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ABSTRACT Contactless material characterization has received widespread attention in the radar and
engineering domains. Specifically, impulsive Ultra Wideband (UWB) systems are a versatile technology
for the nondestructive characterization of samples because the scattered field produced by the targets is
highly dependent on their composition and shape. After the initial transient response to the transmitted
pulse, the scattered signal can be decomposed as a sum of complex exponentials, called complex natural
resonances (CNR), which are dependent only on the geometry and composition of the target. Using this
result, a classification problem was formulated to discriminate among targets, and a processing strategy was
proposed to solve it. In particular, by using spectral decomposition tools, the information obtained from
the physical model can be exploited in combination with data-driven learning techniques. Consequently,
a classification strategy that is robust to modeling uncertainties and experimental perturbations was designed.
To assess the performance of the new scheme, it was tested using both synthetic and experimental data
obtained from targets illuminated with a UWB radar. The results showed substantial gains compared to
classification using time-domain signals.

INDEX TERMS Complex natural resonances, pattern classification, radar signal processing, spectral
analysis.

I. INTRODUCTION AND MAIN CONTRIBUTIONS
The use of electromagnetic waves for noninvasive sensing
has long been considered. Applications include radar and
ground-penetrating radar (GPR) [1], [2], medical imaging
[3], [4], disaster relief [5], bulk-material sensing [6], and
through-the-wall imaging [7], [8]. An interesting applica-
tion is the classification of targets according to their shape,
position, or composition. In particular, contactless material
characterization allows for nondestructive analysis of the
composition of the device under test (DUT). This is a highly
challenging problem because of the characteristics of the
wireless medium; in general, specific solutions for each
application and environment must be considered. In par-
ticular, Radiofrequency (RF) and Ultra Wideband (UWB)
techniques, have gained relevance in this area [9], [10], [11],
[12]. Specifically, impulsive UWB systems, which transmit

The associate editor coordinating the review of this manuscript and
approving it for publication was Hasan S. Mir.

and receive pulses of very short duration, are a versatile
technology for the nondestructive characterization of samples
because the scattered field produced by a target is highly
dependent on its composition and shape [13]. Impulsive
UWB techniques have advantages in terms of low power
consumption, flexible data rates, fine ranging, and high
time resolution, compared to other UWB techniques such
as Frequency-Modulation (FM) UWB [14]; therefore they
have become prevalent in many applications. However, the
approach discussed in this paper, is not exclusively limited to
impulsive UWB systems.

In recent years, machine learning (ML) algorithms have
gained increasing attention as a means of solving complex
nonlinear tasks. It is expected that properly designed algo-
rithms will be able to extract the necessary information from
the input signals to attain a good performance in the task
at hand. For example, ML has recently been explored as a
natural candidate for solving wireless sensing problems [10],
[12], [15], [16], [17]. In this context, the appropriate choice
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of input features is critical and, in most cases, dictates the
overall success of the learning strategy. Most solutions in the
literature use standard feature extraction techniques that are
not specifically tailored to wireless sensing and do not incor-
porate the benefits of an analytical model. For example, the
authors in [11] investigated the performance of centimeter-
and millimeter-wave radar units for material identification,
with antennas in direct contact with the DUT. Eleven mate-
rials of different compositions were considered, all of which
were set in containers of the same size. The extraction of fea-
tures for bothmillimeter- and centimeter-wave radar antennas
was performed by applying the wavelet scattering transform
to raw time signals without considering a physical model.

Similarly, [12] proposed a Discrete Cosine Transform to
extract the relevant features from 2D GPR simulations. How-
ever, this approach has not yet been validated using 3D
experimental data. Other proposals, such as [15], classify
targets using an array of transmitters and receivers to create
a 2D image composed of raw electric field values that are
processed using ML techniques. It is worth mentioning that
this approach was also tested exclusively on synthetic data.
Finally, [10] is an example in which the authors classify
between different materials by considering certain physical
properties. They generated a 2D image of the reflectance
(amount of reflected power by a three-dimensional point)
values of different materials and used ML image-processing
techniques to classify the four different materials. The disad-
vantage of this technique is that it requires the sensor to be
in contact with the DUT, which may be difficult in some sce-
narios. Although some of these studies have shown promising
results, the proposed feature extraction and learning schemes
do not generally exploit the domain knowledge of the signals.
In addition, several approaches are solely data-driven and
there is no indication of how they can be generalized to other
types of scenarios.

In this paper, we address the problem of classifying targets
of different compositions by incorporating the knowledge of
a physical model in the feature extraction process. Specifi-
cally, we propose a model-based feature-building procedure
that combines information from the analytical model with
data-driven estimation techniques. For this purpose, we con-
sider the fact that when a target is illuminated by an electro-
magnetic pulse, the transient scattered response is dominated
by damped sinusoids that correspond to the complex natural
resonances (CNRs) of the target [18], [19], [20]. In particular,
CNRs depend only on the fundamental properties of the target
such as material composition, electrical properties, size, and
shape, making the set of CNRs a target signature. In this work,
we introduce a novel preprocessing scheme for automatic fea-
ture extraction based on the CNRs, which are characteristic
of each target.

