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370 05 Ceske Budejovice, Czech Republic; bohata@zf.jcu.cz (A.B.); bartos@zf.jcu.cz (P.B.)

5 Department of Agrobiotechnology, Koszalin University of Technology, 75-620 Koszalin, Poland
* Correspondence: slawomir.kocira@up.lublin.pl (S.K.); agnieszka.szparaga@tu.koszlin.pl (A.S.)

Abstract: Agriculture has become a sector with a huge impact on the natural environment. The
interest of agriculture in the category of innovative bio-stimulants is due to the intensive search for
preparations based on natural substances. This is not possible without developing and implementing
innovative technologies, e.g., cold plasma, along with innovative technologies supporting farmers.
Therefore, given the need to prevent environmental damage caused by intensive agriculture, plant
production and protection must be targeted at merging the stimulation of crop growth and the
elimination of threats to humans and the environment. The analysis of how cold plasma can influence
the production of organic bio-stimulants seems to be an unavoidable step in future approaches to
this topic. Since allelopathic plants represent a source of many chemical compounds promoting
crop growth and development, the coupling of biologically-active compound extraction with plasma
activation of allelopathic extracts has interesting potential in offering the most modern alternative
to conventional agriculture. However, its implementation in practice will only be feasible after a
comprehensive and thoughtful investigation of the mechanisms behind crops’ response to such
bio-stimulants.
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1. Introduction

Over recent years, we have become aware that agriculture has become one of the
economic sectors having a huge impact on the natural environment. The significant in-
crease in demand for food and feed, recorded across the globe, seems to put additional
pressure on this branch of the economy. Therefore, research into potential novel prod-
ucts stimulating the growth, development, and yield of crops, along with explaining the
mechanisms involved, has prompted efforts undertaken to ensure global food security as
well as sustainable and optimized agricultural development. However, it bears noting
that meeting the growing global demand for agricultural products should minimize the
adverse impacts of food production and consumption on the natural environment [1]. This
is not possible without developing and implementing innovative technologies supporting
farmers. Therefore, given the need to prevent environmental damage caused by intensive
agriculture, plant production and protection must be targeted at merging the stimulation
of crop growth and the elimination of threats to humans and the environment [2].

However, considering changing climatic conditions and the growing awareness of con-
sumers of plant protection and fertilization and their concerns about genetically modified
organisms (GMO), ensuring safe, high-quality agricultural products requires an uncon-
ventional approach [3,4]. Many research results indicate that the agrotechnical measures
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applied so far are insufficient, especially under unfavorable conditions. Their poor efficacy
causes a drastic reduction in yield and, consequently, lower profitability for agricultural
producers. In recent years, bio-stimulants have gained recognition as products supporting
physiological processes in plants and promoting their growth and development under
optimal and suboptimal conditions [5]. However, despite encouraging research results, it
appears that farmers have a limited range of such products available on the market, and
that their purchase and use is costly. An additional problem is that popular bio-stimulating
products are usually targeted for horticulture and fruit harvesting. There is also concern
that commercial products are very rarely recommended for use in the cultivation of high-
protein or legume crops (with a lack of information about this group of plants, treatment
dates, or recommended doses in various application methods) [6]. Therefore, scientists
are working on new-generation bio-stimulants, which would provide a designed and
dedicated agronomic tool to meet the demand for alternative methods, based on novel,
bioactive, and environmentally friendly substances supporting biodiversity in agricultural
ecosystems [4]. According to the latest EU regulation, plant extracts have been recognized
as a valuable group of such bio-stimulants. Therefore, they can be a suitable substitute
for synthetic plant growth regulators. According to the new EU regulation [7], products
based on allelochemicals can be classified as natural bio-stimulants, i.e., a group of products
(other than fertilizers) that stimulate plant growth when used in small amounts. These
ecosystem-friendly, natural formulations promote growth, mineral uptake, and plant toler-
ance to abiotic stresses [8]. Thus, the main goal of allelopathy research is to initially observe
allelopathic effects and then apply them in agricultural production. Only such an approach
will make it possible to reduce or eliminate the share of agricultural chemicals and allow for
the practical application of methods ensuring the sustainable development of agricultural
production and ecological systems [9,10].

