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Abstract: We study the Hayward term describing corners in the boundary of the geom-
etry in the context of the Jackiw-Teitelboim gravity. These corners naturally arise in the
computation of Hartle-Hawking wave functionals and reduced density matrices, and give
origin to AdS spacetimes with conical defects.

This set up constitutes a lab to manifestly realize many aspects of the construction
recently proposed in [1]. In particular, it can be shown that the Hayward term is required
to reproduce the flat spectrum of Rényi entropies in the Fursaev’s derivation, and further-
more, the action with an extra Nambu-Goto term associated to the Dong’s cosmic brane
prescription appears naturally.

On the other hand, the conical defect coming from Hayward term contribution are
subtly different from the defects set as pointlike sources studied previously in the literature.
We study and analyze these quantitative differences in the path integral and compare the
results. Also study previous proposals on the superselection sectors, and by computing the
density operator we obtain the Shannon entropy and some novel results on the symmetry
group representations and edge modes. It also makes contact with the so-called defect
operator found in [2].

Lastly, we obtain the area operator as part of the gravitational modular Hamiltonian,
in agreement with the Jafferis-Lewkowycz-Maldacena-Suh proposal.

Keywords: 2D Gravity, AdS-CFT Correspondence, Black Holes, Gauge-Gravity Corre-
spondence

ArXiv ePrint: 2112.10799

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2022)130

mailto:rarias@fisica.unlp.edu.ar
mailto:botta@fisica.unlp.edu.ar
mailto:pedro.martinez@cab.cnea.gov.ar
https://arxiv.org/abs/2112.10799
https://doi.org/10.1007/JHEP04(2022)130


J
H
E
P
0
4
(
2
0
2
2
)
1
3
0

Contents

1 Introduction 1

2 Bi-partite QM systems and holographic factorization 5

3 The Hayward term in JT gravity 9
3.1 Hayward term from a variational Dirichlet problem in gravity 10
3.2 On-shell solution 15

4 Sources and JT geometries with conical defects 16
4.1 Pointlike sources in the bulk 16
4.2 Defects from boundary corners and Hayward contribution 17

4.2.1 Fixed area sectors and gravity ensembles/partition functions 19
4.2.2 Random matrix model and spectral density 21

4.3 Classical solutions in JT gravity with/without conical defect 22

5 The replica trick in JT gravity with a Hayward term 24
5.1 Rényi entropies 25

5.1.1 Fixed area sectors, Fursaev saddle and flat spectrum 25
5.1.2 Smooth solutions, MLD saddle/spectrum and the Dong prescription 26

6 Replica symmetry, the modular flow and area operator 28

7 A note on the asymptotic and edge modes 30

8 Concluding remarks 31

A Schwarzian action 33

B ADM analysis and edge modes 34

1 Introduction

In recent years Jackiw-Teitelboim gravity [3, 4] has been a fruitful field of study to probe
many ideas related to information loss in Black Holes and realizing models where explicit
calculations are manageable. In particular it has been capable of describe the conjectured
Page curve for the BH entropy [5–8]. Many studies and models on entanglement entropy
as well as properties of the partitions functions have been exhaustively studied in this
context [2, 9–11], and the question of the holographic correspondence with a boundary
theory has also received a lot of attention [12–14]. Some original proposals can be put in
practice in JT that hopefully can be generalized to higher dimensions.
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Figure 1. (a) A standard situation where a Hayward boundary term must be considered. The
spacetime has a boundary with a non-smooth corner at Γ = B ∩ B̄. The Hayward term can be
expressed in terms of the internal angle π − θ/2 = cos−1 (n · n̄). (b) We consider an Euclidean
path integral Hartle-Hawking state |Ψ〉 projected into a non smooth basis characterized by a region
Σ = B

⋃
B̄.

Spacetimes whose boundary is not smooth and present corners require to add a Hay-
ward term in addition to the typical Gibbons-Hawking-York boundary term in order to
have a well posed variational problem in gravity [15]. If there is a codim-2 corner Γ, see
figure 1(a), that splits the boundary Σ in two smooth components B and B̄ with respective
normal vectors n and n̄, thus the standard gravitational action has an extra term given by

Id>2
H ≡ 1

8πG

∫
Γ

√
γ cos−1 (n · n̄),

where γ is the induced metric on Γ. A study of the effects of such a term for d > 2 was
carried out in [1, 16]. Two dimensional JT gravity is a very convenient lab to test the
consequences of this idea, the area element shall be substituted by ΦΓ, the Dilaton field
in a point Γ following an implicit standard dimensional reduction scheme. Strictly, in JT
gravity the Hayward term takes the form

Id=2
H ≡ 1

8πG cos−1 (n · n̄) ΦΓ.

Even though the Hartle-Hawking wave functional and (reduced) density matrix elements
are described by dominant geometries whose boundaries generically involve corners, sur-
prisingly enough, the Hayward term has still been very little studied in the JT literature.
Precisely one of the main goals of this manuscript is to probe, in the specific example of
JT gravity, the holographic prescriptions using this term to compute Rényi entropies and
modular flow [1, 16], in contrast with standard cosmic brane proposals [17–20].

