n (t ) = 1√

2ωn

[
Am

n (t f )e−iωnt + Bm
n (t f )eiωnt

]
. (42)

Further we multiply by e±iωnt and take the time -average in
t f < t < tmax, so as to obtain the values for Am

n (t f ) and Bm
n (t f ).

Introducing these values in Eq. (30), we can then calculate the
number of particles in the cavity at t = t f , when the cavity is
again at rest. Finally, by considering t f a continuous variable
we can repeat this process for several time intervals and obtain
〈Nn〉 as a function of t f .

It is important to recall that Eq. (31) constitutes an infinite
set of coupled differential equations. To perform the numer-
ical integration of said equations we must consider a finite
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FIG. 4. Number of particles as a function of the oscillation time (t f /L) obtained through numerical simulations of the system considering
an external frequency of � = 2ω1 both for (a) a nonequidistant spectrum and (b) an equidistant one. In panel (a), we can observe the results
of the simulation for parameters: α/L = 0.5 and L0/L = 0.44. It is easy to note that we only get single-mode resonance for ω1 and no other
first-order conditions. On the other hand, in panel (b) the double cavity considered has parameters α/L = 125 and L0/L = 0.44. In this case,
we can consider all of the modes (with n > 0) to be localized in a single cavity, the solid lines representing modes that are localized in the left
cavity, while the dotted ones stand for those that are localized in the right one (exemplified here by mode 3, the behavior being analogous for
the rest of them). Because of the equidistant spectrum in this second case, in addition to the single-mode resonance for mode 1, we also get
frequency subtraction coupling relations of the form � = ω+

n+2 − ω+
n (as ω1 = ω+

1 ) which allows for the creation of particles in modes 4, 6, 9,
and 12. The rest of the modes corresponding to the left cavity present no particle creation and their behavior is exemplified here by mode 2. In
both cases the analytical results for 〈N1〉 are shown by the black dot-dashed line. In panel (a) this was calculated by applying Eq. (43), while
in panel (b) these results are valid only for short oscillation time (t � 300).

number of modes of the field, and neglect the rest. This in
itself conforms an approximation, which, in order to be valid,
must fulfill certain conditions. In particular, we consider the
simulations to be valid until we see a considerable number of
particles in a mode that fulfills any of the coupling conditions
given by Eqs. (39) and/or (40) with a mode that is being
neglected. The results presented in the following section have
been obtained using the first 15 modes of the double cavity (k0

to k14), for both different initial configurations of the double
cavity (meaning different values of α/L and L0/L) and for dif-
ferent values of �. We have set ε = 3 × 10−3 as we have seen
this value is consistent with the small oscillations condition
(ε � min{L1, L2}/L) for all values of L0 considered.

C. Results and discussion

We start with the case of a dielectric wall by setting α/L =
0.5. For the lower modes this value of the susceptibility ful-
fills the condition kmα ≈ 1. This results in a nonequidistant
frequency spectrum for the less energetic modes. First, we
consider the external frequency to be satisfying the single-
mode resonance condition for mode 1 (� = 2ω1). We choose
mode 1 instead of the less energetic mode 0 because, as we
have discussed, the latter vanishes for large enough values of
the electric susceptibility. The field is considered to be in an
initial vacuum state. The results of this numerical simulation
can be seen in Fig. 4(a). Therein, we can observe the number
of particles as a function of time for this value of α/L and
L0/L = 0.44. It is easy to note that there is an initially expo-
nential growth in the number of particles only for the resonant
mode. This feature agrees with the result predicted by solving
Eqs. (36) and (37) for this case. Results are shown together

with the numerical results as a black dot-dashed line, where
the number of particles is predicted to grow as

〈N1〉 = sinh2

(
L∂�Lk1(L0)

2
εt f

)
. (43)

We note that this result is consistent with previous results
for similar systems [8,28,30]. The exponential growth of the
resonant mode ω1 agrees with the result predicted by MSA, all
other modes, do not exhibit exponential growth. However, we
can also see some particle creation process for other modes at
later times (t f > 300). We can note that the number of photons
in more energetic modes start growing, although they do so at
a slower rate than for mode 1. The solutions obtained via the
MSA do not predict photon number growth in modes other
than the resonant one, and the result seen in Fig. 4 corresponds
to behavior that can be described by higher-order methods.
In any case, for this choice of α/L and L0/L we manage to
get exponential creation of photons from an initial vacuum
state, which is the expected result for this choice of � and a
nonequidistant spectrum.