Previous studies used CNRs to solve wireless classification
problems. For example, in [21] and [22] the authors consid-
ered the classification of perfectly conducting (PEC) targets
using CNRs. Although the authors obtained good results in

this case, the results were validated through simulations of
targets in free space without perturbations. Furthermore, the
CNRs for PEC targets are generally quite separated in the
complex plane. In [23], the authors proposed a method for
classifying conducting targets of simple shapes and different
sizes using CNRs and ML techniques. The approach was
validated through numerical simulations of PEC targets in
free space in the presence of noise, obtaining good results
in the high SNR regime. Reference [24] used CNRs to detect
the presence of breast cancer. However, the simulation results
were limited to comparing the plots of CNRs in a few spe-
cific scenarios. According to the authors, the work presented
in [17] was the first to jointly use deep neural networks and
CNRs to solve a target classification problem. The classifi-
cation problem was solved using the first and second CNRs
for different airplane scale models. More recently, in [25]
the authors tested different ML algorithms to classify PEC
targets with simple shapes by using CNRs for synthetic data.
In [26] the author extended the application of the workflow to
sphere targets of different compositions in addition to PEC.
Again, this work was tested solely on simulated data, using
both noiseless and noisy signals. Additionally, the permit-
tivity values used to generate different materials are quite
different from each other, with very few representing lossy
materials.

The problem of estimating the CNRs is illposed in general,
and is especially involved in the case of dielectric targets
because in this case, the CNRs are typically very close to each
other. Even when several high-resolution spectral estimation
techniques are widely available, the accurate identification of
damped resonances remains a challenge in practice. In addi-
tion, environmental perturbations and target variability make
this problem even more challenging in real-world scenarios.
For this reason, robust techniques are required.

The main contribution of this study is a general proce-
dure for classifying dielectric targets according to their shape
and composition in a non-invasive manner using scattered
electromagnetic signals. The procedure, which is based on
the CNRs of the targets, aims to be robust with respect to
noise, measurement perturbations, and uncertainties owing to
target construction variability.We tested our framework using
both numerical examples and experimental measurements of
dielectric targets. In the numerical examples, we analyzed
the performance of the approach in a controlled setup under
different perturbations. For the experimental setup, we con-
sidered the challenging problem of target classification based
exclusively on composition. For this purpose, we observe
objects of indistinguishable shapes composed of different
materials. This makes for a more difficult problem since vari-
ations arising from shape differences are easier to detect than
those produced by differences in composition [27]. In both
cases, we compared the results with those obtained by pro-
cessing time-domain signals. We demonstrate that the pro-
posed approach yields a superior classification performance
and robustness.
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The remainder of this paper is organized as follows. In
Section II, we introduce the signal model and address the
classification problem. In doing so, we formulate the pro-
cessing strategy that motivates this paper. In Section III we
discuss some results to illustrate the performance of the pro-
posed scheme. Finally, in Section IV, we elaborate on our
concluding remarks.

II. CLASSIFICATION PROBLEM
A. PROBLEM STATEMENT
When a target is illuminated with an electromagnetic pulse,
a scattered signal is generated. These scattered waves depend
on various parameters such as the polarization of the inci-
dent pulse, incidence angle of the transmitted wave, obser-
vation angle, target material, size, and shape. In particular,
if the wavelength of the incident pulse is of the order on
the dimensions of the target, the scattering response can be
modeled as the superposition of two signals: one due to direct
reflections from the target, called the early time response,
and another due to a resonance phenomenon, called the late
time response [18]. The appeal of working with resonance
phenomena lies in the fact that it is determined by the natural
frequencies, which depend solely on the material compo-
sition, shape, and size of the target. In other words, these
natural frequencies are independent of the aspect angle and
polarization of the incident wave, and are unique for each
object. A suitable model for static targets is the Singular-
ity Expansion Method (SEM) [18], according to which the
late time response, can be modeled as a sum of damped
exponentials:

x(t) =

N∑
i=1

αizti , t = 1, 2, . . . ,T , (1)

where the scalars zi ∈ C are the complex natural resonances
(CNRs), also known as natural frequencies, and αi ∈ C are
the complex residues. To account for the uncertainties in the
experimental setup, we create a family of signals by taking
into account variations in the residues., i.e.,

F(z1, · · · , zN ) =

{
x : N → C : x(t) =

N∑
i=1

αizti ,

αi ∈ B ⊂ C, i = 1, · · ·N
}
. (2)

The family F is associated with a particular target, with a
certain composition, shape, and form. The set B in which the
residues lie, may be associated with different look angles for
the target.