In the context of the holographic duality, the entanglement entropy of ordinary QFT
in a subregion of the boundary is given by a quarter of the area of a minimal surface
embedded in the bulk spacetime [21], capturing the Bekenstein-Hawking law for the black
holes entropy [22, 23] as a particular case. This rule can also be generalized to a suitable
one-parameter extension of the von-Neumann entropy Ŝn called refined Rényi entropies,
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which is a quarter of the area of a cosmic brane minimally coupled with gravity with a
tension [17]

Tn = n− 1
4nG . (1.1)

However, viewing this prescription as an entirely holographic model, the cosmic brane plays
no natural role in the holographic duality. Thus, a derivation within a theory of pure gravity
becomes of interest to the holographic dictionary. In the original prescription [17] this can
be achieved coming from a saddle of a replicated boundary condition, and the cosmic brane
appears as an auxiliary object that effectively sources the correct dual geometry. Moreover,
this construction lacks a description at the level of states and the density matrix.

This issue was solved in [1] by observing that the Hartle-Hawking wave-functionals
generically contains codim-2 corner contributions in the form of Hayward terms for non-
smooth choices of the initial space slice, see figure 1(b). The geometry can be completed
to compute the saddle contributions to the partition function where a conical geometry
appears with the correct deficit angle predicted by the Dong’s recipe. It has also been
shown that such term can explain the Ryu-Takayanagi law [16].

One of the advantages of the present approach is that the density matrix captures this
information in the corner term (proportional to the codim-2 area), thus explaining that
the Jafferis-Lewkowycz-Maldacena-Suh (JLMS) [24] proposal for the gravitational modular
Hamiltonian explicitly contains the area operator [1]. As a result, we will compute the den-
sity operator and show this claim in the JT example. It is worth emphasizing here that the
cosmic brane model [17] is equivalent to the proposal based on the Hayward/corner term
at the level of the partition function, whose saddles are closed, periodic, Euclidean geome-
tries, but the last model furthermore provides the underlying description of the reduced
density matrix and modular Hamiltonian in gravity. Moreover this is better supported by
holographic arguments on the states and their matrix elements.

The gravitational representation of the states are the Hartle-Hawking wave-functionals,
described as Euclidean path integrals with specific conditions on the asymptotic boundaries,
complemented with initial conditions on an arbitrary spacelike (initial) surface Σ that in
general, may include a corner described by a non-trivial Hayward term in the action whose
saddle geometry is depicted in figure 1(b). Then, by gluing two of these geometries on one
of the two sides corresponding to the complement of the entanglement wedge, we obtain a
Pacman geometry representing the gravitational (reduced) density matrix of a holographic
state, see figure 2(a).

We are going to focus our approach in these Pacman geometries, MP , which are Eu-
clidean spacetimes with specific (possibly arbitrary) boundary data on its internal bound-
aries B± and whose action necessarily contains a Hayward term describing the corner
contribution in order to have a well posed problem under Dirichlet boundary data [15, 16].
An analogous study is highly non-trivial in higher dimensions due to the many dofs living
in the B± surfaces. We will find that the JT examples allow to properly define these dofs.

Moreover, Pacman geometries are precisely the geometries required to compute the
matrix elements of the reduced gravitational density matrix trough a path integral

〈B+|ρr|B−〉 ∼ e−I[MP ] + . . . ≈ e−Ibulk[MP ] e−IGHY [∂MP ,B
±]+ (2π−θ)

8πG a(Γ) + . . . , (1.2)
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where . . . represent subleading contributions to the path integral. The ∂MP denotes the
asymptotic boundary and the last term is the Hayward term due to the corner with opening
angle θ. In JT gravity a is given by the value of the Dilaton field Φ at the point Γ. The
subindex in ρr is schematic for the moment: it labels the irrep (superselection sector) of
the density matrix, that we will claim to be associated to Γ and a(Γ) and which will be
properly introduced in the main body of the paper.

Finally, by taking the trace of this density matrix we can obtain an entirely gravita-
tional partition function with a conical defect described by the remaining Hayward term
contribution. Since the origin of this contribution lies in the boundary rather in the bulk
interior (as in approaches [25–28]), there are subtly but important differences in the nature
and description of the defect and in the computations. For instance, there are many radi-
cal implications on the computation of the Rényi entropies and derivations of the Dong’s
construction.

There is another paradigm that we are going to test in the present manuscript related
to the structure of sectors, or blocks, such that the density matrix can be represented in
the gravity side. In a supplementary proposal done in [1], subtly different to the notion
of fixed area states proposed in [18], the idea is that each codim-2 surface Γ, whose area
is fixed, splits the space in two regions such that Γ works as the entangling surface for
gravitational dofs. This will be discussed more deeply in section 2 and the consequences
of such statement will be tested through the paper. This will shed light on the splitting of
dofs under holographic mapping, the so called factorization map and the edge modes.

There are other aspects related to this discussion that arise when gravity is treated as
a gauge theory and in particular on the presence of edge modes because of the entangling
surface Γ bounding the spacetime dofs [2, 9]. Edge modes can be understood as dofs
emerging from pure gauge ones as a bounding surface is imposed. In [16], the authors
also pointed out and studied the connection between the Hayward term and edge modes
in gravity, and we will go some steps further in this issue.