However, modern agriculture, dependent on pesticides and fertilizers, is looking for
new methods of increasing crop growth with the least possible environmental impact.
In addition to bio-stimulants, one promising option is the use of cold plasma. Plasma
discharges are widely used in many industries and sciences including surface steriliza-
tion [11,12], decontamination [13], bacterial inactivation [14], and removal of contaminants
from water [15,16] in biomedicine and many interdisciplinary fields [17]. Over recent
years, there has also been an increasing interest in cold plasma in agriculture, such as seed
treatment for removal of surface contamination, or germination stimulation [16,18,19]. This
technology is considered a tool to support agriculture towards a change in farming towards
organic systems. Plasma activation of bio-stimulants may also be an answer to the problems
of modern agriculture, related to changes in European strategies. The European “Farm to
Fork Strategy” calls for a 50% reduction in the use of chemical pesticides, a reduction in
nutrient losses of at least 50%, and a reduction in fertilizer use of at least 20% by 2030. In
addition, a plan to bring 25% of agricultural land under organic cultivation is fundamental.
On this path to agricultural change, it seems that genetic improvements and improved
varieties will be insufficient, and the key to achieving these goals, will be plasma-activated
biostimulants [20]. Application of such bio-stimulants seems to be a convenient solution,
combining the effects of promoting plant growth and development with environmental
protection. However, no experiments with the application of activated bio-stimulants to
crop plants have been conducted, and the potential of cold plasma itself, although great,
seems to be poorly explored in agricultural applications [21].

Therefore, the analysis of its influence on the production of organic bio-stimulants
seems to be a future approach. Due to the fact that allelopathic plants represent a source
of many chemical compounds promoting crop growth and development, the coupling of
biologically active compounds extraction with plasma activation of the obtained extracts
may offer the most modern alternative to conventional agriculture. However, its imple-
mentation in practice will only be feasible after thorough investigation of the mechanisms
behind crops’ response to such bio-stimulants.
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If the combined efforts of scientists in the fields of plasma physics and chemistry and
agronomy and plant physiology are successful, the use of plasma-activated bio-stimulants
could have a measurable impact on addressing the environmental, economic, and social
challenges of feeding a growing population in a sustainable and responsible manner under
a changing climate [22].

The aim of this article is to present the state of the art in the possibilities of producing
natural bio-stimulants based on extracts of allelopathic plants in the context of their further
activation with cold plasma (Figure 1). Cold plasma technology can be a tool in the
designing and production of a new generation of bio-stimulants, effectively supporting the
growth and development of plants and their yielding potential. To our best knowledge,
this is the first article on the possibilities of using cold plasma for bio-stimulant activation.
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2. Plants as a Material for the Production of Bio-Stimulants

The search for sources of novel preparations, based on the rich experience of folk
medicine and the principles of allelopathy, seems to be the right direction. By learning
about the interactions of certain plants with others and their antimicrobial activity, one can
search for raw materials that would become ideal candidates for the development of a new
bio-stimulant. This is due to the fact that the chemical compounds present in such plant
bio-stimulants naturally occur in all higher plants, though in various concentrations and
combinations [23]. Groups of medicinal or allelopathic plants are core elements of not only
traditional medicine or pharmacology, but—in many cases—also of organic agriculture.
Thus, recognizing their value and importance as a potential source of novel compounds
of agronomic value [24], the first strategies have been developed to support plant growth
under stress conditions. So far, respective investigations have been conducted with plant
extracts from Moringa oleifera leaves, corn kernels, and licorice roots [25–28], plant-derived
protein hydrolysate, lemongrass and garlic extract [29,30]. The results of studies by Cheema
et al. [31] and Farooq et al. [32] showed that water extracts obtained from sorghum, cabbage,
sunflower, rice, wheat, barley, and moringa, containing specific allelochemicals, improved
the growth of various crops. These authors mutually agreed that the role of plant extracts
and their bioactive compounds might be due to their direct and indirect influence on physi-
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ological processes in crops. However, it should be emphasized that allelopathic interactions
are currently included in the group of biotic stresses. According to Lichtenthaler [33],
stress signaling in plants, and their response to stress factors, vary and are associated
with various forms of signal reception and transduction in the plant and its organs, which
will consequently lead to direct metabolic response and the enhanced expression of genes
responsible for the activation of enzymes as well as the synthesis of proteins, metabolites,
or hormones [34]. This proves that they can be used to stimulate growth and, therefore,
can replace synthetic growth regulators [32]. The use of plant extracts, which have a
bio-stimulating effect on plants, can be one of the measures to increase the productivity
of crops. Botanical extracts from allelopathic plants, like other natural bio-stimulants,
show positive effects on crops due to the fact that they are extremely rich in bioactive
compounds. Their active compounds act at different metabolic levels, which promotes
better absorption, transport, and utilization of nutrients [35]. It should be emphasized
that the extracts obtained can offer an alternative not only to commercial bio-stimulants,
but also to the extracts obtained from tropical plants [36]. The bio-stimulating effect of
allelopathic extracts is directly related to the total content of phenols and flavonoids [37].
These secondary metabolites are the main allelochemicals found in plants with documented
allelopathic and bio-stimulating activity. The phenolic compounds at low concentrations
are referred to as plant germination and growth stimulants, because they are able to act
as antioxidants and protect plants against reactive oxygen species, or as plant growth,
soil processes, and nutrient metabolism regulators [35,38]. Additionally, the stimulatory
properties of allelopathic extracts are also associated with the presence of amino acids,
plant hormones, and micro- and macro-nutrients [39–41].