Suppose we have P families that satisfy (2), where
the p-th family is characterized by Np natural frequen-
cies z1,p, · · · , zNp,p. To simplify the notation, we denote
Fp(z1,p, · · · , zNp,p) as Fp. Although the number of classes is
known, it is assumed that the number of natural frequencies
Np for each class and their resonances zi,p are unknown.
We define a noisy observation as

y(t) = x(t) + w(t), t = 1, · · · ,T , (3)

where x(t) belongs to one of the Fp classes and w(t) is a
perturbation signal. We also define the vector

y = [y(1), . . . , y(T )] ∈ CT , (4)

which corresponds to a finite record of noisy observations.
A labeled set of observations {(y(l), ρ(l))}Ll=1 is available to
extract the relevant information that characterizes each class,
where ρ(l)

∈ {1, · · ·P}, and y(l) correspond to noisy obser-
vation vectors same as in (4). The problem at hand can be
summarized as follows:
Problem Statement: Given a finite set of labeled noisy

observations {(y(l), ρ(l))}Ll=1, where ρ(l)
∈ {1, · · ·P}, design

an algorithm to classify a new observation y into one of the P
classes.

B. OVERVIEW OF THE PROPOSED SOLUTION
The proposed approach exploits the information provided
by each zi in (1) to classify signals. We consider the natu-
ral frequencies to be the distinctive elements of each class.
As these elements are known only through training samples,
a spectral estimation procedure must be employed. Many
spectral estimation algorithms are tailored to line spectra and
are robust against perturbations [28]. However, when Np is
unknown, different noisy vectors yp from the same class p
may lead to different sets of natural frequencies, possibly
of variable sizes. A key element is to find an appropriate
representation that simultaneously summarizes the spectral
information of the observations and enables the comparison
of different vectors among them. With the above problem
in mind, we first outline the proposed solution, which we
formalize in the next section. The main steps are as follows:

1) The number and values of the appropriate natural
frequencies are estimated for each sample y(l) in the
training set. This step involves a spectral estimation
procedure that returns a set of natural frequencies.
In the end, L complex sets of possibly different sizes
are obtained.

2) A mapping between each of the complex sets deter-
mined in the previous step and an M dimensional
complex vector is defined. To obtain this vector, the
complex plane is partitioned into M regions, each of
which is associated with one component of the vector.
For this purpose, the method considers the union of
all sets of natural frequencies, and groups them into
M sets using an appropriate clustering algorithm. This
problem is not trivial, because it entails selecting a
proper value for M and determining which natural
frequency belongs to each region for each observa-
tion. It should be noted that the clustering procedure
described does not perform signal classification. It only
identifies regions of interest that contain a few natural
frequencies from at least one sample in the training set.
After determining M , the sets of natural frequencies
obtained for each training signal are mapped onto their
corresponding vectors in CM . Subsequently, the set of
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training data is composed of L labeled M -dimensional
complex vectors. A dimensionality reduction scheme is
also implemented during the training session to retain
only the most informative regions.

3) As the last step, a classifier is trained using the labeled
M -dimensional vectors obtained in the previous step.

C. PREPROCESSING
The essence of our proposal is to pre-process the training data
to obtain a suitable structure for the classification procedure.
As a first step, each signal in the training set is processed indi-
vidually to obtain its spectral information. For that, we resort
to techniques based on subspace methods, as in [29]. In this
section, we outline the procedure for a single signal in the
training set. To simplify the notation, we drop the subindex
indicating the class of the observation.

Let y be a noisy observation of x(t) =
∑N

i=1 αizti . The
problem is to estimate N and the natural frequencies zi, i =

1, · · · ,N . To cope with noise and uncertainties in N , we use
optimization techniques that rely on Kronecker’s theorem for
Hankel operators. Let H(x) ∈ CK×N represent the Hankel
matrix constructed from the sampled signal x(1), · · · , x(T ),
where T = K + N . When N is known, Kronecker’s theorem
states that rank(H(x)) = N . However, x(t) is acquired only
through noisy observations, y(t). Then, a suitable denoising
procedure is to solve the following optimization problem

min
A,ỹ

IN (A) +

K+N∑
j=1

|y(j) − ỹ(j)|

s.t. A = H(ỹ), (5)

where IN (A) is a threshold function associated with the
set {A : rank(A) ≤ N } [30]. Now using ỹ(t) we resort
to a high-resolution spectral estimation technique, such as
ESPRIT, to obtain the natural frequencies zi, i = 1, · · · ,N .
Because N is unknown, model order selection techniques

should be performed first, resulting in an estimation N̂ . A sen-
sible technique known as ESTER (ESTimation ERror) [31]
computes an upper bound on the estimation error obtained
with ESPRIT and selects the model order that minimizes
such bound. A related approach, known as ubspace-based
AutomaticModel Order Selection (SAMOS), was introduced
in [32]. However, it has been observed that both techniques
exhibit a poor performance in noisy environments. On the
other hand, using a hard threshold as in [33] to truncate the
Hankel matrix H(y) tends to overestimate the model order
when the SNR is high. In this work, we used a combined
scheme, as presented in [34], in which a constrained opti-
mization problem is posed with the function used in ESTER
(or SAMOS).