The paper is organized as follows. In section 2 we show how the holographic factoriza-
tion proposed in [1] works for this two dimensional example leading to the notion of fixed
area sectors and an interpretation of the RT formula that is directly related to edge modes.
In section 3 we will show explicitly how the Hayward term appears in JT gravity by varying
the action and looking for the boundary terms that contribute to it. We will also obtain
the on-shell solution to the system. In section 4 we study the partition function obtained
by taking the trace of the density matrix for the Pacman geometry. We make explicit the
similarities and differences with the previous results about JT gravity with defects. We also
obtained the spectral density. In section 5 and 6 we compute the Rényi and refined Rényi
entropy from the partition functions obtained before and give a derivation of the JLMS in
this context respectively. In section 7 we add a brief commentary on the edge modes by
writing an action that takes them in account and constructing the conjugate pairs and their
commutation relation. Finally we write a summary of results and conclusions in section 8.

List of achievements and results:
• Ideas and computations of the proposal of gravity with Hayward term of [1] were

tested for JT gravity.
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• Supplementary suppositions of [1] in the JT lab on the holographic correspondence
between subsystems were investigated. In particular, the von Neumann decomposi-
tion of the bulk Hilbert space in superselection (SS) sectors, claimed to be labeled
by the entangling surfaces (a point in 2d) Γ. These sectors are characterized by
observables as the areas ΦΓ and we compare this point of view with the fixed area
states [18].

• In this sense, a relation between these SS sectors and representations as in ordinary
gauge theories are found as well as several remarks on the symmetry group and
its representations; and in particular on edge modes. We recover the result of [9]
using different arguments and propose a generalization of her formula in presence
of a conical defect, which indirectly implies that the symmetry/representations are
deformed in this case.

• The partition function for this theory of gravity with corner terms is evaluated, at
classical and quantum level.

• The density of states of an hypothetical dual random matrix model, Ω(E) is
computed.

• A novel formula for the Euclidean JT action is found as the conical geometry is
recovered by closing the Pacman manifold MP . We argue that this is crucial to
compute Rényi entropies correctly.

• Well-established recipes [17, 29] to compute Rényi entropies are reproduced.

• The defect operator introduced in [2] is also reproduced.

• The modular Hamiltonian in JT gravity (+ corner terms) is computed and the JLMS
proposal is reproduced.

2 Bi-partite QM systems and holographic factorization

The area laws and the extremality of RT/HRT surfaces must arise from a suitable semiclas-
sical approximation of gravity as leading contributions; thus, the definition of spacetime
regions as the entanglement wedge associated to a subset of the boundary dofs is unclear
at quantum level. Moreover, the precise holographic correspondence between dof subsets
is yet unknown. The AdS2/CFT1 version of holography can be auspicious to study this.

Since aAdS1+1 has two asymptotic boundaries L,R, one can compute entanglement
quantities between both sides. They should be dual to a quantum mechanical system.
Based on the same arguments that [1], our prescription here is that the reduced density
matrix of the quantum system L (or R), has a block diagonal structure

ρ(L) =
⊕

Γ
ρ(Γ) . (2.1)

The physical interpretation of this expression is that given a fixed splitting of the QFT
degrees of freedom living on the boundary in two subsets A ∪ Ā, then one should consider
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a sum over all the possible splittings on the bulk dofs separated by a codim-2 (entangling)
surface Γ such that ∂Γ = ∂A. A remarkable ingredient of this proposal is that one must
view each bulk-splitting as a different superselection (SS) sector or representation, and
consider the direct sum over them.

This resembles the von Neumann’s theorem, see e.g. appendix of [30]. Since the algebra
of operators in the quantum theory defined on the boundary can be assumed to be a von
Neumann algebra [31], then in the context of the gauge/gravity duality, both Hilbert spaces
can be equated upon a von Neumann decomposition of the bulk Hilbert space as [1, 32]

HL ⊗ HR ≡
⊕

Γ
HB ⊗HB̄ . (2.2)

So the reduced density matrix (2.1) results from taking the partial trace on HR of the
global state, while in the bulk one must sum over all possible entangling surfaces.

Such a structure becomes more evident by considering a formal discretization of Σ in
a finite set of (in 1+1) points ΣM = {q1 . . . qM}, so that the HH wave function has M
variables, and the state belongs to a finite dimensional Hilbert space dimHM = M . In
principle, one could also add independent fields to live on this lattice, but we disregard
this possibility here to provide a minimal example. Consider a splitting taking place
at any of these points, say Γ ≡ qk, the density matrix of the gravitational subsystem
B = {q1 . . . qk} ⊂ ΣM , is a k × k matrix

ρ(Γ) = p(k) ρab(k) a, b = 1, . . . k .

This is nothing but a k-dimensional representation of the state ρ(L), where the prefactor
p(k) ∼ e−cΦ(qk)/G is a number interpreted as the probability of the representation that
shall be obtained within the gravity theory. Therefore, a complete description of the state
of this system shall be the direct sum of blocks

ρ(L) =
M−1⊕
k=1

pk ρ(k), (2.3)

which is the discrete version of (2.1).
The so-called factorization problem in JT gravity is closely related to this decompo-

sition and has already been discussed in detail [32], but this is not our goal here and it
remains for future research. For the most of applications studied in this work, we are
interested in the formula to compute the partition function (and the entropy) in the field
theory in terms of the theory of gravity, namely

ZQM (L) =
∫

Γ
[DΓ] Z(Γ) =

∫ √
gd2xΓ Z(xΓ) Γ = B ∩ B̄ , (2.4)

where ZQM (L) is the partition function of the Quantum Mechanics system on the L side
and Z(Γ) is the gravitational partition function corresponding to the SS sector Γ taken to
be uniquely labeled by the tip position xΓ. This expression will be useful in our analysis, it
follows from eq. (2.1) by taking trace, summing over the Γ-blocks. This expression for the
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partition function can be interpreted as follows: the point Γ in the bulk is undetermined
a priori, and so in principle, one should sum over all possibilities. The right hand side of
this expression was used in the paper [27] for perturbative analysis.