However, despite these encouraging results, the mechanisms behind a possible pos-
itive effect of organic bio-stimulants remain unknown. The identification of plant re-
sponses at different levels and the linking of these to appropriate metabolic pathways
will facilitate the design and development of second-generation bio-stimulating products
(bio-stimulant 2.0) in the future, making agriculture more sustainable and resilient [42].
Although allelopathy is known as an ecological phenomenon, there is still little evidence of
its possible use in agriculture. Previous studies on the use of water extracts of Artemisia
absinthium L., Levisticum officinale Koch., Verbascum thapsiform L., and Arctium lappa L. in
three-year soybean cultivation showed that they influenced plant physiology by improving
biometric characteristics. Additionally, their application significantly increased the soybean
yield as compared to the control samples. The most important conclusion from these studies
was that the extracts elicited their bio-stimulating effect by modifying the basic biochemical
indicators of soybeans. Thus, the first results of the research have shown that the use
of bio-stimulants in the form of extracts from medicinal plants represents an agronomic
practice based on an environmentally friendly approach to the possibility of combining
the principles of allelopathy and the action of bio-stimulants. Artemisia absinthium as well
as Levisticum officinalle, Linum usitatissimum and Arctium lappa, i.e., plants considered as a
kind of a platform or a matrix for the development of innovative bioproducts [6,39,43,44],
were selected in the search for new plant species with a putative bio-stimulating potential.
Earlier research conducted by our group have shown that water extracts obtained from
these plants effectively increased the germination capacity and seedling emergence, as well
as reduced the contamination of white mustard seeds; white cabbage; yellow lupine; pea;
fodder, sugar and red beet; winter rape, winter agrimony, and also spring barley, by fungi
and bacteria. The observed positive responses of seeds and seedlings to the allelopathic
extracts prompted us to undertake efforts to design a novel bio-stimulant for crops that
would have no residual or toxic effects on the natural environment [45–49]. In addition,
recognizing and specifying the mechanisms of their action will, in the future, establish the
optimal doses, methods, and dates of their application in field conditions. The use of such
bioproducts would also contribute to protecting the natural environment by favoring the
maintenance of biodiversity and supporting the increase in the population of invertebrates,
including pollinators and other beneficial insects, which are natural allies in the fight
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against pests [50]. The designed preparations will have no harmful or toxic effects on these
insects. This approach to providing effective methods for the sustainable development
of agricultural production and ecological biosystems [9,51–54] is in line with the current
assumptions of the EU’s 2030 biodiversity strategy.

The results of the little research conducted in this respect indicate that the morphologi-
cal parts of higher plants (including seeds, leaves or roots) from the Amaryllidaceae, Bras-
sicacae, Ericaceae, Fabaceae, Fagaceae, Moringaceae, Plantaginaceae, Poaceae, Rosaceae,
Solanaceae, Theaceae, and Vitaceae families may serve as the raw material for the produc-
tion of bio-stimulants [6,55–62]. The therapeutic, but also agronomic, potential of allelo-
pathic plant extracts is directly related to the total content of phenolics and flavonoids [37].
These compounds, also called secondary metabolites, are the main allelochemical sub-
stances found in plants with documented allelopathic activity [63]. In the literature on the
subject, phenolic compounds in low concentrations are referred to as plant germination and
growth promoters [64,65] due to their capability to act as antioxidants, i.e., serve as effective
regulators of plant growth rate, soil processes, or nutrient metabolism [35]. However, the
production of a novel type of bio-stimulant from them requires a systematic approach to
design and use. Such a comprehensive process must begin with specifying the raw materi-
als, followed by defining extraction methods, and end in product development, allowing
effective transformation of natural ingredients with a potential biological activity into
high-quality bio-stimulants. With this approach, it is also possible to predict the function of
natural compounds and how they modulate plant physiology, making them more resistant
to environmental stresses [2].