The spectral estimation procedure transforms a noisy
observation y into a set of estimated natural frequencies ẑ =

{ẑ}N̂i=1, where N̂ is the estimated model order. The goal is
to use the extracted sets of natural frequencies to compare
different signals. However, natural frequencies are complex
numbers that are not easily sorted, complicating the task of

pairing the natural frequencies to perform the comparison.
An alternative is to map each complex natural frequency to
a high-dimensional vector space and perform comparisons in
this new space.

Let the union of all the sets of natural frequencies obtained
for all the training vectors y(1), . . . , y(L), be

Z =

L⋃
l=1

ẑ(l) = {ẑ(1)1 , . . . , ẑ(1)
N̂ (1) , . . . , ẑ

(L)
1 , . . . , ẑ(L)

N̂ (L)} ⊂ C.

In general, the natural frequencies ẑ(j)i for each target are
concentrated in some regions in the complex plane. The goal
is to identify these regions and use them to define a finite
partition of the complex plane. For this purpose, we propose
the application of a clustering procedure to Z . In particular,
we propose an agglomerative clustering scheme with com-
plete linkage and Euclidean distance [35]. Complete linkage
was chosen because it usually produces tighter clusters than
other linkage methods, such as single-linkage. One benefit of
Agglomerative Clustering is that it does not require previous
knowledge of the number of clusters and does not make
assumptions about the statistical properties of the data.

In the following, the procedure for creating clusters is
described. Let ci and cj be two clusters. Due to the chosen
metrics, the distance between two clusters is given by

d(ci, cj) = max
ẑl∈ci, ẑm∈cj

|ẑl − ẑm|. (6)

The clustering procedure is iterative. For the first iteration,
k = 0, each cluster is composed of one natural frequency.
This results in a total of Q =

∑L
i=1 N̂

(i) clusters in the initial
cluster set C0. At each subsequent step, the clusters with the
minimum distance are merged together into a single cluster,
and the cluster set is updated. Let Ck−1 be the cluster set at
the iteration k − 1. Then, Ck is obtained as follows:

Ck = (Ck−1\ck1\ c
k
2) ∪ cnew, (7)

where ck1, c
k
2 = argmin

ci,cj
d(ci, cj), cnew = ck1 ∪ ck2, and \ is

the set subtraction operator. This process is repeated until
d(cki , c

k
j ) > dth, for all i, j, where dth is a previously selected

threshold. By the end of the clustering process, there are
M ≤ Q clusters. Each cluster is characterized by having
CNRs which are at most at a distance of dth from each
other. These clusters define a partition of the complex plane.
An important observation is that clustering is performed with
the sole purpose of partitioning the complex plane to obtain
some ordering of the CNRs.

As the last step in the presented preprocessing, we map
the set of estimated natural frequencies of each individual
sample, ẑ(l), l = 1, · · · L, to a vector ṽ(l) ∈ CM . To do so,
we compute the k-th element of ṽ(l) by averaging the elements
of ẑ(l) found in the k-th region of theM -partition ofC. If there
is no resonance in the k-th region for ẑ(l), then ṽ(l)(k) = 0.
When we perform this operation on the training data, we map
sets of varying cardinality, ẑ(1), · · · , ẑ(L), into vectors that
share the same space CM . The resulting vector ṽ(l) ∈ CM
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FIGURE 1. Data preprocessing and classification strategy, along with the
hyperparameters to tune on each block.

defines the feature vector used as input in the classification
step.

D. CLASSIFIER
As the result of the preprocessing of the training data, a set
of features {ṽ(l)}Ll=1 is obtained. Before training the classi-
fier, a dimensionality reduction step is included. To select
the most explicative features for the classification problem,
we propose the use of a univariate test, namely the Kruskal-
Wallis test. This non-parametric rank test examines whether
all P classes have a common median [36]. If for a given
feature the median is considered to be statistically the same
for all classes, then it does not represent a useful feature for
differentiating among said classes. The test assigns a number
Hk to the k-th feature or dimension of vector ṽ, indicating
how informative this feature is. If the value of Hk is large,
then the k-th feature contains discriminative information.
We retain the c% more informative features, where c is a
model hyperparameter. Finally, we obtain v(l) ∈ Cd , the
reduced version of ṽ(l) ∈ CM . Here, d is the reduced number
of features. The procedures described thus far result in the
training set {(v(l), ρ(l)))}Ll=1.