Note that the Hayward term is nothing but the Nambu-Goto action for the (pointlike)
embedding field xΓ : Γ → M and the corresponding eom is the condition of minimum for
the Dilaton field ΦΓ ≡ Φ(xΓ) [1]. This encodes the “cosmic brane” of the model [17] to
compute Rényi entropies.

SS sectors as representations and Edge modes. Gravity in 2d can be formulated
as a gauge theory. The gauge group in principle is SL(2,R), but for certain boundary
conditions that imply conical singularities (θ 6= 2π) this can be broken to a different
residual symmetry group [25, 26, 28].

In gauge theories, the SS sectors are representations, and the labels are given by the
eigenvalues of the Casimir operators, so it can be expected that the area of the entangling
surface (ΦΓ) be an observable associated to a Casimir of the symmetry group [16, 33]. In
this sense, one of the achievements of the present approach is that the different SS sectors
are weighted by probabilities that depend on the value of the field ΦΓ on each splitting
point Γ as

ρ(L) =
⊕

Γ
N e

(2π−θ)ΦΓ
8πGN ρJT(Γ) =

⊕
Γ

pΓ ρJT(Γ) , pΓ ≡ N e
(2π−θ)ΦΓ

8πGN , (2.5)

where θ is the opening angle on the corner of the geometry and N is a normalization
factor.1 The following remarks are consequences of this result:

(a) The SS sectors of (2.1) correspond to representations of the symmetry group, so as
for ordinary gauge theories, and the label Γ is determined by the Casimir operators.

(b) ΦΓ are the eigenvalues of a Casimir operator that commutes with all the Algebra
generators.

Therefore by virtue of (b), we note that the weight prefactors are in the center of the
algebra, and one get a non trivial restriction to the gauge group (SL(2,R) or residual): it
has ΦΓ as one of its Casimir operators. In particular this is a Casimir of SL(2,R) (e. g.
see [2, 33]) and the unitary representation are infinite dimensional [34]. It is worth pointing
out here the possible presence of edge modes encoded in the Hayward term.

Edge modes. The idea that in gravity the edge modes should be related to the corner
dynamics was pointed out first in [16]. In order to describe edge modes in a gauge formula-
tion of JT gravity, if the distribution pΓ is that given in are those of eq. (2.5), the density
matrix shall be given by

ρ(L) =
⊕

Γ
pΓ ρJT(Γ)⊗ I

dimRΓ
, (2.6)

1The direct sum over Γ sectors is formal yet, so this factor should be N−1 =
∫
dΓµ(Γ) e

(2π−θ)ΦΓ
8πGN where

µ is the number of entangling surfaces with area ΦΓ.
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Figure 2. (a) A representation in the 2d plane of the computation of 〈φ+|ρ|φ−〉 is shown, where
ρ = TrB̄ |Ψ〉〈Ψ|. The φ± define the field configurations in the branches. (b) The geometry associated
to the partition function Z[Γ] is shown. The computation is made by taking trace of the density
matrix ρ(Γ) within the Γ SS sector. The original state |Ψ〉 is represented by the lower semi-disk
with a thicker line.

where the last factor describes the edge modes [2, 9, 16]. The goal here is to estimate the
dimensions of the representations RΓ. The entanglement entropy in this case writes

S =
∑
Γ
−pΓ log pΓ + pΓ log dimRΓ + . . . . (2.7)

This computation involves Tr ρ associated to closing the Pacman into a geometry with
conical deficit angle α = 2π − θ. The first term of this is the Shannon entropy that can
be computed directly, the second one is related to the edge modes representations and . . .
represent the terms associated to the average entropy of ρJT, which is distillable [35, 36].
We shall concentrate in the terms that appear in this expression. Using (2.6) we have

S =
∑
Γ

pΓ

((θ − 2π)ΦΓ
8πGN

+ log dimRΓ

)
+ . . . (2.8)

On the other hand, the Ryu-Takayanagi formula for the (renormalized) entanglement
entropy states

S = 〈ΦΓ〉
4GN

≡
∑
Γ

pΓ

( ΦΓ
4GN

)
. (2.9)

Therefore, comparing this with (2.8) in the limit where the deficit angle of the conical
geometry vanishes, we obtain the relation among expectation values in the state (2.6)

〈log dimRΓ〉 ≈
〈ΦΓ〉
4GN

, (2.10)
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consistent with previous results obtained from analysis of the measure of SL(2,R) repre-
sentations [9].

