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a b s t r a c t

We consider robust testing on the regression parameter of a partially linear regression
model, where missing responses are allowed. We derive the asymptotic behavior of the
proposed test statistic under the null and contiguous alternatives. A numerical study is
performed.
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1. Introduction

Non-parametric regressionmodels suffer from the curse of dimensionalitywhen the dimension of the covariates increases.
Therefore, introducing some structure in the regression function the statistical analysismay becomemore efficient. Partially
linear models (plm) provide a solution to a large number of covariates by assuming that the regression function has two
components: one depending linearly on some of the covariates, while the other one is non-parametric. In particular, plm
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came to be more popular in the last years due to their flexibility, since the two components allow them to adapt to a wide
class of situations. Sometimes, little is known about the relation among the response and some of the independent variables
and hence, when the form of functional relation is unspecified, the use of a non-parametric component is recommended. In
these situations, plm are an appealing choice.

More formally, under a plm, it is assumed that the response yi ∈ R and the covariates (xti , ti), xi ∈ Rp, ti ∈ R, are such
that

yi = xti β + g (ti)+ σϵi, 1 ≤ i ≤ n, (1)

where the errors ϵi are i.i.d., independent of (xti , ti) with symmetric distribution F0(·). That is, we assume that the error’s
scale equals 1 so as to identify the scale parameter as σ . We will not require any moment conditions on the errors distri-
bution, but we only assume that the scale parameter for the errors equals 1. When the existence of seconds moments is
assumed, as it is the case of the classical approach, these conditions imply that E(ϵi) = 0 and Var (ϵi) = 1, which entails
that, in this situation, σ represents the standard deviation of the responses conditional to the covariates.

Härdle et al. (2000, 2004) give an extensive description of different results obtained in plm. In particular, in the context
of hypothesis testing, Gao (1997) considers asymptotic test statistics for the problem H0 : β = 0, while González Manteiga
and Aneiros Pérez (2003) studied the case of dependent errors. Classical procedures based on local polynomials and least
squares estimation can be seriously damaged by a small fraction of anomalous observations. Robust estimates under the
partly linearmodel were considered in He et al. (2002), whereM-type estimates for repeatedmeasurements using B-splines
are introduced. On the other hand, Bhattacharya and Zhao (1997) define a

√
n-consistent estimator ofβ by taking differences

of the observations and combining a bandwidth-matchedM-estimation procedurewith kernel weights, when p = 1 and the
carriers x lie in a compact set. Bianco and Boente (2004) introduce a kernel-based three-step procedure in order to achieve
robustness against anomalous data including high leverage points in x.

Nevertheless, in practice, not all the responses may be available, this may be planned or unplanned. The methods de-
scribed above are designed for complete data sets and problems arise whenmissing observations are present. In some cases,
people may refuse to provide some kind of information, in others, the response variable may be very expensive or difficult
to measure. Also, sometimes there may be loss of information in the registration process or the researcher may fail to col-
lect the full information. There are many situations in which both the response and the explanatory variables have missing
values, however we will focus our attention on those cases where missing data occur only in the responses.

Wang et al. (2004) considered regression imputation of missing responses based on partly linear regression model
in order to make inference on the mean of y. The estimator of β, introduced by Wang et al. (2004), is a least squares
regression estimator defined by considering preliminary kernel estimators, of the quantities E(δ1x1|t1 = t)/E(δ1|t1 = t)
andE(δ1y1|t1 = t)/E(δ1|t1 = t), where δi = 1 if yi is observed and δi = 0 if yi is missing. Estimators of themarginal mean of
the response y based on the obtained estimator of the regression parameter are defined using an imputation estimator and
also propensity score weighting estimators. Wang and Sun (2007) studied estimators of the regression coefficients and the
nonparametric function using either imputation, semiparametric regression surrogate or an inverse marginal probability
weighted approach. Since these estimators are based onweightedmeans of the response variables, they are highly sensitive
to outliers. The lack of robustness of weighted means procedures pushed on the search of procedures resistant to outliers
as those given in Bianco et al. (2010), who introduced robust estimators based on bounded score functions together with
algorithms to compute them. In this paper, we go further and we focus our attention on inference regarding the parametric
component, when the response variable has missing observations, but the covariates (xt, t) are totally observed.

The rest of the paper is organized as follows. Section 2 reviews the definition of the robust semiparametric estimators
defined in Bianco et al. (2010) and recalls some previous results. In Section 3, the Wald test statistics are introduced, while
their asymptotic distribution is derived under the null hypothesis and under contiguous alternatives in Section 3.1. The
results of a simulation study are reported in Section 4, while some final comments are given in Section 5. Technical proofs
are left to the Appendix.

2. Preliminaries

Consider a random sample of incomplete data

yi, xti , ti, δi


, 1 ≤ i ≤ n, of a partially linear model where δi = 1 if yi is

observed, δi = 0 if yi is missing, and the responses yi satisfy model (1).
As mentioned above, our goal is to introduce robust tests to check hypotheses that engage the regression parameter β

in the case where responses are possibly missing, in particular when they are missing at random (MAR). This means that if
(y, xt, t, δ) has the same distribution as


yi, xti , ti, δi


, δ is conditionally independent of the response y given (xt, t). In other

words, we assume an ignorable mechanism such that P (δ = 1|(y, xt, t)) = P (δ = 1|(xt, t)) = p (x, t).
One may wonder if, ignoring the vectors with missing responses, we will still obtain robust and consistent procedures.