Following, we can assume identical values for L0/L and
�, while considering a much higher value of the electric
susceptibility, α/L = 125. The results obtained for this new
choice of susceptibility can be observed in Fig. 4(b). Apart
from the zeroth mode, which is expected not to be localized,
the solid line represents modes localized in the left cavity,
while the dotted lines indicate those localized in the right side.
Additionally, we show the MSA prediction for 〈N1〉, which
is valid for short timescales (t f � 300). We can immediately
notice a difference in the behavior of the system from the one
observed for α/L = 0.5 [Fig. 4(a)]. It is easily seen that for
a short time period [τ � (ε�)−1], the number of particles
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FIG. 5. Number of particles as a function of oscillation time (t f /L) obtained through numerical simulations of the system considering an
external frequency of � = ω2 − ω1 both for (a) a nonequidistant spectrum and (b) an equidistant one. In this case the system starts with an
initial number of particles in mode 1〈N1〉(t f = 0) = 50. In panel (a) we see the results for α/L = 0.5 and L0/L = 0.04. In this case, only
modes 1 and 2 couple, which results in a harmonic migration of the photon number exclusively between said modes. The dashed-dotted black
line stands for the MSA prediction for 〈N1〉 as seen in Eq. (44). In panel (b) we again have the case where modes are localized in either the left
(solid lines) or right (dashed lines) cavity (α/L = 125 and L0/L = 0.44). As a consequence of the spectrum being equidistant in each cavity
and as ω1 = ω+

1 and ω2 = ω+
2 we get frequency subtraction coupling for every pair of successive modes in the left cavity (� = ω+

n+1 − ω+
n ).

This results in the migration of the particles that are initially in mode 1 to left-cavity higher energy modes as the wall oscillation time increases.
The solid black line represents the total number of photons (〈N〉 = ∑

k〈Nk〉) inside the double cavity which, as we can see, remains constant
for all values of t f /L considered here.

in mode 1 grow following the MSA prediction, at a rate
proportional to t2. For longer time periods, 〈N1〉 grows at a
slower rate (∝t), as well as those higher-energy modes that
fulfill the condition given by Eq. (40).

For this value, all frequencies (other than k0) can be consid-
ered to take their limit values given by Eq. (24) and hence, the
spectrum in this case becomes equidistant. As this happens,
we find that our choice of � no longer exclusively fulfills
the single-mode resonance condition [Eq. (38)], but also fre-
quency subtraction coupling conditions [Eq. (40)] for infinite
pairs of left cavity modes. This is a direct consequence of each
of the left cavity’s spectrum equidistance, as ω+

k+2 − ω+
k =

2ω1 = �. Although the right cavity is also equidistant, we do
not have an equivalent relationship with �, because L2 is not
a multiple of L1.

As we have noted before, the effects associated with the
type of coupling relevant to this case, is the redistribution of
energy between coupled modes, while the resonance condi-
tion is the one responsible of particle creation. The first modes
are those that are first populated, starting with the resonant
mode, while as time goes on, particles are created in more
energetic modes. This is consistent with similar cases that
have already been studied in the bibliography [8,24]. It is
worth noting that, for α = 0, we cannot get particle creation
via single-mode resonance because ∂�Lkm = 0 for any mode
m [see Eq. (41)], as the wave numbers of the field become
independent from the relative size of the individual cavities.

We now consider the case where � = ω2 − ω1. As we
have previously mentioned, this type of coupling by itself
will not lead to the creation of particles. Because of this,
we consider that, initially, mode 1 is populated by a certain
number of photons [N0

1 = 〈N1〉(t < 0) = 50]. Again, we start
by considering the case with the dielectric wall (α/L ≈ 0.5)

and L0/L = 0.04. This parameters will yield a nonequidistant
spectrum. The results for the simulation of this case can be
seen in Fig. 5(a). As we can see, in the absence of other cou-
pling conditions, the photons oscillate harmonically between
modes 1 and 2. This result agrees with the analytical results
of Eqs. (36) and (37), which read

〈N1〉 = N0
1 cos2

(
g21

(
ω2

2 − ω2
1

)
4
√

ω1ω2
εt f

)
, (44)

〈N2〉 = N0
1 sin2

(
g21

(
ω2

2 − ω2
1

)
4
√

ω1ω2
εt f

)
. (45)

As we can see, the frequency at which the photons oscillate is
proportional to the coupling coefficient between both modes,
as can be expected. The numerical results also show no growth
in 〈Nk〉 for any other mode which is consistent with the ana-
lytical results.