This argument even suggests a stronger relation between the area/Dilaton eigenvalues
and the dimension of the individual representations

log dimRΓ ≈
ΦΓ

4GN
. (2.11)

This expression would be quite interesting because one can plug this back into (2.6) and the
factor e

ΦΓ
4GN cancels out with the same factor of pΓ, then the weights of the representations

becomes monotonically decreasing with the area: pΓ ∼ e
−θΦΓ
8πGN for all θ > 0, as expected

by the Ryu-Takayanagi statement.
On the other hand, following [9] we have considered here the case of a disk geome-

try, however for suitable boundary conditions we can have saddle geometries with conical
singularity, which implies the generalization of (2.10) (or even more strongly (2.11))

log dimRΓ = (2π + α)ΦΓ
8πGN

(2.12)

The derivation of (2.10) in [9] was based on the analysis of the Plancherel measure of
the infinite-dimensional representations of SL(2R). Although it can be expected that the
symmetry changes because of the defect, this result is an evidence for it and quantifies the
deformation of the measure of the reps (linear in α), or the symmetry group itself. Since in
some models α is interpreted as the tension of a cosmic brane [17], this formula should be
studied more in depth in higher dimensions and in connection with the cosmic brane dofs.

Fixed area sectors instead of “fixed area states”. According to the construction
in [18], the partition function clearly interprets as the modulus of a fixed area state: Z(Γ) ≡
〈Ψ,Γ|Ψ,Γ〉 for (nearly) eigenstates of the field ΦΓ, promoted to be an operator. However
from our perspective [1], summarized above, to fix the entangling (codim-2 surface) point Γ
in the bulk, corresponds to fixing the representation of the density matrix ρ(Γ) of (2.1): the
SS sector, and the interpretation of this partition function is the trace of one specific block

Z(Γ) = TrΓ ρ(Γ). (2.13)

Even though that these two points of view can be quantitatively equivalent in the current
JT theory, they are conceptually very different and the differences can drive to subtly
different constructions.

3 The Hayward term in JT gravity

In this section we highlight the main pieces of the argument leading to the necessity of a
Hayward term in the gravitational Dirichlet variational problem and compute its on shell
action. In higher dimensional scenarios, where one works directly with the Einstein-Hilbert
action, this problem has indeed been explored [1, 16], but we have not found this argument
for the JT action, which due to the Dilaton requires some extra work. Other authors [32]

– 9 –



J
H
E
P
0
4
(
2
0
2
2
)
1
3
0

have argued in favor of the presence of a similar contribution due to a topology argument,
but this does not extend to the dynamical piece of the action and ultimately hides the fact
that requiring a well posed variational Dirichlet problem is enough to completely fix the
action and that the Hayward term is as necessary as the Gibbons-Hawking codim-1 term.

3.1 Hayward term from a variational Dirichlet problem in gravity

We start from the JT bulk terms and we study it over the manifold M shown in fig-
ure 2(a) representing a density matrix computation. We can split the bulk contributions
in topological and dynamical as

IJT = IT + ID = Φ0

∫
M

√
gR+

∫
M

√
g Φ (R− 2Λ). (3.1)

Here Φ is the Dilaton field and Φ0 � 1 is a constant. Before moving on, a comment is due
regarding the internal angle notation θ. Notice that in figure 2 we have called the internal
angle θ rather than θ/2 as in figure 1. This is because, in analogy with the TFD state’s
temperature β, we are taking the HH state to have internal angle θ/2 and the associated
density matrix (built by gluing two HH states along a subsystem) to have internal angle θ.
It should always be clear from the context which one is the correct angle to consider. This
comment is especially relevant in the light of the Hayward term explicitly breaking the
linearity of the EH action [1, 15, 16] that was an important piece of the argument in [17],
so one should always be aware of the object one is computing in our set-up.

Topological piece. By varying the Einstein-Hilbert action in 1+1 we get,

δ

(∫
M

√
gR

)
=
∫
M
Rδ
√
g +

∫
M

√
gδR .

Using standard relations,

δ
√
g = −1

2
√
ggµνδg

µν δR = Rµνδg
µν +∇ρ (gσνδΓρνσ − gσρδΓννσ) ,

we get, ∫
M
Rδ
√
g = −1

2

∫
M

√
g R gµνδg

µν∫
M

√
gδR =

∫
M

√
gRµνδg

µν +
∫
M

√
g∇ρ (gσνδΓρνσ − gσρδΓννσ) (3.2)

=
∫
M

√
gRµνδg

µν +
∫
∂;B±

√
hnρ (gσνδΓρνσ − gσρδΓννσ) .

The bulk pieces provide the EH equations of motion, which in 1+1 is a geometrical identity∫
M

√
g

(
Rµν −

1
2R gµν

)
δgµν =

∫
M

√
gGµνδg

µν = 0 .