That is, if the robust estimators given in Bianco and Boente (2004) applied to the observations {zi1 , . . . , ziN } = {(yi, xti ,
ti)t}δi=1, where N =

n
i=1 δi, lead to asymptotically unbiased estimators so that, the tests defined through them in Bianco

et al. (2006), turn out to be consistent. This is one of the conditions needed to successfully apply the transfer principle de-
scribed in Koul et al. (2012). However, as mentioned in Bianco et al. (2010), a profile-likelihood procedure is needed to
obtain consistent estimators for a wide class of situations when dealing with missing responses. Indeed, the robust estima-
tors proposed in Bianco and Boente (2004) are not Fisher-consistent, unless the probability of missing responses is of the
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form p (x, t) = p (t). This excludes interesting situations that may appear in practice. For that reason, since the transfer
principle cannot be applied to the robust test defined in Bianco et al. (2006), we will consider the estimators addressed in
Bianco et al. (2010) based on a profile-likelihood approach which combines theM-smoothers defined in Boente et al. (2009)
with robust regression estimators. For the sake of clarity, we shortly remind the definition of these estimators.

2.1. Estimators of the regression parameter and regression function

Letψ1 be an odd and bounded score function and ρ be a rho-function as defined inMaronna et al. (2006, Chapter 2), i.e., a
function ρ such that ρ(x) is a nondecreasing function of |x|, ρ(0) = 0, ρ(x) is increasing for x > 0 when ρ(x) < ∥ρ∥∞ =

supx |ρ(x)|. If ρ is bounded, it is also assumed that ∥ρ∥∞ = 1. We will consider kernel smoothers weights for the nonpara-
metric component which are given bywi(τ , hn) = δi K ((ti − τ)/hn)

n
j=1 δj K


(tj − τ)/hn

−1, with K a kernel function,
i.e., a nonnegative integrable function on R and hn the bandwidth parameter.

To define a robust estimator, Bianco et al. (2010) proceed as follows:
Step 1. For each τ and b, define gb(τ ) and its related estimate gb(τ ) as the solutions of S(1)(gb(τ ), b, τ ) = 0 and

S(1)n (gb(τ ), b, τ ) = 0, respectively, where

S(1)(a, b, τ ) = E

δψ1


y − xtb − a

σb


υ (x) |t = τ


, (2)

S(1)n (a, b, τ ) =

n
i=1

wi(τ , hn)ψ1


yi − xti b − asb


υ (xi) ,

withsb a preliminary robust consistent scale estimator of σb, the scale of y − xtb − gb(τ ), and υ a weight function.
Step 2. The functional β(F), where F is the distribution of (y, xt, t, δ), is defined as β(F) = argminbH(b), with

H(b) = E [δρ ((y − xtb − gb(t))/σ ) υ (x)]. Its related estimate is defined asβ = argminbHn(b), where Hn(b) =n
i=1 δiρ


(yi − xti b −gb(ti))/σ  υ (xi) /n, with σ a preliminary estimate of the scale σ , i.e., a robust M-scale

computed using an initial (possibly inefficient) estimate of β with high breakdown point.
Step 3. Then, the functional g(τ , F) is defined as g(τ , F) = gβ(F)(τ ), while the estimate of the nonparametric component isgn(τ ) =gβ(τ ).
Letψ = ρ ′ be the derivative of the loss function ρ. It is worth noticing that the regression estimator defined in Step 2 is the
solution of

H(1)n (β) =
1
n

n
i=1

δiψ


yi − xtiβ −gβ(ti)σ


υ (xi)


xi +

∂

∂b
gb(ti)

b=β


= 0. (3)

As is well-known, leverage points in the covariates xmay cause breakdown in regressionmodels. For this reason, GM-, S-
andMM-estimators have been introduced (see for instance, Maronna et al., 2006). By means of a score function ρ combined
with a weight υ in Step 2, we include these robust families of estimators. Hence, the proposal is resistant against outliers in
the residuals and in the carriers x, aswell. Usually,when computingMM-estimators, since they already control high-leverage
points, the practitioner takesυ (x) ≡ 1. Bianco et al. (2010) described an algorithm to compute these estimators,whereMM-
estimators with initial LMS-estimators combined with S-estimators adapted to the partly linear setting are considered. If
ψ1 is chosen as the identity function, ρ is taken as the square function and υ ≡ 1, this procedure will lead to the estimators
introduced in Wang et al. (2004), which are non resistant to the presence of outlying observations. If in addition, p ≡ 1,
i.e., when there are no missing responses, these estimators correspond to those defined in Speckman (1988) and studied in
Robinson (1988).

2.2. Asymptotic distribution

In this section, we state the asymptotic behavior of the estimatorβ defined above, which was derived in Bianco et al.
(2011). This result will be helpful to obtain the asymptotic distribution of the test statistic under the null hypothesis.

Assume that

yi, xti , ti, δi


, 1 ≤ i ≤ n are as above, i.e., yi = xti β + g (ti)+ σϵi for 1 ≤ i ≤ n. Denote ψ ′ and ψ ′′ the first

and second derivatives of ψ . Moreover, let z = z(β) with z(b0) = x + (∂gb(t)/∂b) |b=b0 , zi = zi(β) with zi(b0) = xi +

(∂gb(ti)/∂b) |b=b0 andγ (b, τ ) =gb(τ )− gb(τ ) γ (τ) = γ (β, τ ) (4)

vj(b, τ ) =
∂γ (b, τ )
∂bj

vj(τ ) =vj(β, τ ). (5)

Furthermore, for any function m : T → R denote ∥m∥∞ = supt∈T |m(t)|. The first condition below states a MAR assump-
tion, the second one is a condition on the preliminary estimate of gb(τ ), while the other ones state requirements to the score
and weight functions and to the underlying model distributions.
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N0. δ and y are conditionally independent given (xt, t), that is, P (δ = 1|(y, xt, t)) = P (δ = 1|(xt, t)) = p (x, t).
N1. The functionsgb(τ ) and gb(τ ) are continuously differentiable with respect to (b, τ ), twice continuously differentiable

with respect to b and such that (∂2gb(τ )/∂bj∂bℓ)|b=β is bounded. Furthermore, for any 1 ≤ j, ℓ ≤ p, ∂2gb(τ )/∂bj∂bℓ
satisfies the following equicontinuity condition:

∀ϵ > 0, ∃δ > 0 : |b1 − b0| < δ ⇒

 ∂2

∂bj∂bℓ
gb


b=b1

−
∂2

∂bj∂bℓ
gb


b=b0


∞

< ϵ.