3. The Use of Cold Plasma in Agriculture

Like bio-stimulants, atmospheric cold plasma has attracted the attention of plant
physiologists for several years due to its potential to increase plant growth and tolerance to
biotic and abiotic stresses [66–69]. Cold plasmas are partially ionized gases composed of
UV photons and highly reactive species of nitrogen, oxygen, and hydrogen (RNS, ROS, and
RHS), among other compounds [69]. This technology is considered an environmentally
friendly method for improving crop production [68]. Previous investigations conducted
by our research group have shown that plasma discharge coupled with the coating of
Metarhizium anisopliae and Trichoderma virens seeds offers an alternative to chemical seed
dressing. The results of these studies have proved that the application of both plasma
technology and the combination of plasma and seed bio-treatment foster a great poten-
tial in seed production technology as value-added processes. Laboratory analyses and
field experiments have demonstrated that cold plasma applied to seeds can stimulate
the germination and early growth of spring barley, winter rape, and spring poppy seeds,
while also having a positive effect on plants’ yield [70]. Therefore, these investigations
have prompted us to assess the feasibility of using plasma technology to activate organic
bio-stimulants that would improve crop growth and development. This would represent
a cheaper and simpler alternative to time-consuming seed dressing. Research by other
authors has shown that plasma-activated liquids, including water, reveal properties sup-
porting plant growth and development. This is so because the action of plasma modifies
the chemical properties of liquids, transforming them into mixtures of reactive oxygen and
nitrogen species (RONS), including H2O2 and NO biomolecules, considered as signaling
elements in various processes of cellular metabolism and as elements regulating plant
responses to various stresses [14,22,71,72]. Therefore, based on the fact that one of the key
plant nutrition strategies is foliar and soil application of nutrients or fertilizers (commonly
used in water solutions), as well as using the latest knowledge in the field of plasma
agriculture development, it becomes justified to combine two environmentally friendly
strategies, i.e., the use of bio-stimulants and plasma activation of liquids. The application
of plasma-activated bio-stimulants seems to be the optimal system, merging the effects
of plant nutrition and protection. However, this will not be possible or effective without
understanding the mechanisms underlying plant responses to such treatment. Based on
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the results of research by other authors, we can assume that the chemical composition and
activity of bio-stimulants may also depend on plasma technology. This hypothesis is based
on the fact that the chemical composition of plasma-activated water differs from that of
ordinary water. However, no experiments have been performed so far with soil application
of plasma-activated allelopathic bio-stimulants, and no effect of this treatment on plant
growth has ever been observed. There is also a lack of information about the metabolic
pathways activated in these agronomic processes [17].

4. Cold Plasma in Field Crops: Benefits from Germination to Harvest in Soybean

Recent experiments employing cold plasma generated by dielectric barrier discharges
(DBD) to treat soybean seeds demonstrated that it could effectively remove seed-borne
fungal pathogens, thus enhancing seed health and positively impacting germination pa-
rameters (Figure 2A) [67]. The deleterious effect of cold plasma on fungal pathogens was
verified through the direct treatment of fungal colonies growing in vitro, which showed
significantly less growth, mycelial mass and sporulation than the non-treated colonies [73].
Additional experiments were performed using healthy soybean seeds to elucidate the
precise mechanisms of cold plasma on germination unrelated to pathogen control [74]. It
was shown that plasma could stimulate water absorption during germination by physically
and biochemically modifying the seed coat’s structure through the action of its active com-
pounds (ROS and RNS). It was suggested that this plasma’s active compounds could also
work as signal molecules in regulating phytohormones related to germination (abscisic acid,
ABA, indoleacetic acid, AIA, and ethylene), and participate in the regulation of antioxidant
enzymatic activities (Figure 2A) [74]. In a subsequent study, soybean seeds were exposed
to plasma and then inoculated with Bradyrrhizobium sp., resulting in enhanced plant nodu-
lation traits compared to controls (non-treated with plasma) (Figure 2B) [75]. Root growth
promotion was also observed, and plasma’s active compounds were suggested to be in-
volved in this effect by promoting expansin’s gene expression. These results highlighted
the synergy between plasma and the inoculant, possibly due to plasma-produced modifica-
tions on the seed coat. Recent results showed that plants grown from cold plasma-treated
seeds presented differential phenotype and DNA methylation patterns at different stages
of growth, showing the possible involvement of epigenetic modifications on cold plasma
effects on seeds and plants [76]. Cold plasma appears to be a promising technology to treat
seeds at a large scale for field-grown crops like soybean, as it was proven to enhance the
yield of plants significantly [74].