On the other hand, we can see in Fig. 5(b) the results for
the numerical simulation with the same choice of � but with
α/L = 125 and L0/L = 0.72. In this case, all modes except
for mode 0 are localized in either the left (solid lines) or right
(dashed lines) cavity. Now, for this particular choice of param-
eters, the spectrum of both individual cavities is equidistant.
As modes 1 and 2 are localized both in the left cavity, for every
pair of successive modes in the left cavity we get a coupling of
the form ω+

n+1 − ω+
n = �. This results in the transference of

photons from mode 1 to other modes with higher energy, start-
ing with mode 2 (ω2 = ω+

2 ), then going to mode 4 (ω4 = ω+
3 ),

etc. It must be noted that these results are also consistent with
what we would expect the analytical solution to yield because
the terms that contribute to it in Eqs. (36) and (37) will transfer
the photons between the coupled modes while not creating any
particles. This last fact is shown by the solid black line that
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FIG. 6. Number of particles of well-defined frequency ω1 as a
function of time for an electric susceptibility of α/L = 125. The
external excitation frequency is set at � = ω1 + ω2. The two values
of L1/L correspond to, a case where modes 1 and 2 are localized in
the same cavity (L1/L = 0.72) and one where they are localized each
in a different cavity (L1/L = 0.53).

stands for the total number of photons inside the double cavity
(i.e., 〈N〉 = ∑

m〈Nm〉), which stays constant for all t f /L.
Following, we can consider the case where � = ω1 + ω2,

fulfilling the coupling condition given by Eq. (39). As we have
previously mentioned, this results in the creation of photons at
a rate that depends on the value coupling coefficient between
these modes g12 [Eq. (33)]. In the case of a nonequidistant
spectrum, and in the absence of any other condition from
Eqs. (38) or (40), the number of photons is known to grow
at the same exponential rate in both of the coupled modes as

〈N1〉 = 〈N2〉 = sinh2

(
g21

(
ω2

2 − ω2
1

)
4
√

ω1ω2
εt

)
. (46)

This will be the case for values of α/L and L0/L for which
αk1,2 ≈ 1.

In the particular case of α = 0, when the wall is completely
transparent, because of the way the external walls move in
phase, the system is commonly known as a shaker [30]. In this
case, we get resonant coupling between modes 1 and 2, and
subtraction coupling for ωk+5 − ωk which results in particle
creation in an infinite number of modes for high enough times.

For the opposite case of α/L � 1, we might get different
results depending on the value of L0. In this case, the spectra
of each of the individual cavities, becomes equidistant. Even
more significant for particle creation, as the central wall re-
sembles a perfect conductor, the two cavities are decoupled.
This means that if modes 1 and 2 correspond to modes local-
ized in different cavities, the coefficient g12 = 0, which results
in no particles being created. In Fig. 6, we can see 〈N1〉 for
α/L = 125 and two different values of L1/L. It must be noted
that, although the photon number is shown only for mode 1,
in the case of mode 2 the results are analogous.

One of these values, L1/L = 0.72 corresponds to a partic-
ular configuration of the double cavity where modes 1 and 2

are localized in the same cavity. Here we can see 〈N1〉 grows
with time. In this case, we also have a coupling with more
energetic modes which fulfills ω+

k+3 − ω+
k = �, resulting in

a similar situation to the one seen in Fig. 4(b). In the sec-
ond case, L1/L = 0.53, we do not see particle growth in the
considered time interval. This is due to the fact that modes
1 and 2 correspond to different cavities. We must note that
the crucial difference among the two cases is which mode we
are labeling as 2. As the length of the left cavity increases
(with the increase of L0), the second mode of that cavity
becomes less energetic than the first mode of the right cavity
(ω+

2 < ω−
1 ) and then, we label ω+

2 = ω2 when, for lower L0,
we had ω−

1 = ω2.
As we have already mentioned, in the case where modes

1 and 2 correspond to different cavities we get g12 = 0 and,
thus, no particle creation. However, it might be interesting,
from an information point of view, to create particles in two
cavities that are separated by a wall with α/L � 1. This
is because particles created via a frequency sum coupling
condition are known to be created in entangled pairs. Hence,
in principle, achieving this would allow us to entangle two
“decoupled” cavities via the DCE. In the following section,
we propose a way to do this by employing the residual zeroth
mode in a cavity with a high value of α.

Finally, we must note that this system allows for further
studies in the field of particle creation. Some interesting ex-
amples would be to consider the movement of the dielectric
wall while the perfectly conducting walls stay still, the con-
sideration of a time-varying electric potential [v(t )] applied to
the dielectric wall, or even the combination of these two (or
other) time-varying boundary conditions.

D. The zeroth mode as a coupling tool

As we have seen in Sec. III, in cases where α/L � 1
we get a different behavior for modes with m � 1, tending
to localize in either the left or right cavity. The behavior of
the mode m = 0 is different since instead of localizing, it
slowly vanishes as (α/L)−1/2. This exceptional feature allows
us to consider a cavity with a finite value susceptibility but
large enough for us to take ω±

m = 2π/(L ± L0). This permits
a description of the double cavity as a system composed of
two cavities which only “share” mode 0, with the rest of the
modes being localized in one or the other.