N2. The functionsυ andΥ (x) = xυ(x) are bounded and continuous. The functionψ = ρ ′ is an odd, bounded and twice con-
tinuously differentiable function with bounded derivativesψ ′ andψ ′′, such that ϕ1(s) = sψ ′(s) and ϕ2(s) = sψ ′′(s) are
bounded. Moreover, the functionψ1 is a bounded and continuously differentiable functionwith bounded derivativeψ ′

1.
N3. The matrix A(β) = Eψ ′ (ϵ) E (υ(x)p(x, t)z(β)z(β)t) is non-singular.
N4. The matrix B(β) = Eψ2 (ϵ) E


υ2(x)p(x, t)z(β)z(β)t


is positive definite.

N5. E

p(x, t)υ(x) ∥z(β)∥2 < ∞.

N6. E(ψ ′

1 (ϵ)) ≠ 0 and E(ψ ′ (ϵ)) ≠ 0.
N7. (a)

gβ − g


∞

p
−→ 0, for anyβ p

−→ β.

(b) For each τ ∈ T and b,γ (b, τ ) p
−→ 0. Moreover, n1/4 ∥γ ∥∞

p
−→ 0 and n1/4

vj∞

p
−→ 0 for all 1 ≤ j ≤ p.

(c) There exists a neighborhood of β with closure K such that for any 1 ≤ j, ℓ ≤ p,
supb∈K(∥vj(b, ·)∥∞ + ∥∂vj(b, ·)/∂bℓ∥∞)

p
−→ 0.

(d) ∥∂γ /∂τ∥∞ +
∂vj/∂τ∞

p
−→ 0 for any 1 ≤ j ≤ p.

Remark 2.1. Using that S(1)(gb(τ ), b, τ ) = 0 for any b ∈ Rp and that the errors have a symmetric distribution and are
independent of the covariates, we obtain that N6 implies

E


x +

∂

∂b
gb(τ )


b=β


υ(x)p(x, τ )|t = τ


= 0, (6)

which ensures thatgb and its first derivative with respect to b can be replaced by the true functions.
The convergence requirements in N7 are similar to those stated in Severini and Staniswalis (1994) and are needed to

obtain root-n regression estimators. In particular, the continuity of gb(τ ) with respect to (b, τ ) and Theorem 3.1 in Bianco
et al. (2011) entail N7(a). For a discussion on the validity of N7(b)–(d), see Remark 6.2 of the above mentioned paper, where
more comments on the remaining assumptions can be found.

Proposition 2.1. Assume that t1 is a random variablewith distribution on a compact set and that the errors have a symmetric dis-
tribution and are independent of the covariates. If N0 to N7 hold andσ p

−→ σ , then for any consistent solutionβ of (3), we have

that
√
n
β − β


D

−→ N

c, σ 2A−1(β)B(β)A−1(β)


, where the symmetric matrices A(β) and B(β) are defined in N3 and N4,

respectively.

Proposition 2.1 is used in Section 3 to define the Wald test statistic for the simple null hypothesis H0 : β = β0 and to
derive its asymptotic distribution when H0 holds.

3. Robust testing

In this Section, we mainly focus on testing hypotheses of the form H0 : β = β0 vs. H1 : β ≠ β0 through aWald-type test
statistic based on the robust estimatorβ defined in Section 2.1.

In order to construct the Wald-type test statistic, we need to estimate the asymptotic covariance matrix of β. Let
yi, xti , ti, δi


, 1 ≤ i ≤ n, be a random sample satisfying (1). Define

A(b) = E

ψ ′ (ϵ(b)) υ(x)p(x, t)z(b)z(b)t


and B(b) = E


ψ2 (ϵ(b)) υ2(x)p(x, t)z(b)z(b)t


(7)

with ϵ(b) = (y − xtb − gb(t))/σ . Note that ϵ(β) = ϵ, thus we obtain the matrices defined in N3 and N4. These matrices
involve the quantity (∂gb(t)/∂b) |b=β , so its estimation is required. Since S(1)(gb(τ ), b, τ ) = 0, for all b ∈ Rp, differentiating
with respect to bwe get that

0 =
−1
σ 2

β

E


p(x, t)ψ ′

1


y − xtβ − gβ(τ )

σβ


υ (x)


x +

∂gb(τ )
∂b


b=β


σβ

∂σb

∂b


b=β


y − xtβ − gβ(τ )


|t = τ


.

As the observations satisfy (1), we have that gβ = g and σβ = σ , so we obtain that

0 = E


ψ ′

1 (ϵ) p(x, t)υ (x)


x +

∂gb(τ )
∂b


b=β


σ |t = τ


+ E


ϵψ ′

1 (ϵ) p(x, t)υ (x)
∂σb

∂b


b=β

|t = τ


. (8)
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Using the independence between the errors and the covariates, the symmetry of F0 and the fact that the oddness of ψ1
entails that uψ ′

1(u) is an odd function, we get that E

ϵψ ′

1 (ϵ)


= 0 implying that the right hand side term in (8) equals 0.
Thus,

∂gb(τ )
∂b


b=β

= −

E

ψ ′

1


y−xtβ−g0(τ )

σ


δυ (x) x|t = τ


E

ψ ′

1


y−xtβ−g0(τ )