(A) Cold plasma increases germination and early growth. After seed exposition to
plasma treatment, germination and seedling growth are enhanced compared to non-treated
seeds (control). These effects are related to reductions in the percentage of seeds in-
fected with fungi, changes in the physical/biochemical properties of the seedcoats (higher
hydrophilicity), modifications on antioxidant and phytohormones (ethylene, C2H4, in-
doleacetic acid, IAA, and abscisic acid, ABA) profiles, all orchestrated by plasma’s active
species (reactive oxygen species, ROS, and reactive nitrogen species, RNS).

(B) Cold plasma applied to seeds has positive effects on plant growth and yield.
Plasma promotes early root growth, thus stimulating nodulation. The improvement in
nodulation determines increases in the biological nitrogen fixation (BNF), which contribute
to plant growth in the more advanced stages and, consequently, enhance plant yield.
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5. Activation of Liquids with Cold Plasma

Based on the latest literature reports, it is already known that cold plasma can be used
for liquid treatment (also called liquid activation), which in turn leads to complex chemical
mechanisms that are still being explored. In addition, the use of plasma technology may
be associated with the generation of a transient electric field and with a change in the
flow kinetics and thermal effects, which may directly determine the chemical mechanisms
observed in the liquid. These interactions between liquids and plasma are widely exploited
today. Plasma has been used to treat water by removing pesticides [78] or pharmaceuti-
cals [79]. It has also found application in direct “bubbles” generation in water, allowing
inactivation of the growth and development of E. coli bacteria [80]. Despite the fact that
plasma activation of liquids is widely used in biomedicine (cancer treatment) [81–83], and
in microbiology and disinfection processes (inactivation of bacteria and fungi) [84–86],
there is still little research into this technology for agricultural applications. The potential
of plasma-activated liquids seems enormous but is yet untapped. Few research results
indicate that plasma-activated water improves seed germination and elongates seedling
stems in such plants as lentils, radishes, tomatoes or sweet peppers [87–89]. Given that,
the use of plasma technology in agriculture can bring many additional benefits to increase
crop production [21]. However, apart from the results demonstrating the potential of
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plasma-activated water in the irrigation of crop seeds, no other possible directions for using
this technology in agronomic applications have been identified.

Therefore, the analysis of its influence on the produced organic bio-stimulants seems
to be an approach for the future. Due to the fact that allelopathic plants represent a source
of many chemical compounds promoting crop growth and development, the coupling
of biologically-active compounds extraction with plasma activation of the obtained ex-
tracts may offer the most modern alternative to conventional agriculture. However, its
implementation in practice will only be feasible after thorough investigation of the mecha-
nisms behind crops response to such bio-stimulants. In addition, given that the organic
bio-stimulants produced are environmentally friendly by definition, it was decided that
the plasma-activated preparations will be administered via application to soil. Based on
the literature data, it was assumed that the soil application of plasma-activated water
does not cause soil acidification. The research by Šimečková et al. [90] demonstrated that
the soil pH remained in the neutral range, even after the application of multiple doses
of plasma-activated water, and that, therefore, the soil still offered optimal conditions for
plant cultivation [90]. This method of bio-stimulant application will allow not only the full
characterization of the response of soybean plants, but will not have an adverse impact on
the physicochemical properties of the soil. Thus, the results of the research will demon-
strate whether obtaining extracts from allelopathic plants subjected to plasma activation
will trigger a response in soybean plants, leading to an increase in crop productivity, and
thus indicate whether this approach to sustainable agriculture will allow the development
of commercial products for improving crop yield in the future, posing no threat to the
natural environment.

6. Conclusions

The analysis of how cold plasma can influence the production of organic bio-stimulants
seems to be an unavoidable step for future approaches to this topic. Since allelopathic plants
represent a source of many chemical compounds promoting crop growth and development,
the coupling of biologically-active compound extraction with plasma activation of the
obtained extracts has interesting potential in offering the most modern alternative to
conventional agriculture. However, its implementation in practice will only be feasible after
a comprehensive and thoughtful investigation of the mechanisms behind crops response to
such bio-stimulants.
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and Formulating Modern Biostimulants—Analysis of Botanical Extract from Linum usitatissimum L. Materials 2021, 14, 6661.
[CrossRef]
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