Using the training set {(v(l), ρ(l)))}Ll=1, we train a P-ary
classifier. The selected model is a Support Vector Machine
(SVM) with a nonlinear kernel. The advantages of these
classifiers are twofold: on the one hand, when using nonlinear
kernels, they allow for nonlinear classification, and on the
other hand, they perform well for small training sets, even
when the number of samples is lower than the number of
features. In addition, SVMs are robust to outliers and exhibit
a good generalization performance [37]. SVMs are designed
to operate on real inputs. Therefore, the inputs to the classifier
are obtained by concatenating the real and imaginary parts of
each v(l) in the training set.

Fig. 1 shows a block diagram of the classification strategy
described previously. Each block shows the involved hyper-
parameters that must be selected for an optimal performance
during the training process.

III. RESULTS
In this section, we describe the performance of the proposed
classification strategy. We begin by analyzing synthetic data

designed to represent extreme scenarios that might arise in
real-life applications. Afterward, we analyzes the results of
the classification strategy applied to experimental measure-
ments. In both cases, we compare the results obtained with
the proposed method against the more traditional approach
of using the time-domain signals y as input to the classifiers.
For this approach, we train the SVM using the training set
{(y(l), ρ(l))}Ll=1. Becausewe are dealingwith complex signals,
the input to this SVM is [ℜ{y(l)}, ℑ{y(l)}], where ℜ{y(l)} and
ℑ{y(l)} are the real and imaginary parts of y(l), respectively.
In this case, the SVM input is 2T -long. In the following,
we shall refer to the proposed classification strategy based
on natural frequencies as NF and the one processing the
time-domain signals directly as TD.

To characterize the performance of each classification
strategy, we considered two metrics computed over a set
of S test samples, {(y(s), ρ(s)), ρ(s)

= 1, . . . ,P}
S
s=1. When

considering the s-th test sample, we say that ρ(s) is its true
label, the actual class of the sample, and ρ̂(s) is the predicted
one. One error metric is the error rate, which is the ratio
of incorrectly classified instances to the total number of test
samples

ε =

∑S
s=1 1{ρ̂(s) ̸= ρ(s)

}

S
.

A second metric is the confusion matrix, whose (i, j)-element
represents the percentage of instances belonging to the i-the
class that were classified as belonging to class j

Eij =

∑S
s=1 1{ρ̂(s) = j, ρ(s)

= i}∑S
s=1 1{ρ(s) = i}

100%.

A. SYNTHETIC DATA
In this subsection, we discuss the performance of the pro-
posed classification approach when applied to synthetic data.
The goal is to validate the performance of the proposed clas-
sification scheme under challenging scenarios, in a controlled
manner. The noiseless signals follow the model described in
(1), and represent scattered signals from two different tar-
gets with similar shapes and compositions. Simulated signals
correspond only to the late time response of the scattered
signal since they are generated according to (1). In addition,
it is worth mentioning that no clutter was considered at this
stage. To assess the performance of the proposed technique,
different perturbations are added to the baseline model.

For each class of signals as in (2), we generated sev-
eral elements that were split to create the training and test-
ing sets. In particular, we defined two families Fp, p =

1, 2whose nominal CNRs are z1 = {0.1275−0.9075j, 0.44−
0.16j, 0.97 + 0.02j, 0.57 + 0.79j, −0.19 + 0.94j}, and z2 =

{0.13−0.92j, 0.44−0.88j, 0.95−0.17j, 0.93+0.02j, 0.53+

0.78j, −0.19 + 0.91j} as shown in Fig 2. We set T = 180.
These resonance values were selected to represent the chal-
lenging situation in which both classes are similar in both
shape and composition. This is evidenced by the closeness
between the CNRs of both classes. Additionally, in some
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FIGURE 2. Complex natural resonances defining F1 and F2 used to
generate synthetic data.

simulations, we assume that the resonances are perturbed to
represent situations in which there may be variability among
different copies of identical targets.

The residues αi,p for an element of Fp, p = 1, 2, were
obtained by independently sampling a complex Gaussian
distribution with mean 0.5 and standard deviation σα . Each
observation y is obtained by adding white noise sampled
from a zero-mean circularly symmetric complex normal dis-
tribution with a variance σ 2

w. By varying σ 2
w, we changed

the measured signal-to-noise ratio (SNR). We generated
three different scenarios, each representing different levels of
uncertainty in the model:

1) Scenario 1, variable SNR: We consider the nominal
complex natural resonances and fix the uncertainty
degree of the residues by considering a fixed value of
σ 2

α . In particular, we considered σ 2
α = 1. We varied

σ 2
w to achieve different SNR values.