σ


δυ (x) |t = τ

 .
It isworth noting that (6) entails that (∂gb(t)/∂b) |b=β = −E [δυ (x) x|t = τ ] {E [δυ (x) |t = τ ]}−1. Hence, (∂gb(t)/∂b) |b=β

does not depend on the score functionψ1. However, in the estimation procedure we will use the score functionψ1 in order
to bound the effect of bad leverage points. Effectively, (∂gb(t)/∂b) |b=β will be estimated as

g(b)β (τ ) = −

n
i=1
wi(τ , hder)ψ

′

1


yi−xti

β−gn(τ )σ

υ (xi) xi

n
i=1
wi(τ , hder)ψ

′

1


yi−xti

β−gn(τ )σ

υ (xi)

, (9)

where wi(τ , h) = δi K ((ti − τ)/h)
n

j=1 δj K

(tj − τ)/h

−1 and the bandwidth hder used to estimate the partial deriva-
tive (∂gb(t)/∂b) |b=β may be different from that used in the estimation of gb. Note that when computing the estimatorg(b)β , we bound the effect of large residuals through the score function ψ1. We may also control bad leverage points, even

without using a weight function υ , choosing ψ1 = ρ ′

1, with ρ1 a redescending loss function. The estimatorg(b)β relies on
the assumption that E [δυ (x) |t = τ ] = E [p(x, τ )υ (x) |t = τ ] ≠ 0, which means that there are enough responses at each
neighborhood of t , since we already require that Eψ ′

1 (ϵ) ≠ 0 to obtain the correct rate of convergence.
Denotezi(β) = xi +g(b)β (ti) andϵi(b) = (yi − xti b −gb(ti))/σ , then estimators of A(β) and B(β) can be defined asA =A(β) andB =B(β), where

A(b) =
1
n

n
i=1

δi ψ
′ (ϵi(b)) υ(xi)zi(b)zi(b)t and B(b) =

1
n

n
i=1

δi ψ
2 (ϵi(b)) υ2(xi)zi(b)zi(b)t. (10)

Lemma 6.1 in Bianco et al. (2011) entails that, for any fixed β, under N0, N1, N2, N5 and N7(a) the matricesA(β) andB(β)
provide consistent estimators ofA(β) andB(β), respectively. This result togetherwith Proposition 2.1 suggests the following
Wald test statistic to test H0 : β = β0

Wn =
n (β − β0)

t
AB−1A (β − β0)σ 2

.

Lemma A.1 generalizes the above mentioned Lemma to deal with contiguous alternatives, since it allows to derive the
consistency of thematricesA(β) andB(β) toA(β0) and B(β0), respectively, whenmodel (1) holds forβ = βn = β0+c n−1/2

andβ p
−→ β0.

When there are no missing responses in the sample, Bianco et al. (2006) also considered a score type test. In our setting,
a score type test can also be considered, but based on the profile estimatorsβ. However, this approach is beyond the scope
of this paper.

3.1. Asymptotic behavior of the test statistics

The asymptotic behavior under the null and local alternatives of theWald statistic is derived in this Section. Asmentioned
above, underH0 : β = β0, the asymptotic distribution of the test statistic, given in Theorem3.1, follows from Proposition 2.1
and the convergence ofA andB to A(β0) and B(β0), given in Lemma 6.1 of Bianco et al. (2011).

Theorem 3.1. Assume that t1 is a random variable with distribution on a compact set T and that (yi, xti , ti, δi) satisfy model (1)
for β = β0, i.e., yi = xti β0 + g (ti)+ σϵi, where ϵi are independent of (xti , ti) and have symmetric distribution. If N0–N7 hold

for β = β0 andσ p
−→ σ , we have that Wn

D
−→ χ2

p .

Note that the test statistic is asymptotically χ2
p distributed under the null hypothesis, which is the same asymptotic

distribution of the classical test based on local means and least squares estimation.
In order to state the asymptotic behavior under local alternatives, we must generalize assumption N7 to the case of

contiguous alternatives of the form βn = β0 + cn−
1
2 .
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N8. When yi = xti βn + g(ti)+ ϵi, 1 ≤ i ≤ n, with βn = β0 + cn−1/2, ifγn(τ ) = γ (βn, τ ) andvj,n(τ ) =vj(βn, τ ), it holds
that
(a)

gβ − g


∞

p
−→ 0, for anyβ p

−→ β0.

(b) For each τ ∈ T and b,γ (b, τ ) p
−→ 0. Moreover, n1/4 ∥γn∥∞

p
−→ 0 and n1/4

vj,n∞

p
−→ 0 for all 1 ≤ j ≤ p.

(c) There exists a neighborhood of β0 with closure K such that supb∈K(∥vj(b, ·)∥∞ + ∥∂vj(b, ·)/∂bℓ∥∞)
p

−→ 0, for
any 1 ≤ j, ℓ ≤ p.

(d) ∥∂γn/∂τ∥∞ +
∂vj,n/∂τ∞

p
−→ 0 for any 1 ≤ j ≤ p.

It is worth noticing thatN8 is analogous toN7, but under a sequence of contiguous models. Hence, the validity ofN8 follows
under similar conditions to those considered for N7.

Theorem3.2 gives the asymptotic distribution of the test statistic under contiguous alternatives. Its proof is an immediate
consequence of Lemmas A.1 and A.2 in the Appendix. Note that the non-centrality parameter depends on the loss function
ρ used through its derivative ψ , so that some loss of power may be expected due to the balance between robustness and
efficiency.

Theorem 3.2. Let t1 be a random variable with distribution on a compact set T . Assume that (yi, xti , ti, δi), 1 ≤ i ≤ n, satisfy
model (1)withβn = β0+cn−

1
2 , i.e., yi = xti βn+g (ti)+σϵi, where ϵi are independent of (xti , ti) and have symmetric distribution.