This scheme would allow us to create particles in both
cavities fundamental modes by indirectly coupling them via
the zeroth mode. We may achieve said coupling by choosing
a cavity configuration where

ω+
1 + ω0 = ω−

1 − ω0. (47)

The strength of the coupling between modes 0 and 1± is
mediated by g±

01 = 1/{2π [α(L ± L0)]1/2} which is nonzero
for finite values of α. By using Eqs. (24) and (25), we find
that this can be obtained by choosing

L0/L = 1/
√

(1 + π2α/L). (48)

The results for the number of particles can be obtained
by employing the MSA method, and the value of 〈Nm〉 ob-
tained doing this can be seen in Fig. 7. Here we can see
that it is possible indeed to create particles in the different

043701-10



PHOTON GENERATION AND ENTANGLEMENT IN A … PHYSICAL REVIEW A 106, 043701 (2022)

FIG. 7. Number of particles as a function of oscillation time
t f /L in the case where the external frequency is � = ω+

1 + ω0, the
susceptibility is α/L = 30 and L0/L corresponding to Eq. (48). The
three modes plotted are those with nontrivial analytic solutions.

“decoupled” cavities by employing the method above pro-
posed. The number of photons would grow exponentially.
However, the growth occurs at a very slow rate, and thus it
requires to maintain the oscillations for long time intervals in
order to get an appreciable number of particles.

Finally, we must note that the zeroth mode could, in prin-
ciple be used to overcome one of the practical limitations for
the experimental detection of the mechanical DCE in a cavity.
It is known that the values of � needed to create particles
are usually higher than what current technology allows [the
lowest being usually � = 2(π/L)]. In this case however, we
can profit by the existence of the zeroth mode. For α/L = 30
and L1/L = 0.74, we get ω0 = ω+

1 /10. In this case, we can
choose � = 2ω0 (which is an order of magnitude smaller than
2ω+

1 ). Since we have ∂�Lk0 = �Lk0/(4L1L2) �= 0 we can ob-
tain particle creation in mode 0 from single-mode resonance.
There is, however, a persisting problem: the time for which the
walls must be moving at this frequency. Through the MSA
we can estimate that, even for times of t/L ≈ 2000, we can
obtain 〈N0〉 ≈ 1 for this choice of parameters. Going back
to Fig. 4(a), we can observe that we would get 〈N1〉 ≈ 1 for
t/L ≈ 300. This difference is due to the small value of ∂�Lk0

when k0 takes small values and it implies that although oscil-
lations can be maintained at a considerably smaller frequency,
they would have to be maintained for larger timescales to get
a measurable number of photons.

V. ENTANGLEMENT

As we have mentioned, superconducting circuits have
lately become extremely relevant in problems relating to
quantum information and quantum communication, mostly
because of their role in recent advances in quantum com-
puting [11,12]. Particularly, techniques as boson sampling
[31] present a promising alternative to achieve quantum
supremacy. Recently, DCE has been studied in systems that
employ boson sampling [32]. Considering all of this, we might

note that the study of the relationship between the DCE and
quantum information in this type of systems might yield prac-
tical applications in the manipulation of entanglement.

We start this section by providing the analytical tools to
study the entanglement between pairs of modes of the field
inside the double cavity. With this purpose we employ Gaus-
sian state formalism. Gaussian states are those for which their
characteristic functions and quasiprobability distributions are
given by Gaussian functions in phase space [33]. This subset
of quantum states includes thermal, coherent, squeezed, and
vacuum states.

From now on we will employ a basis of quadrature opera-
tors R = (q0, p0, q1, p1, . . .), where

qm = 1√
2

(am + a†
m), (49)

pm = −i√
2

(am − a†
m). (50)

A given Gaussian state ρ can be completely characterized by
its displacement vector [33]

Dj = 〈Rj〉ρ, (51)

and its covariance matrix

Vi j = 1
2 〈RiRj + RjRi〉ρ − DiDj . (52)

The particular subset of Gaussian states composed of those
obtained through Bogoliubov transformations from an initial
vacuum, we find that Dj = 0 for all j, so we assume this in
the following. If we consider the field inside the double cavity
as our global system, we can express the covariance matrix of
the whole system in terms of 2 × 2 matrices. The diagonal
blocks correspond to the covariance matrix of a subsystem
conformed only by a single mode k of the field, this being

Vk = 1

2

(
2〈q̂2

k〉 〈q̂k p̂k + p̂k q̂k〉
〈q̂k p̂k + p̂k q̂k〉 2〈p̂2

k〉
)

. (53)

The off-diagonal blocks can be though as the correlation
between a pair of modes j and k, which reads

Cjk = 1

2

(
2〈q̂k q̂ j〉 〈q̂ j p̂k + p̂k q̂ j〉

〈q̂k p̂ j + p̂ j q̂k〉 2〈p̂k p̂ j〉
)

, (54)

where we have Ck j = CT
jk .