2) Scenario 2, variable uncertainty in the residues:
Again, we consider the nominal CNRs, but now we
select σ 2

w to achieve an SNR=10dB. We varied the
sets Bp by sampling from distributions with increasing
variance σ 2

α .
3) Scenario 3, uncertainties in the CNRs: In this sce-

nario, we analyze the uncertainties on the natural fre-
quencies. For this, we fixed σ 2

w and σ 2
α , and added

perturbations to the natural resonances, which were
generated from a complex circularly symmetric normal
distribution with zero-mean and variance σ 2

z . We used
σα = 1, and σ 2

w was selected such that the SNR was
10 dB.

For each scenario and each value of (σα, SNR, σz), we cre-
ated three sets of signals for each family for training, while
considering 1000 different sets for testing. This shows the
robustness of the proposed method for low sample training.
Fig. 3 shows |y(k)|when SNR=10 dB, σ 2

α = 1 and the natural
frequencies in z1 and z2 are unperturbed. Note that variations
among the same family are comparable to variations between
families.

First, we analyzed the preprocessing procedure when nom-
inal CNRs were used for each class. Fig. 4 depicts the

FIGURE 3. Training samples for each class of the synthetic example from
Section III-A, when using SNR=10 dB, σα = 1, and nominal CNRs.

TABLE 1. Performance of NF and TD classification when using nominal
CNRs, SNR = 10 dB, and σα = 1.

FIGURE 4. Partition of the complex plane when using nominal CNRs,
SNR=10 dB, and σ2

α = 1. The Striped regions are those retained after
feature selection. The Grey dots are the estimated CNRs, while the black
crosses and triangles are the elements of sets z1 and z2 respectively.

estimated and true resonances in the training set along with
the partition in M regions obtained for the complex plane.
In this case, the threshold for the clustering algorithm was
dth = 0.03, which was the optimal value obtained via
cross-validation. Using this threshold, we obtained a parti-
tion of M = 9 regions. After performing feature selection,
we retained the regions associated with the most representa-
tive features, which are shown as striped regions in Fig. 4.
We were able to reduce the number of training features by
almost half. This demonstrates a significant reduction in the
number of inputs to the classifier: whereas the NF strategy
requires only five regions (10 features) to train the SVM,
the corresponding time signal consists of T = 180 points
(360 features).

Table 1 lists the errors and confusion matrices of
both strategies for the same scenario. As anticipated, the
time-domain approach shows poor performance because
it cannot differentiate between variations within the same

44272 VOLUME 11, 2023



M. Bouza et al.: Robust Target Classification Using UWB Sensing*

FIGURE 5. Classification error for Scenario 1.

family from those arising among classes. Figure 5 shows
the error obtained for Scenario 1 for different SNR values
[dB] for both NF and TD strategies. We observed that for
all tested SNR levels, the classification performance based on
natural frequencies was significantly better than that based on
time-domain signals. Additionally, we observed a significant
improvement as the SNR increased for the NF classifier,
which did not occur under the TD approach. The TD strategy
relies strongly on the values of the residues associated with
each natural frequency in model (2). Variations in residues,
which are associated to experimental conditions such as inci-
dence angle and polarization of the incident pulse, lead to
sensible disparities in the time-domain signals within the
same family, as shown in Fig. 3. Consequently, the classifier
presents poor performance when separating families. This is
why an increase in the SNR did not significantly decrease
the error. However, by extracting the natural frequencies, the
NF strategy became independent of the residues. Moreover,
an increase in the SNR resulted in a more accurate estimation
of the resonances, thereby improving the classifier error.

Fig. 6 presents the results achieved for Scenario 2. Here, the
sets show variations in Bp, obtained by sequentially increas-
ing the variance of the distribution from which the residues
were sampled. For a sufficiently low variance, both classifiers
attain zero error. When the sets Bp are small, the residues
associatedwith one natural frequency are quite similar among
different realizations of the signals y, making all time-domain
signals from the same class very close to each other. By elim-
inating the variations associated with the residues, even the
TD approach achieved no classification error on the test set
when SNR=10 dB. As σ 2

α increases, signals from the same
family begin to differentiate more from one another, thereby
affecting the classification performance. However, one can
see that these variations had a much greater impact on the
TD strategy than on the NF strategy. While the TD strategy’s
performance deteriorates significantly, the classification error
in the NF strategy remains below 0.1, even for large values
of σα .

Finally, Fig. 7 compares the performance of both classifiers
under Scenario 3. As σ 2

z increased, so did the variability of
the CNRs among the measurements of the same class. In this
case, the performance of both classifiers decreased as the
perturbations increased. This is expected because nominal
CNRs from both families were purposely chosen to be close
to each other, and as σ 2

z increases, there is a greater chance of

FIGURE 6. Classification error for Scenario 2.