This can be proven easily by reminding that Rρµσν = R/2(δρσgµν−δρνgσµ) is the most general
Riemann tensor in 2d, thus by contracting one gets Rµν = R

2 gµν . We are now left with
the boundary terms∫

∂;B±

√
hnρ (gσνδΓρνσ − gσρδΓννσ) =

∫
∂;B±

√
h
(
nρg

σνδΓρνσ − nρδΓννρ
)

(3.3)
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where we have defined nµ the external normal vector to each surface. In particular, we will
also need to know the form of δnµ. We define this vector via a scalar function Υ(xµ) = 0
such that nµ = C∂µΥ normalized such that n2 = +1. It is standard to consider a variation
such that the Υ(xµ) = 0 condition is unaffected by the variation. However, since the metric
itself is modified, so does the normalization C

δnµ = δC

C
nµ ,

δC

C
= −1

2nαnβδg
αβ ,

from where we see that δnµ ∝ nµ which we will use repeatedly below. The expression (3.3)
can be rewritten in terms of the variation of the normal vectors to each surface nµ by using

δ(∇σnν) = ∇σδnν − (δΓρνσ)nρ δ(∇µnµ) = ∇µδnµ + (δΓννρ)nρ (3.4)

Considering the B term for concreteness, we get∫
B

√
h
(
nρg

σνδΓρνσ − nρδΓννρ
)

=
∫
B

√
h (∇νδnν − gσνδ(∇σnν)− δ(∇µnµ) +∇µδnµ) (3.5)

=
∫
B

√
h (∇µ(δnµ + gµνδnν) + (δgσν)∇σnν − 2δK)

where we used that the trace of the extrinsic curvature can be written as K = ∇µnµ. Now
this is pretty close to what we are after. We have identified the origin of the Hayward term
in the first term of the second line above. In order to use once again the Stokes theorem
on it, one should first relate ∇µ → Da, with Da being the covariant derivative compatible
with the induced metric on B. This can be done by extracting the derivatives parallel to n,

δuµ ≡ δnµ + gµνδnν = nνδg
µν + 2gµνδnν , (3.6)

∇µδuµ = Dµδu
µ − (nρ∇ρnµ)δuµ = Dµδu

µ − (nρ∇ρnµ)nνδgµν

where we have used that δnν ∝ nν so that (nρ∇ρnν)δnν = 0. We thus get∫
B

√
h
(
nρg

σνδΓρνσ − nρδΓννρ
)

=
∫
B

√
h (Dµδu

µ + (∇µnν − nρ(∇ρnµ)nν)δgµν − 2δK)

=
∫
B

√
hDµδu

µ +
∫
B

√
hKµνδg

µν − 2
∫
B

√
hδK

= [tµδuµ]∂B;Γ +
∫
B

√
h(Kµν −Khµν)δhµν − δ

(
2
∫
B

√
hK

)
= [tµδuµ]∂B;Γ − δ

(
2
∫
B

√
hK

)
,

where the last term is the standard Gibbons-Hawking-York (GHY) boundary term for
codim-1 boundaries in a manifold, in which the full Kµν = ∇µnν − nρ(∇ρnµ)nν definition
was used. We put δgµν = δhµν when contracted with the extrinsic curvature and induced
metric since all other components vanish by definition.

In the 1+1 dimensional set-up, the GHY term vanishes identically. This can be seen
by considering that an extrinsic curvature in 1+1 is just a function and the induced metric
is one dimensional. Thus, the extrinsic curvature tensor being a symmetric tensor on its
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indices must be of the form Kµν = Khµν , regardless of the surface. We are left to explore
the object in the first term. In it, we defined ta as the vector tangential to B but normal
to its boundaries. The first realization of such an object is that by definition tµnµ = 0,
and δnν ∝ nν , so that using (3.6) one gets

tµδu
µ = tµnνδg

µν .

We thus find that the contribution we are after is related to the non diagonal element in
the metric decomposition in terms of the t and n vectors. Furthermore, we find that this is
not a full variation of any quantity, i.e. this isolated contribution cannot be regarded as a
boundary term to the action. To do so, we must consider the similar contribution coming
from other boundaries. Take for example the contributions coming from both B± at Γ, see
figure 2(a)

(tµnν − kµmν)δgµν .

These contributions require a definition of two basis of vectors {n, t} coming from B and
{m, k} coming from B̄. Being in Euclidean signature, these bases must be related via a
rotation. In particular,

mµ = − cos θnµ + sin θtµ nµ = − cos θmµ − sin θkµ − cos θ = gµνnµmν ,

from these relations one can put the Γ contribution just in terms of the normal vectors as

(tµnν − kµmν)δgµν = 1
sin θ (mµnν + nµmν) δgµν + cos θ

sin θ (mµmν + nµnν) δgµν

= 2
sin θnµmνδg

µν + 2
sin θg

µνδ(mνnµ) (3.7)

where we have used that δnα = −1
2nµnνδg

µνnα. This can be seen to match the variation
of the θ angle as defined via the normal n,m vectors,

−2δ(cos θ) = 2 sin θ δθ = 2nµmνδg
µν + 2gµνδ(nµmν) .

One gets a similar contribution from all corners. We have finally proven that

δ

(∫
M

√
gR+ 2

∫
∂;B±

√
hK

)
= 2δθΓ + 2δθ∂B + 2δθ∂B̄ .

The codim-2 terms we got from the topological pieces (upon considering the complete
manifold M) are indeed full variations and can be removed via boundary terms. This is
interpreted as these corners not adding any extra dofs in an EH action in 1+1, i.e. the
action is still only topological. The action that provides a well posed problem on this
regard is

IT + 2Φ0(θΓ − 2π) + 2Φ0(θ∂B+ − π/2) + 2Φ0(θ∂B− − π/2) (3.8)

where the 2π factor in (θΓ − 2π) is fixed so that we do not have a Hayward term when
there is no deficit angle in the geometry corresponding to the density matrix. On the other
hand, since θ∂B± belong to a codim-2 corner that represents a timelike-spacelike corner in
real-time signature, their contributions are expected to vanish for θ∂B± = π/2.
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Dynamical piece: the treatment on the dynamical piece of the action follows along the
lines of the topological piece but one should be careful with the extra terms appearing due
to the Dilaton. We start from

ID =
∫
M

√
g Φ (R− 2Λ)

whose variation is

δID =
∫
M

√
g (R− 2Λ) δΦ +

∫
M

√
g Φ δ(R− 2Λ) +

∫
M
δ(√g) Φ (R− 2Λ) .