If a system is in a global Gaussian state, the states of
subsystems are also Gaussian and their covariance matrix is
given by the restriction of the covariance matrix of the whole
system to the subsystem that is being considered [18].

In this section we start by considering the entanglement
between two modes of the field j and k. We thus consider
a subsystem consisting of said pair of modes which is in a
Gaussian state characterized by

Vj|k =
(

Vj Cjk

CT
jk Vk

)
. (55)

We call this type of subsystems a bipartite system. To quantify
the entanglement between pairs of modes of the field, we
employ the logarithmic negativity, which for bipartite systems
can be defined as [18]

N j,k = max {0,− ln (2ν−)} (56)
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for this type of system. In Eq. (56) we have defined

ν− =
√

�

2
− 1

2

√
�2 − 4 det Vi| j (57)

and

� = det Vj det Vk − 2 det Cjk . (58)

A. Decoupling the systems

In this section, we study the problem of entanglement
generation between the two halves of the double cavity by
employing a protocol inspired by that presented in Ref. [16].
We thus consider the double cavity we have been discussing in
the previous sections of total length L, electric susceptibility
α/L, and the relative size of the single cavities given by
�L(t < 0) = L0. Initially (t < 0, in) the cavity is stationary
and the field is in a vacuum state. Starting at t = 0 and
for an interval of time equal to t f , the external perfectly
conducing walls will move following a trajectory given by
�L(0 < t < t f ) = L0 + Lε sin(�t ). At t = t f (out) the walls
stop at their initial position. At this same instant, we quickly
turn on the potential difference applied on the central wall
in such a way that v → ∞. By looking at Eq. (16) we can
see that suddenly applying a very high potential difference at
the wall has the same effect that taking α → ∞ if v is high
enough (v/km � 1). So, this last transformation is equivalent
to turning the central dielectric wall into a perfect conductor,
decoupling both cavities.

The description of the modes of the field after the move-
ment of the external walls and before turning on v is given
in terms of the global eigenfunctions [Eq. (13)]. Once v is
turned on both halves of the cavity become decoupled, and so
the eigenfunctions now become the localized ones, given by
Eq. (23). The functions of both bases are related to each other
by [34]

u±
l =

∑
m

[ξ±
mlum(t, x) + χ±

mlu
∗
m(t, x)]. (59)

The expansion coefficients have been defined by using the
Klein-Gordon product

ξ±
ml = (u±

l , um)KG, (60)

χ±
ml = −(u±

l , u∗
m)KG, (61)

evaluating we get

ξml = −e
−i

(
π l

L1/2
−km

)
�t

(
π l

L1/2
− km

)
V±

ml , (62)

χml = e
−i

(
π l

L1/2
+km

)
�t

(
π l

L1/2
+ km

)
V±

ml , (63)

where �t = t − t f and

V±
ml = (−1)l sin (kmL1) sin (kmL2)√

2L1,2Nm

[(
π l

L1,2

)2 − k2
m

]
√

π l

L1,2km
(64)

if km �= π l/L1 and km �= π l/L2, while if km = π l/L1,

V+
ml = L1

2πNm

√
L1

2
sin

(L2

L1
lπ

)
, (65)

and if km = π l/L2,

V−
ml = L2

2πNm

√
L2

2
sin

(L1

L2
lπ

)
. (66)

Both bases of eigenfunctions are associated with their own
bosonic operators, which correspond to the notion of particle
before and after we turn v on. Said operators can be associated
via a Bogoliubov transformation which employ coefficients
ξ±

ml and χ±
ml

âl± =
∑

m

(
ξ±∗

ml âout
m − χ±∗

ml âout †
m

)
. (67)

The bosonic operators aout correspond to the global eigen-
functions for t = t f and can be readily linked to those
corresponding to the initial state of the system (ain

m) by
Eq. (29). We note that the Bogoliubov transformation of
Eq. (67) hints at the creation of particles because of taking
v → ∞ at t = t f . Indeed, by substituting

√
ωlAm

l and
√

ωlBm
l

by ξ±
ml and χ±

ml , respectively, in Eq. (30) we get

〈Nl±〉 = 4π

(L ± L0)

∑
m

[
N0

m

(
2π l

(L ± L0)
− km

)2

(68)

+ (
1 + N0

m

)( 2π l

(L ± L0)
+ km

)2
]
V± 2

ml . (69)

The result above implies that, even if no photons are created
during the oscillation of the walls (0 < t < t f ), we neverthe-
less get particle creation as a result of suddenly turning on v.
In Ref. [16] it was shown that, in the case of an initial single
cavity α = 0, entanglement can be harvested from the vacuum
state.