FIGURE 7. Classification error for Scenario 3.

confusion between families. However, for values of σz below
0.1, the proposed method presents a significant improvement
with respect to the TD classifier. The rapid increase in the
error was a result of the overlapping resonance regions. The
minimum and maximum distances between frequencies were
0.016 and 0.06, respectively. This explains why we observed
a decline in performance when the uncertainty σz exceeded
0.01. At this uncertainty level, some of the natural frequencies
of the two classes overlap for certain realizations. Moreover,
when σz was larger than 0.1, overlapping occurred with a
high probability for all natural resonances. Consequently, the
scheme loses its prediction ability, and the observed error
converges to the error when randomly choosing a class for
each signal.

B. EXPERIMENTAL MEASUREMENTS
In this subsection, we test the performance of the proposed
approach when dealing with experimental data. For this,
we considered the scattering from a target illuminated with
microwave signals in an experiment similar to that in [38].
The aim of the experiment was to classify targets that had
the same shape and size, but different material composi-
tions. Each target was illuminated by a UWB electromagnetic
pulse, and the resulting scattering signal was collected by the
receiving antenna.

For the proposed experiment, we considered a classifica-
tion problem among plastic bottles containing three different
liquids: alcohol (98%), tap water, and brine, with the latter
being obtained by diluting 35 g of salt in 500 ml of water. The
liquids were poured into identical containers, each of 500 ml
of volume, in order to create targets with the same shape,
weight, and color because all the liquids were transparent.
Therefore, the only difference was the composition of the
liquids making traditional approaches based on a target image
or weight ineffective. All measurements were carried out
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in a stationary environment, where all clutter behavior is
predictable and repeatable, similar to a lab environment or
a dedicated device for target classification. For this reason,
we chose to omit clutter reduction techniques at this stage.
Several studies have been conducted in thismanner [17], [39].

We used the X4M06 Radar Development Kit, which is
based on the XeThru X4 UWB system-on-chip developed by
Novelda [40]. This platform emits pulses with a bandwidth of
1.5 GHz at a central frequency fc = 8.748 GHz, and receives
the scattered response. The power transmission of this device
is within the limits set by the FCC. The captured pass-band
response is sampled by the system at an equivalent-time
sampling frequency of fs = 23.328 GS/s and downconverted
in the PC to obtain the complex baseband equivalent signal.
To improve the signal-to-noise ratio, the platform transmits
numerous pulses and averages the scattered response over
multiple transmissions to mitigate random interference and
noise. The decision to use the X4M06 radar was based
mostly on availability and cost. While this system is based on
impulse radio UWB technologies, the presented work could
be used for measurements taken with other UWB sensors,
although more preprocessing of the raw signals might be
required.

We performed several measurements of the scattered
response on each target to diversify the training set. An image
of the experimental setup can be found in 8. The targets
were located at nine positions, and scattered signals from
each target were collected for each position. For this purpose,
we located the targets along a line parallel to the antennas,
at a distance of 40cm. Along this line, we chose nine different
points, each separated by 5 cm. In addition, we oriented each
target vertically and horizontally (Fig. 9). For each position
and orientation, we took 10 measurements of the scattered
response. The signal returned by the XeThru, which has a
fixed length of T = 1497 samples, is denoted by s(t). This
scattered signal can be decomposed as:

s(t) = x(t) + w(t) + d(t), t = 1, . . . ,T , (8)

where x(t) is the true scattered response, w(t) is the noise
and radio frequency interference from the environment, and
d(t) is due to antenna cross-coupling and clutter in general.
Assuming that the noise and interference in w(t) are sta-
tionary for the duration of transmissions, they are mitigated
by the internal averaging process performed by transceiver
module. However, the disturbance d(t) is persistent and is not
mitigated by averaging. Moreover, this disturbance does not
have a linear interaction with the scattered response of the
target. However, one could take an additional measurement
with no target present and extract its natural frequencies,
which would be associated with reflections from objects in
the background. These resonances are also present in the
scattering measured from each target, and most of them are
discarded in the feature selection stage, as shown in Fig. 11.
Fig. 10 shows the signals received by the XeThru for

each target located at 40 cm of the antennas and vertically
aligned. This figure depicts the antenna coupling signal,

FIGURE 8. Photo of experimental scene.

FIGURE 9. Experimental setup with positioning and orientation of the
target. The XeThru x4 emits pulses of 1.5 GHz at a central frequency of
8.748 GHz, with a transmitted power in compliance with FCC regulations.