Assume that N0–N6 hold for β = β0. If in addition, N8 holds andσ p
−→ σ , we have that under Hn

1 : β = βn, Wn
D

−→ χ2
p (θ),

where θ = ct6−1
0 c/σ 2 with 60 = A−1

0 B0A−1
0 , for A0 = A(β0) and B0 = B(β0) defined in (7).

Similar results to those given in Theorem 3.1 can be obtained when the null hypothesis involves only a subset of q com-
ponents of the regression parameter, by adapting assumptionsN3–N5 and alsoN7 orN8 to the actual null hypothesis. This is
one of themost frequent hypothesis testing problems in regression. Let β = (βt

(1),β
t
(2))

t,β = (βt
(1),
βt
(2))

t, where β(1) ∈ Rq.

In order to test H0 : β(1) = β(1),0 , β(2) unspecified, one may use the statistic W1,n = n(β(1) − β(1),0)
t6−1

11 (
β(1) − β(1),0)/σ 2

where 611 denotes the q × q submatrix of the matrix 6 ∈ Rp×p, corresponding to the coordinates of β(1), 6 = A−1BA−1,A =A(β) andB =B(β) defined in (10).
The following theorem states the asymptotic distribution of the Wald-type statistic W1,n. Its proof is similar to that of

Theorem 3.1, so it is omitted.

Theorem 3.3. Let t1 be a randomvariablewith distribution on a compact set T and (yi, xti , ti, δi), 1 ≤ i ≤ n, be i.i.d. observations
satisfying (1) andN0, where the errors are independent of the covariates and have symmetric distribution. Assume thatσ p

−→ σ
and that, for any β(2), N1–N7 hold when β = (βt

(1),0,β
t
(2))

t. Then, we have that

(a) Under H0 : β(1) = β(1),0, W1,n
D

−→ χ2
q .

(b) Under Hn
1 : β(1) = β(1),0 + c(1)n−1/2, W1,n

D
−→ χ2

q (θ1), with θ1 = ct(1)6
−1
0,11c(1)/σ

2, where 60 = A−1
0 B0A−1

0 , if in
addition N8 holds taking β0 = (βt

(1),0,β
t
(2))

t.

4. Monte Carlo study

A simulation studywas carried out in order to assess the performance of the proposed test and also to compare its behav-
ior with that of the classical one under contamination and under normal samples, for different missing probability schemes.

For both, the classical and robust smoothing procedures,we use theGaussian kernel. For the robust smoothing procedure,
we compute the robust local M-estimates with the bisquare function as score function ψ1 with bandwidth h. For the
computation ofg(b)β (τ ), we consider its derivativeψ ′

1 with bandwidth hder, as described in (9).We choose as tuning constant
for the bisquare function the value 4.685, which gives a 95% efficiency with respect to its linear relative. To compute the
local M-estimates, local medians are selected as initial estimates in the iterative procedure.

The robust estimator of the regression parameter β is computed as described in Section 3 of Bianco et al. (2010) using
as rho-function the bisquare function, that is, choosing ρ0(x) = ρtuk (x/c0) and ρ(x) = ρtuk (x/c1), with c0 = 1.56, c1 ≥ c0
and ρtuk(x) = min(1, 1 − (1 − x2)3). The value selected for c0 ensures Fisher-consistency of the scale when the errors are
Gaussian, while c1 = 4.68 guarantees that under a regression model the resulting estimates will achieve 95% efficiency.

In a first step, we generate observations (zi, xi, ti) according to the model zi = βxi + sin(2π(ti − 0.5))+ σϵi, 1 ≤ i ≤ n,
where β = 2 and σ 2

= 0.25 in the non-contaminated case, which we identify as C0. Besides, the covariates (xi, ti) are such
that xi ∼ N(0, 1) and ti ∼ U(0, 1) independent of each other, while the errors are ϵi ∼ N(0, 1). Then, missing responses are
introduced using different missing schemes to be described below, that is, we define yi = zi if δi = 1 andmissing otherwise.

For each of the situations to be considered below, we perform 1000 replications generating independent samples. For
each replication, we test the null hypothesis H0 : β = 2 through the test statistic Wn and the classical Wald-type statisticsWn,ls based on the least squares estimator, that is the estimator defined in Wang et al. (2004).
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Table 1
Observed frequencies of rejection at β = 2, for nominal levels α = 0.05 and α = 0.10, when n = 100, 200 and 500 under C0 .

α = 0.05 α = 0.10Wn,ls Wn Wn,ls Wn

hder hder

n h 0.04 0.075 0.1 0.04 0.075 0.1

100

0.05 0.060 0.062 0.077 0.082 0.108 0.103 0.129 0.136
0.075 0.057 0.044 0.055 0.058 0.099 0.081 0.103 0.109
0.10 0.052 0.046 0.056 0.058 0.091 0.075 0.09 0.093
0.20 0.040 0.039 0.048 0.051 0.087 0.068 0.089 0.094

200

0.05 0.062 0.059 0.069 0.070 0.105 0.109 0.119 0.120
0.075 0.053 0.048 0.055 0.055 0.097 0.093 0.100 0.100
0.10 0.043 0.044 0.050 0.053 0.090 0.086 0.095 0.097
0.20 0.041 0.042 0.046 0.049 0.078 0.075 0.088 0.089

500

0.05 0.049 0.060 0.061 0.061 0.111 0.114 0.119 0.119
0.075 0.044 0.060 0.060 0.061 0.108 0.108 0.117 0.118
0.10 0.035 0.042 0.047 0.048 0.095 0.097 0.099 0.101
0.20 0.036 0.048 0.050 0.051 0.083 0.105 0.108 0.113

Even if a full study on the level dependence on the bandwidths h and hder is beyond the scope of the paper, in a first
stage, our concern is the level of the tests and how it may be influenced by the choice of the smoothing parameters. For that
purpose, we consider three sample sizes n = 100, 200 and 500 and different values of the bandwidths, more precisely, we
choose h = 0.05, 0.075, 0.10 and 0.20 and hder = 0.04, 0.075 and 0.1.