By replacing aout
m with Eq. (29) in Eq. (67), we can relate

the local bosonic operators with those corresponding to the
initial state of the system, linking the two transformations
that result from moving the walls and turning v on. This
results in

a j± =
∑

m

[
α̃±

jmâin
m + β̃±∗

jm âin †
m

]
, (70)

where we have defined

α̃±
jm =

∑
l

√
2ωl

(
Bm

l ξ±∗
l j − Am

l χ±∗
l j

)
, (71)

β̃±∗
jm =

∑
l

√
2ωl

(
Bm

l ξ±∗
l j − Am

l χ±∗
l j

)
. (72)

Since we aim to study the entanglement between modes
localized in different cavities, in the following we shall con-
sider bipartite systems formed by one mode j+ in the left
cavity and another one k− in the right cavity. Taking this into
account, and as a way to simplify notation when calculating
the logarithmic negativity N j,k we will consider the first index
to always correspond to a mode of the left cavity, while the
other one will correspond to the one in the right.

B. Results and discussion

The results showcased in this section where obtained by
numerically evaluating the expressions presented before. To
do this we must consider a finite number of modes, in this
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FIG. 8. Logarithmic negativity for bipartite systems formed by
pairs of modes localized in different cavities for an initial double
cavity with L0/L = 0 and α/L = 0. Only the first 20 modes corre-
sponding to each cavity are shown

case taken as N = 200. We must note that, in the same way
as with the numerical simulations of Sec. IV taking a finite
N represents an approximation. This approximation can be
justified by considering that the potential difference v can-
not be turned on in an infinitely short time. In practice, this
transformation is done in a certain finite time interval δt .
However, we can consider that for mode j the transformation
happens in a negligible amount of time if δt � ω−1

j [16]. This
means that while for less energetic modes the transformation
is instantaneous, for those with higher energies the transfor-
mation will be slower. Indeed, for the more energetic ones,
the transformation (of turning on the potential difference) can
be considered to be adiabatic and as such it will neither create
particles nor generate entanglement.

Before going on, we also note that the transformation of
instantaneously introducing a potential difference in the po-
sition of the wall can be easily translated into circuits. In
this last case, said transformation would consist in turning
E0′(t ) from 0 to a value much higher than 1. This would
indeed be possible as it is similar to what is used to simulate
the perfectly conducting walls at the extremes of the circuit
[35,36].

We start by considering the case where the perfectly con-
ducting walls of the double cavity remain stationary at all
times. In this case, the only transformation that the system
will undergo is the turning on of v at t = 0. We start by
considering the simplest case, where the double cavity is in
a symmetrical configuration (L0 = 0) and the dielectric wall
is fully transparent (α/L = 0). In Fig. 8 we present the values
of the logarithmic negativity for the first 20 modes localized
in the two cavities. This case was presented in Ref. [16]
and works as a control case in relation to the variations we
consider later.

As we can see, the entanglement structure in this case
is symmetrical, with the larger values of Nn,m concentrated
among pairs of less energetic modes. Moreover, we see
that the maximum of the entanglement corresponds to the

FIG. 9. Logarithmic negativity for bipartite systems formed by
pairs of modes localized in different cavities for an initial double
cavity with α/L = 0 and different values of L0/L. Only the first 20
modes corresponding to each cavity are shown.

one between the fundamental modes of each cavity (m =
n = 1). As the difference between n and m increases the
entanglement between modes tends to vanish at a slow
rate.

In Fig. 9 we show Nn,m for two different initial double-
cavity configurations with different values for L0/L. As we
can see, by increasing the value of L0 and as a result, making
the two cavities differ in size, the entanglement looses the
symmetrical structure it had in Fig. 8. This happens because,
as L0/L increases, so does the length of the left cavity, L1,
which results in the frequencies corresponding to the modes
of this cavity being more similar to each other because ω+

n+1 −
ω+

n ∝ L−1
1 . The opposite happens with the right cavity, which

gets smaller and so the frequencies of its corresponding modes
become more different among each other ω−

m+1 − ω−
m ∝ L−1

2 .
This results in Nn,m a slower variation with n, and a faster
one with m. In the case for L0 = 0.6, we can see that the
negativity vanishes for certain pairs of modes, for example
n = 1 and m = 12. Apart from this, we can see in both cases
shown that the maximum is still located in n = m = 1, al-
though its value is lower than for the symmetric case from 0.1
to 0.06.