The first term above will provide eoms for the metric that fix R = 2Λ even off shell, since
the Dilaton can be integrated out exactly in the path integral. The second and third terms
lead to∫

M
δ(√g) Φ (R− 2Λ) = 1

2

∫ √
g Φ (R− 2Λ)gµνδgµν ,∫

M

√
g Φ δR =

∫
M

√
g Φ Rµνδg

µν +
∫
M

√
g Φ ∇µ (∇νδgµν − gνρ∇µδgνρ) ,

where the second term should be manipulated as

Φ ∇µ (∇νδgµν − gνρ∇µδgνρ)
= ∇µ [Φ (∇νδgµν − gνρ∇µδgνρ)]− (∇µΦ) (∇νδgµν − gνρ∇µδgνρ) .

Further manipulations on the second term above lead to the Dilaton eoms plus some
boundary terms,∫ √

g
[
−RµνΦ +∇µ∇νΦ− gµν∇2Φ

]
δgµν

+
∫
∂;B;B̄

√
h nµ∇µΦ hνρ δhνρ +

∫
∂;B±

√
h δuµ DµΦ .

Recalling that in 1+1 we have Rµν = R/2gµν = −gµν we get,

gµν
[
gµνΦ +∇µ∇νΦ− gµν∇2Φ

]
= 2Φ−∇2Φ = 0 ⇒ (∇µ∇ν − gµν)Φ = 0 .

Our main interest arises in the boundary terms rising from∫
M

√
g ∇µ [Φ (∇νδgµν − gνρ∇µδgνρ)] =

∫
∂;B±

√
h nµ [Φ (∇νδgµν − gνρ∇µδgνρ)] .

From our work on the topological term, this boundary contribution can be written as∫
M

√
g ∇µ [Φ (∇νδgµν − gνρ∇µδgνρ)]

=
∫
∂;B±

√
h Φ Dµδu

µ − 2
∫
∂;B±

Φ δ
(√

hK
)

+
∫
∂;B±

√
h Φ (Khµν −Kµν)δhµν

=
∫
∂;B±

√
h Φ Dµδu

µ − δ
(

2
∫
∂;B±

Φ
√
hK

)
+ 2

∫
∂;B±

√
hK δΦ ,
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where recall that Khµν = Kµν is a geometric identity in 1+1. The second and third terms
above can no longer be manipulated. The first term is the one that contains the codim-2
contributions, i.e.∫

∂;B±

√
h Φ Dµδu

µ =
∫
∂;B±

√
h Dµ(Φ δuµ)−

∫
∂;B±

√
h δuµ DµΦ . (3.9)

The second term cancels a contribution that appeared earlier, whilst the first term finally
yields, again by virtue of our IT piece analysis,∫

∂;B±

√
h Dµ(Φ δuµ) = 2 (ΦΓδθΓ + Φ∂B+δθ∂B+ + Φ∂B−δθ∂B−) .

We arrive at

δID + δ

(
2
∫
∂;B±

√
hΦK

)
= δ

(∫
M

√
gΦ(R− 2Λ) + 2

∫
∂;B±

√
hΦK

)
= 2

∫
∂;B±

√
hK δΦ (3.10)

+
∫
∂;B±

√
h nµ∇µΦ hνρ δhνρ + 2 (ΦΓδθΓ + Φ∂B+δθ∂B+ + Φ∂B−δθ∂B−) .

The first two terms mandate the possible boundary conditions to impose at each boundary,
either Dirichlet, δhνρ = δΦ = 0, or Neumann conditions, K = 0 and nµ∇µΦ = 0. The
last terms are not a full variation and are a signal of the existence of extra dofs at these
points. From a variational problem viewpoint, one should further impose either δθ = 0 or
Φ = 0 at the corners. Since we are interested in a Dirichlet problem δhνρ = δΦ = 0, we see
that δΦ = 0 for ∂;B± in turn induces δΦ = 0 also on the corners. The natural dynamical
action for a Dirichlet problem on our Pacman geometry is thus

ID + 2
∫
∂;B±

√
h Φ K + 2 (ΦΓ(θΓ − 2π) + Φ∂B(θ∂B − π/2) + Φ∂B̄(θ∂B̄ − π/2)) (3.11)

which can be seen to be completely defined by δhνρ = δΦ = 0 including the corners.