We first describe the results for the situation inwhich there are nomissing responseswhich corresponds to the complete
data case, that is, p(x, t) ≡ 1 and yi = zi. Table 1 gives, in this situation for the non-contaminated case C0, the observed
frequencies of rejection under the null hypothesis for the different sample sizes and bandwidths and for two nominal levels
α = 0.05 and 0.10. In most cases, for the bandwidth choices h = hder = 0.075 and h = 0.10, hder = 0.075, the robust test
based on Wn reaches the closest values to the nominal levels. Besides, the classical test based on Wn,ls also attains observed
frequencies of rejection very close to the nominal values of α for these smoothing parameters. Hence, from now on we
consider these bandwidth parameters. On the other hand, since we consider below missing schemes with at least 30% of
missing responses, a sample size of n = 100may be not large enough. Besides, n = 200 seems a good compromise between
amoderate sample size and the required number of observations to achieve the desired level α. For these reasons, from now
on we only report the results when n = 200 and α = 0.05. Similar results were obtained for the nominal level α = 0.10.

In a second stage, we take into account four contamination schemes in order to evaluate their impact on the level and
power of the classical and robust tests. The considered contaminations are

• C1 : ϵ1, . . . , ϵn, are i.i.d. 0.9N(0, 1) + 0.1N(0, 25). In this contamination only the errors are inflated and it is expected
that it will affect moderately both level and power.

• C2 : ϵ1, . . . , ϵn, are i.i.d. 0.9N(0, 1)+0.1N(0, 25) and artificially 20 observations of the response zi, but not of the carriers
xi, are modified to be equal to 20 at equally spaced values of t . This contamination introduces 10% of outliers with high-
residuals, so that it will have influence on the test power.

• C3 : ϵ1, . . . , ϵn, are i.i.d. 0.9N(0, 1)+0.1N(0, 25) and artificially 20 observations of the carriers xi, but not of the response
zi, are modified to be equal to 20 at equally spaced values of t . In this case, high-leverage points are introduced to assess
how the bias of the regression parameter estimates affects the level of the test.

• C4 : ϵ1, . . . , ϵn, are i.i.d. 0.9N(0, 1)+0.1N(0, 25) and artificially 10 observations of the carriers xi and 10 of the response
zi, are modified to be equal to 20 and −20, respectively at equally spaced values of t . The outlying responses are not
allocated at the same t than the outlying carriers. This case corresponds to introduce both high-leverage points and
high-residuals.

We compute the observed frequencies of rejection at β = 2 + 1n−1/2, n = 200 for ∆ = 0, 0.25, 0.5, 0.75, 1, 1.5 and 2
and we summarize the obtained results in Table 2.

As expected, under C3 and C4, the classical test Wn,ls becomes non-informative since its estimated power function equals
1. Besides, under C2 the test Wn,ls leads to a power function which decreases with∆, leading to wrong conclusions. Contam-
ination C1 seems to be the less harmful for Wn,ls since both its level and power are only slightly modified. Its major effect is
a loss of power. Only the scenario without contamination, C0, is favorable to the classical test Wn,ls. On the other hand, the
robust test Wn is stable under all contaminations, leading to reliable results for both choices h = hder = 0.075 and h = 0.10
combined with hder = 0.075.

In a third stage, we introduce missing at random responses according to different patterns. As mentioned above, we
define yi = zi, if δi = 1, and missing otherwise, where δi are generated as Bernoulli random variables using the following
missing data models: (i) P1 : p(x, t) = 0.4 + 0.5(cos(2(x + 0.2)))2, (ii) P2 : p(x, t) = 0.4 + 0.5(cos(2(t + 0.2)))2, (iii) P3 :

p(x, t) = 0.4+0.5(cos(2(xt+0.2)))2 and (iv) P4 : p(x, t) = 1/(1+exp(−2x−12(t−0.5))), which lead to an approximated
proportion of missing responses of 0.3494, 0.4572, 0.2951 and 0.5006, respectively.
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Table 2
Observed frequencies of rejection at β = 2 +1n−1/2 , for n = 200, with nominal level α = 0.05, hder = 0.075 and h = 0.075 and 0.1 when p(x, y) ≡ 1.

h = 0.075 h = 0.10
∆ ∆

0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2

C0Wn,ls 0.053 0.088 0.165 0.305 0.516 0.861 0.984 0.043 0.082 0.157 0.290 0.482 0.845 0.976Wn 0.055 0.090 0.154 0.294 0.485 0.824 0.972 0.050 0.078 0.173 0.280 0.455 0.796 0.970
C1Wn,ls 0.047 0.063 0.086 0.147 0.220 0.417 0.617 0.044 0.061 0.087 0.138 0.218 0.413 0.611Wn 0.062 0.086 0.155 0.253 0.408 0.746 0.918 0.054 0.082 0.141 0.237 0.394 0.709 0.909
C2Wn,ls 0.069 0.065 0.060 0.060 0.061 0.059 0.062 0.068 0.065 0.064 0.062 0.059 0.058 0.056Wn 0.065 0.081 0.141 0.244 0.380 0.686 0.882 0.050 0.069 0.132 0.228 0.367 0.670 0.878
C3Wn,ls 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000Wn 0.059 0.074 0.147 0.246 0.377 0.687 0.893 0.057 0.069 0.136 0.226 0.356 0.674 0.877
C4Wn,ls 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000Wn 0.059 0.074 0.147 0.246 0.377 0.687 0.893 0.057 0.069 0.136 0.226 0.356 0.674 0.877