We further consider the case where initially, L0/L = 0, but
α/L �= 0. The results are shown in Fig. 10. We can see the
inclusion of a nontransparent wall in the initial system results
in a decrease in the value of Nn,m for all bipartite systems,
lowering the maximum in n = m = 1 from 0.1 to 0.08. In
fact, for many pairs of modes the entanglement vanishes as
we increase α/L. This can be understood if we consider that,
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FIG. 10. Logarithmic negativity for bipartite systems formed by
pairs of modes localized in different cavities for an initial double
cavity with L0/L = 0 and different values of α/L. Only the first 20
modes corresponding to each cavity are shown.

as we increase the susceptibility of the central wall, the initial
configuration becomes more similar to the final system where
the central wall is essentially a perfect conductor. In fact, as
we have previously discussed, for higher modes, the values of
α/L required to get their eigenfunctions localized are lower.
As such, for these modes the transformation of turning on
v is essentially an adiabatic transformation as neither their
eigenfunctions nor eigenfrequencies are affected. This results
in no particles being created in those modes and thus no en-
tanglement with the modes located in the other cavity. Finally,
we note that, in these cases, the symmetry of the entanglement
structure is maintained.

Having studied how the initial state of the cavity modifies
the entanglement structure we obtain after separating the two
halves, we might now consider the case where the external
walls of the cavity move for a certain amount of time. We
assume that the initial configuration of the cavity is given by
the simplest case of L0/L = 0 and α/L = 0. We consider the
walls oscillate at a frequency given by � = ω1 + ω2 = 5π/L.
As mentioned before, after the oscillation we turn on v de-
coupling the cavities. So as to keep this case as simple as
possible, we assume a toy model of the field inside the cavity,
for which we dismiss the frequency subtraction couplings
that this choice of � would satisfy. This means the energy
delivered to the field by the movement of the walls only results
in particle creation in modes 1 and 2. It is important to note
that, although this is not possible in a one-dimensional cavity,
it might be in a three-dimensional one.

FIG. 11. Logarithmic negativity for bipartite systems formed by
pairs of modes localized in different cavities for an initial double
cavity with L0/L = 0 and α/L = 0, where at t = 0 the external per-
fectly conducting walls oscillate at a frequency � = ω1 + ω2 until
t = t f .

The nontrivial Bogoliubov coefficients associated with the
particle creation read√

2ω1A2
1 =

√
2ω2A1

2 = sinh

( |γ12|
2

τ

)
, (73)

√
2ω1B1

1 =
√

2ω2B2
2 = cosh

( |γ12|
2

τ

)
. (74)

By introducing the above in Eq. (72) we can calculate Nn,m

through the covariance matrix. In Fig. 11 we observe the
results of Nn,m for this case. We can see that, for large enough
t f /L, all the bipartite systems reach an asymptotic value of
Nn,m. For most subsystems, we get a vanishing value of Nn,m.
Although, in Fig. 11 only the cases with n = m = 1, 2 van-
ish, all of the pairs of modes that have been omitted show
the same behavior for large enough values of t f /L. For the
other bipartite systems shown, we see that the negativity takes
on nonzero asymptotic values. The maximum of said values
is achieved for n = 2 and m = 1 (N2,1 ≈ 0.49), followed
closely by n = 1 and m = 2 (N1,2 ≈ 0.44), for the rest of
the subsystems we get comparatively negligible values of
negativity. Said values decrease with the difference between
n and m.

It should also be noted that, while N1,2 grows mono-
tonically, N2,1 decreases at first, vanishing for a finite time
interval, increasing again for larger values of t f /L. This last
fact, together with the fact that N1,2 �= N2,1 for t f /L � 1,
show an asymmetry in the entanglement structure, even if the
final state of the system is conformed of two identical cavities.
Interestingly, the asymmetry is dependent upon the initial
velocity of the walls. It can be seen that, if we take ε → −ε

in Eq. (26), meaning that the walls move initially toward the
right instead of toward the left [L1,2 = (L ± �L)/2], the roles
of m and n in Nn,m are inverted.

We can note that the maximum values taken by N1,2 and
N2,1 are many times larger than their initial values. This
shows that the DCE can be used to increase the entangle-
ment between pairs of modes when compared with the case
where there is no particle creation. We also find a simplifica-
tion of the entanglement structure, because only two bipartite
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FIG. 12. Logarithmic negativity for bipartite systems formed by
pairs of modes localized in different cavities for an initial double
cavity with L0/L = 0 and α/L = 30, where at t = 0 the external
perfectly conducting walls oscillate at a frequency � = ω+

1 + ω0 =
ω−

1 − ω0 until t = t f .

systems (n = 1, m = 2 and n = 2, m = 1) present a nonvan-
ishing logarithmic negativity.

Another approach to entangle modes in different cavities is
to use the method discussed in Sec. IV D. We have shown that,
by coupling the first localized modes in each cavity with the
zeroth mode, it was possible to get particle creation in modes
that are localized in both cavities. The fact that the modes
are initially localized requires α/L to be high in the initial
configuration of the double cavity. This means that turning on
v will not affect any mode besides mode zero, which must
vanish when the walls are perfect conductors. In this case, we
might consider that we take v → ∞ slowly so as to neglect the
entanglement that this nonlocalized mode might contribute.
Because of this, it is easy to see N1,1 will be the only quan-
tity that is not zero. In Fig. 12 we show N1,1 as a function
of t f .