FIGURE 10. Time-domain responses for the different materials. These
measurements correspond to the targets located in front of the antennas
at a distance of 40 cm, horizontally aligned. The late time (Eq. (1) is
considered to begin 7 samples after the first peak of the absolute value
of the signal, based on the approximate time needed for the signal to
travel to pass through the target and return to the antenna.

which appears to be the same across all measurements, and
the beginning of the late time response. Note that for this spe-
cific scenario, the time-domain responses of the targets filled
with water and brine show little difference, whereas alcohol
appears to be easily distinguishable from the other two tar-
gets. However, this observation is not valid for all measure-
ment setups because the signal amplitudes and shapes occur-
ring from different positions and orientations vary widely
for the same target, making the classification even more
challenging.

To apply model (1), we discarded the early time response
and retained only the late-time response. By analyzing the
different captured signals, we determined that the late time
began seven samples after the first peak of the absolute value
of the baseband signal. This value is obtained considering
the time required for the incident pulse to pass through the
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FIGURE 11. Estimated natural frequencies from the training set. Points
with a black edge represent the natural frequencies discarded in the
feature selection stage. Light grey crosses correspond to the resonances
obtained when no target is present.

target and return to the receiving antenna [41]. This method
is appropriate at this stage because we assume that the tar-
get position and size are known, which is consistent with
the application. However, if any of these quantities were
unknown,more automatic late-time identification techniques,
such as the one presented in [42], would be required.

Because nine positions for the target were considered, with
two possible orientations, and 10 different samples, or mea-
surements, were recorded for each target at each location,
we had a total of 540 labeled noisy observations. These
signals were split randomly into training and testing sets, 70%
for training and 30% for testing.

We trained two classifiers: one using the NF approach
and the other using the TD approach. For fairness, we used
the same training/test splits for both approaches. For the TD
strategy, we used baseband time-domain signals up to 5 ns,
concatenating the real and imaginary parts as described for
the synthetic data. The second classifier trained under the
NF strategy used the following hyperparameters dth = 0.03,
C = 0.95, and a polynomial kernel of degree 2 for the SVM.
These values correspond to the best solutions obtained via
cross validation.

Figure 11 shows the natural frequencies extracted from
the training data set. Points with black edges correspond to
features discarded in the feature selection stage of the training
algorithm. Grey crosses correspond to the natural frequencies
discovered when no target was present, associated with the
disturbance signal d(t) in (8). Note that most of these are
associated with discarded features.

The reported performance of the NF and TD classifiers was
calculated over the test set. Table 2 summarizes the results for
both classifiers. In both cases, alcohol is better classified than
the other two substances. However, the overall performance
of the ND classifier is two orders of magnitude better than

TABLE 2. Classification performance of NF and TD.

that of the TD classifier.Moreover, the TD classifier confused
brine with alcohol in 40% of the test samples, whereas the ND
classifier has a perfect score for the same test samples.

In addition, the training features of the NF method were
stored in a sparse matrix because each target had natural
frequencies located in a few clusters. By exploiting sparsity,
we benefit from more efficient data storage, which is an
additional advantage of the proposed classification strategy.
We also observed a reduction in the number of features.
After feature selection, only 103 clusters (206 features) were
retained, whereas the time-domain approach used 117 sample
points (234 features).

IV. CONCLUDING REMARKS
In this work, we presented a solution for contactless mate-
rial classification that exploits the physical properties of
scattered electromagnetic signals. We did this by incorpo-
rating model-based analysis into data-based learning tech-
niques. By exploiting the physical model of scattered signals,
we extracted the complex natural frequencies and used them
as descriptors for each class. We then transformed the natural
frequencies into characteristics suitable for the classification
problem using statistical data analysis. This signal-processing
step resulted in a reduction in the dimensionality of the
problem, as an added benefit. Finally, machine learning
techniques performed the classification. Although this work
does not include advanced clutter reduction techniques, it is
something that could be added in the future to improve the
performance of the proposed method.

The proposed strategy was tested both with synthetic (sim-
ulated) data, as well as experimental data. For the synthetic
data, we considered a challenging scenario in which all
classes had similar CNRs. The effects of different pertur-
bations on this model were analyzed, such as perturbations
to the exact resonance values, perturbations to the residuals
associated with each CNR in the SEM model, and additive
noise in the time-domain. For all three scenarios, we showed
a clear improvement using the proposed method in contrast
to the typically employed approach of using time-domain
signals as features to perform classification.

To validate the performance on experimental data, we con-
sidered targets that were indistinguishable by sight alone.
This means that all three classes had the same shape and
color, which makes the problem quite challenging because
differences in the CNRs arise solely from the composition of
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the material. As with the simulated signals, we observed a
significant improvement in classification performance when
we compared our approach with time-domain classification.

We also showed that the overall procedure was robust to
multiple uncertainties that arise in the model. For instance,
the procedure proposed in this paper tolerates uncertainties
in the model order and variations in the residues associated
with each natural resonance. Thus, our classification strategy
is a suitable candidate for challenging classification problems
where imperfect model information or measurement distur-
bances may hinder the performance of traditional classifica-
tion methods.
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