Table 3
Observed frequencies of rejection at β = 2 + 1n−1/2 , for n = 200, with nominal level α = 0.05, hder = 0.075 and h = 0.075 and 0.1 when
p(x, t) = 0.4 + 0.5(cos(2(x + 0.2)))2 .

h = 0.075 h = 0.10
∆ ∆

0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2

C0Wn,ls 0.058 0.083 0.145 0.242 0.375 0.698 0.904 0.048 0.077 0.135 0.232 0.355 0.678 0.895Wn 0.062 0.091 0.165 0.243 0.355 0.648 0.861 0.055 0.077 0.150 0.222 0.333 0.628 0.852
C1Wn,ls 0.063 0.074 0.100 0.136 0.190 0.311 0.506 0.064 0.067 0.100 0.139 0.187 0.302 0.496Wn 0.074 0.088 0.125 0.214 0.303 0.552 0.796 0.060 0.079 0.122 0.186 0.269 0.528 0.759
C2Wn,ls 0.067 0.062 0.061 0.060 0.059 0.055 0.057 0.069 0.063 0.060 0.058 0.055 0.058 0.056Wn 0.066 0.096 0.137 0.195 0.273 0.506 0.739 0.061 0.069 0.114 0.180 0.271 0.473 0.719
C3Wn,ls 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000Wn 0.062 0.083 0.131 0.196 0.284 0.514 0.739 0.052 0.067 0.114 0.178 0.266 0.483 0.710
C4Wn,ls 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000Wn 0.066 0.091 0.135 0.195 0.279 0.511 0.739 0.053 0.071 0.116 0.179 0.277 0.494 0.712

Table 3 summarizes the results corresponding to the missing probability P1. Besides, in the supplementary file available
online (see Appendix B), Table S.1 corresponds to P2, Table S.2 to P3, while the results from the logistic missing probability
P4 are given in Table S.3.

With respect to the effect of themissing schemes, a loss of power is observed for both the classical and robust tests, under
C0. In particular, Tables S.1 and S.3 in the supplementary file (see Appendix B) show that the largest loss of power is attained
for the missing probability schemes P2 and P4. This behavior can be explained by the fact that, in average, almost half of the
observations are lost in these two cases.

When analyzing the effect of the contaminations on the classical test Wn,ls, the same conclusions obtained for the com-
plete case remain valid for all the missing schemes. On the other hand, for the robust procedure Wn, some loss of level is
observed for the consideredmissing schemes in particular, when p(x, t) = 0.4+0.5(cos(2(t+0.2)))2 and p(x, t) = 1/(1+

exp(−2x − 12(t − 0.5))) (see the supplementary file, Appendix B).
We also observe some loss of power under the missing data model P4, where the percentage of missing observations is

close to 50%. However, the proposed test is stable and still informative in all the contaminated situations.

5. Final comments

In this paper, we have introduced aWald type test statistic, based on a robust three step estimation procedure, for linear
hypotheses related to the regression parameter. The robust test statistic involves the selection of tuning constants for the
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rho-functions allowing to compute the regression parameter estimate and for the score function used in Step 1. As in our
simulation study, in most cases, these constants are selected by the user to attain a desired efficiency for Gaussian errors.

On the other hand, the test statistic depends on the bandwidth parameters used to estimate the nonparametric compo-
nent and its derivative. As shown in Section 4, for both the classical and robust Wald statistics, the choice of the smoothing
parameters is important to study the performance in terms of power and level. However, this relevant topic is beyond the
scope of this paper and is still an open problem even for goodness of fit tests based on linear estimators. Some interesting
discussions regarding the choice of the regularization parameters for the classical estimators can be found in González-
Manteiga and Crujeiras (2013) and Sperlich (2014).
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Appendix A

Using similar arguments to those considered in Lemma 6.1 fromBianco et al. (2011)we obtain the following result. Recall
thatA(b) andB(b) are defined in (10), while A = A(β) and B = B(β) are given in (7). Let A0 = A(β0) and B0 = B(β0).

Lemma A.1. Let t1 be a random variable with distribution on a compact set T . Moreover, assume that, for 1 ≤ i ≤ n, yi =

xti βn+g (ti)+σϵi, whereβn = β0+cn−
1
2 and ϵi are independent of (xti , ti) and have symmetric distribution. Assume that N0,N1,

N2 and N5 hold for β = β0. If in addition, N8(a) holds, σ p
−→ σ and β p

−→ β0, then we have that A(β) p
−→ A0 andB(β) p

−→ B0. Moreover, we have thatC p
−→ A0 where

C = (1/n)
n

i=1


ψ ′

ϵi(β)zi(β)zi(β)t + ψ
ϵi(β) ∂2gb(ti)/∂b∂bt t

b=β

δiυ(xi)

withϵi(β) = (yi − xtiβ −gβ(ti))/σ .
Proof. We will only show thatC p

−→ A0, since similar arguments lead to the consistency ofA(β) andB(β).
Denote byβ =β − cn−1/2, yi,0 = xti β0 + g(ti)+ ϵi and by ξ an intermediate point between ϵi + xti (β0 −

β) andϵ(β) =

ϵi + xti (β0 −
β)+ (g(ti)−gβ(ti)), zi = xi + (∂gb(ti)/∂b) |b=β0 . As in Lemma 6.1 of Bianco et al. (2011), we have that a Taylor

expansion of first order and some algebra lead us toC =
6

j=1
C(j)n withC(1)n =

n
i=1 δiψ

′([yi,0−xti
β−g(ti)]/σ)zi zti υ(xi)/n,C(3)n =

n
i=1 δiψ

′′([yi,0 − xti
β − ξi,1]/σ)w0(ti)zizti υ(xi)/(nσ),C(6)n =

n
i=1 δiψ([yi,0 − xti

β −gβ(ti)]/σ)V(ti)tυ(xi)/n and

C(2)n =
1
n

n
i=1

δiψ


yi,0 − xti

β − g(ti)σ


∂2

∂b∂bt
gb(ti)

t
b=β0

υ(xi)