In this case, we see a generation of entanglement be-
tween the two modes which are initially uncorrelated. As
the oscillation time increases we find that the negativity
takes, for sufficiently large t f /L, an asymptotic value of
N1,1 ≈ 1.23. Said value is approximately 2.5 times larger
than the maximum obtained for the previous case (N2,1 ≈
0.49). So, this approach results in stronger entanglement
between localized modes if we consider a single bipar-
tite system. Here, the structure is further simplified, as the
only entangled subsystem is the one with n = 1, m = 1.
However, the problem with this case compared with the
previous one is the large values of t f /L needed to get
comparatively higher values of N . To achieve N1,1 = 0.5,
one would need t f /L ≈ 3000, which is at least 10 times
greater than that needed to achieve the asymptotic value of
N2,1 ≈ 0.49.

VI. CONCLUSIONS

Throughout this work we have studied the DCE in a double
cavity, its link with quantum superconducting circuits and
the possibility of using this effect in quantum information.
We have exhibited the variability of the frequency spectrum,
showing its dependence on the electric susceptibility α and on

the relative size of the individual cavities (L1/L and L2/L). We
have shown that, for extreme values of α, analytical solutions
exist for the eigenfrequencies. We have also obtained the spec-
trum numerically, showing the continuous behavior between
the two extreme cases of the susceptibility. Furthermore, we
have shown that for high enough values of α/L the modes
localize in either the left or right cavity. This is true except for
the least energetic mode that tends to vanish for high enough
values of said parameter, but at a slower rate than the rest.
Furthermore, we have arrived at the conclusion that depending
on the choice of parameters we can obtain both an equidistant
structure (α/L � 1 and α/L � 1) as well as a nonequidistant
one (α/L ≈ 1), which results in a very advantageous charac-
teristic of the system.

Furthermore, we have studied the particle production via
the DCE. This study has been developed both by analytical
approximations (MSA) and exact numerical integration of
the dynamical equations of the system Eq. (31). We have
discussed the three conditions over the external frequency
� that can lead to nontrivial solutions, two of which lead
to particle creation (� = 2ωm and � = ωm + ωn) and one
that only provides photon redistribution (� = |ωm − ωn|). We
have shown that changes in the structure of the spectrum lead
to widely different results. For example, we have seen that
in the nonequidistant case we can get exponential photon
production through single-mode resonance in the resonant
mode, at a rate that is proportional to the slope of the wave
number in relation to changes in wall displacement (∂�Lkl ). In
the equidistant case, we get photon production in the resonant
mode that goes as a power law in time (t2

f for short times and
t f for long times), but we also get particle creation in other,
more energetic modes, as a result of coupling by subtraction
condition. Beyond the analytical expressions of the number
of particles as a function of t f , the equations that resulted
from this analysis can be used to predict and understand the
behavior of the field. We have also proposed the study of other
time-varying boundary conditions, such as a time-varying po-
tential applied to the dielectric wall. We have considered the
cases in which the zeroth mode can be employed as a coupling
tool between both halves of the cavities, which are essentially
decoupled for large susceptibilities. Furthermore, we have
briefly discussed a way to excite the exponential creation of
particles in this mode through single-mode resonance. It is
important to stress that this takes place for values of � which
are one order smaller than what is usually considered for
experimental proposals. However, whenever the zeroth mode
is involved, much longer excitation times are needed to get a
non-negligible number of particles.

Finally, we have analyzed a protocol with which we can
induce particle creation and later decouple the two cavities
that conform our system. This protocol allows us to generate a
system of two decoupled but entangled cavities, from an initial
double cavity with a semitransparent wall in the middle. We
have shown how the entanglement gathered from an initial
vacuum (in the absence of particle creation) can be modified
by changes in the configuration of the double cavity, i.e.,
different values of α/L or L0/L. Additionally, we have shown
how the presence of DCE particles produced from the cou-
pling by resonance condition (� = ω1 + ω2) can be used to
increase the entanglement between certain pairs of modes. For
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example, N1,2 increases from 0.06 to 0.44. We have also ana-
lyzed an alternative protocol, where we use the zeroth mode as
an indirect coupling tool between modes in different cavities.
In such a case, we have seen that entanglement can be gener-
ated between the modes that are localized in the two cavities
and its maximum can be higher than the one obtained for the
other protocol (N1,1 = 1.2 in this case, and N1,1 = 0.49 in the
other). However, as in the case with particle creation involving
the zeroth mode, the excitation times needed to improve the
entanglement between the different cavity modes are much
larger (two orders of magnitude) than in the resonant case.
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