C(4)n =
1σ 1
n

n
i=1

δiψ
′


yi,0 − xti

β − ξi,2σ
w0(ti)

∂2

∂b∂bt
gb(ti)

t
b=β0

υ(xi)

C(5)n =
1
n

n
i=1

δiψ
′

yi,0 − xti
β −gβ(ti)σ

w(ti)zti + ziw(ti)t + w(ti) w(ti)t υ(xi),
where ξi,1 and ξi,2 are intermediate points, zi = zi(β0),w0(t) =gβ(t)− g(t) and

w(t) =
∂

∂b
gb(t)

b=β−
∂

∂b
gb(t)


b=β0

V(t) =
∂2

∂b∂bt
gb(ti)

b=β−
∂2

∂b∂bt
gb(ti)


b=β0

.

As in Lemma 1 in Bianco and Boente (2002), we have thatC(1)n +C(2)n
p

−→ A0, since
β p

−→ β0. Using N1, N2, the consistency
ofσ , the Strong Law of Large Numbers and the fact that supt∈T |gβ(t)− g(t)|

p
−→ 0, we get thatC(j)n p

−→ 0, 3 ≤ j ≤ 6. �
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Lemma A.2. Assume that t1 is a random variable with distribution on a compact set T and that yi = xti βn +g (ti)+σϵi for 1 ≤

i ≤ n, whereβn = β0+cn−
1
2 and ϵi are independent of (xti , ti) and have symmetric distribution. Moreover, assume that N0–N6

hold for β = β0. If in addition,N8 holds andσ p
−→ σ , then for any consistent solutionβ of (3), we have that

√
n
β − β0


D

−→

N

c, σ 2A−1

0 B0A−1
0


, with A0 = A(β0) and B0 = B(β0).

Proof. To derive the asymptotic distribution of
√
n(β − β0) it will be enough to show that

√
n(β − βn)

D
−→ N


0, σ 2A−1

0 B0

A−1
0


. Letβ be a solution of H(1)n (b) = 0 defined in (3) and denote by ζi(b) = xi + (∂gb(ti)/∂b). Using a Taylor’s expansion

of order one, we get

0 = H(1)n (β) =
1
n

n
i=1

δiψ


yi − xti βn −gβn(ti)σ


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
,

whereC(β) = −(σ/n)n
i=1 δi


∂

ψ (ϵi(b)) ζi(b)
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
|b=β υ(xi), so that

C(β) =
1
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withβ an intermediate point between βn andβ andϵi(b) = (yi −xti b−gb(ti))/σ . Using Lemma A.1, we have thatC(β) p
−→

A0. Therefore, in order to obtain the asymptotic distribution ofβ it will be enough to derive the asymptotic behavior of

Ln = n−1/2
n

i=1

δiψ


yi − xti βn −gβn(ti)σ


υ (xi) ζi(βn).

Using that gβn = g , so that yi − xti βn − gβn(ti) = ϵiσ , we get that

Ln = n−1/2
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where β⋆ is an intermediate point between βn and β0, so that Ln = L(1)n + L(2)n + L(3)n with

L(1)n = n−1/2
n

i=1

δiψ
ϵiσσ 
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The fact that ψ is odd and the errors have a symmetric distribution and are independent of the carriers implies that
E [ψ (ϵiσ/s) |(xi, ti)] = Eψ (ϵiσ/s) = 0, for all s > 0. Then, the consistency ofσ and standard tightness arguments entail
that L(1)n is asymptotically normally distributed with covariance matrix B. Besides, L(2)n

p
−→ 0 since E [ψ (ϵiσ/s) |(xi, ti)] =

Eψ (ϵiσ/s) = 0, for all s > 0 and L(3)n
p

−→ 0 using N1 and N2 and the fact that β⋆ → β0.

Therefore, it remains to show that Ln −Ln p
−→ 0. We have the following expansionLn − Ln = −σ−2Ln,1 +σ−1Ln,2 −σ−1Ln,3 +σ−2Ln,4, with

Ln,1 = n−1/2σ n
i=1

δiψ
′


yi − xti βn − gβn(ti)σ


zi(βn)υ(xi)γn(ti)

Ln,2 = n−1/2σ n
i=1

δiψ


yi − xti βn − gβn(ti)σ


υ(xi)vn(ti)

Ln,3 = n−1
n

i=1

δiψ
′


yi − xti βn − gβn(ti)σ


υ(xi)


n1/4vn(ti) n1/4γn(ti)

Ln,4 = (2n)−1
n

i=1

δiψ
′′


yi − xti βn − ξi(ti)σ


zi(βn)υ(xi)


n1/4γn(ti)2 ,



98 A.M. Bianco et al. / Statistics and Probability Letters 97 (2015) 88–98

whereγn(τ ) =gβn(τ )−gβn(τ ),vn(τ ) =
v1,n(τ ), . . . ,vp,n(τ )t = ∂γ (b, τ )/∂b|b=βn is defined in (5),γ is defined in (4) and

ξ(ti) an intermediate point betweengβn(ti) and gβn(ti). It is easy to see thatN8 andN2 entail that Ln,3
p

−→ 0 and Ln,4
p

−→ 0.

To complete the proof, it remains to show that Ln,j
p

−→ 0 for j = 1, 2 which will follow from N8(b)–(d) and the fact that

N6 implies thatE


x + {∂gb(τ )/∂b}


b=βn


υ(x)p(x, τ )|t = τ


= 0 (see (6)), using similar arguments to those considered

in Bianco et al. (2011). �

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.spl.2014.11.004.
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