Summary. We started from the JT bulk terms and explored manifolds with codim-2
corners in the geometry, i.e. Pacman manifolds. We showed that in order to define a well
posed Dirichlet problem from this metric one should consider Hayward terms. We thus
now define the action we will be working with, which is

IJTH ≡ IT + ID + 2
∫
∂;B;B̄

√
h(Φ0 + Φ)K − 2

∫
∂

√
hΦ

− 2(Φ0 + ΦΓ)(θΓ − 2π)− 2(Φ0 + Φ∂B+)(θ∂B+ − π/2)
− 2(Φ0 + Φ∂B+)(θ∂B− − π/2) . (3.12)

Notice that an extra codim-1 term has been added which does not arise from our variational
problem. This term is required rather by demanding the on shell action to be finite via
holographic renormalization and it is only required at asymptotic boundaries [37].
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3.2 On-shell solution

Here we write the classical on shell action to the problem of JT gravity in presence of the
Hayward term. We start from action (3.12) and integrate out Φ fixing R + 2 = 0. Notice
crucially that the Hayward term is a boundary term and as such it does not modify the
eoms outside of its boundary conditions. The spacetime then is fixed to be AdS2,

ds2 = (r2 − 1)dτ2 + dr2

r2 − 1 , 0 ≤ τ ≤ θ. (3.13)

Here θ is the opening angle at the tip, the place where the conical defect will arise if one
completes the space with the point. For θ = 2π there is no conical defect. By considering
the B± surfaces to be that of constant τ , one can see that all codim-1 terms in the action
involving these surfaces vanish. Even if one chooses different B± surfaces, these codim-1
contributions should cancel upon gluing in building the partition function, as we will do in
the section 4. For now, we will consider the former fixed τ choice for simplicity.

The identification in the coordinate τ breaks the SL(2,R) symmetry of the hyperbolic
plane and just a diagonal U(1) remains, see appendix F of [28]. To deal with the boundary
dofs we need to fix the boundary proper length, which will be done cutting a piece of AdS2
to a nearly AdS2 space by using a regulator ε, setting

Φbdy = φ∂(u)
ε

, ds2
bdy = du

ε
, (3.14)

which implies that the proper length of the boundary is L =
∫ β

0 ds = β/ε, where the time
on the boundary curve runs in u ∈ [0, β). At the end one has to take ε → 0. Now, as
is usual in JT gravity we will label the boundary curve by some parameter u which has
the range 0 ≤ u ≤ β. So, writing the line element (3.13) as function of u it can be seen
that the remaining action (to leading order in ε) is the one of a Schwarzian theory plus the
Hayward contribution

IJTH = − φb
8πGN

∫ β

0
duSch

[
tan τ(u)

2 , u

]
+ 1

8πGN
(Φ0 + ΦΓ)(θ − 2π), (3.15)

where we used a constant value φ∂(u) = φb on the boundary, see appendix A for the
derivation of the first term in this coordinate system. Notice also that the Hayward terms
arising from ∂B± are absent in the expression above. In appendix B we show via an ADM
study that a gauge fixing allows to disregard them in our analysis unlike the Hayward term
at Γ that holds physical information.

The Schwarzian theory is an action for a scalar field τ : S1 → S1 whose respective
circumferences are β, θ. Given that the (Euclidean time) variable u ∈ [0, β] parameterizes
the circle, the field configurations τ(u) are interpreted as different reparameterizations. As
boundary condition one shall demand that the periodicity u → u + β is mapped to the
new interval as τ(u+ β) = τ(u) + θ, or in other words, the field τ(u) can be thought of as
a reparameterization map from a circle of length β to a circle of length θ. In cases where
β = 2πn , n ∈ N we will call n a winding number. In JT gravity these solutions are not
stable [38] but their analysis will be useful when we study the replica trick.
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To proceed with the computation of the on-shell action we must say the functional
form of the time coordinate. We will study a dominant solution which solves the equation
of motion of the Schwarzian theory

τ(u) = θ

β
u. (3.16)

Then, performing the integration in u we arrive to

IJTH = − φb
16πGN

θ2

β
+ 1

8πGN
(Φ0 + ΦΓ)(θ − 2π). (3.17)

This of course can be re-written in terms of the deficit angle α = 2π − θ which resembles
the conical defect on-shell solution of [25–27].

4 Sources and JT geometries with conical defects

The goal of the current section is to highlight that there are at least two ways of producing
conical defects in JT gravity. The commonly used is by inserting pointlike sources in the
bulk as in [27]. In our approach they will appear because of the boundary contributions
due to wedge shaped geometries. In this section we will see a general analysis that capture
both possibilities, but the second one has some advantages to compute Rényi entropies
in holographic scenarios and to prove the JLMS proposal. In particular, we are going to
conclude that the solutions of both formulations are equal but the on-shell actions differ
by a contribution given precisely by the Hayward term.

4.1 Pointlike sources in the bulk

JT gravity is a consistent theory for the 2d spacetime geometry (M, gµν) as well as for
the Dilaton field Φ(x). The bulk defects that have been more studied in the literature are
actually formulated as pointlike sources for the Dilaton, generally introduced through a
coupling term Iα = 2

∫
M d2xα(x)Φ(x) in the action [25–27]. Therefore, the total action is

linear in Φ(x) and the corresponding equation of motion constraining the geometry is

R(x) + 2 = 2α(x) x ∈ Int[M ] , (4.1)

which has to be supplemented with the condition for the Dilaton [∇µ∇ν − gµν ]Φ(x) = 0.
In particular, if we set a pointlike source α(x) = α δ2(x− x0) at the point x0 ∈M , we will
obtain an equation with source for the geometry R + 2 = 2α δ2(x − x0) whose solution is
a conifold with angular deficit given by 2π − θ = α. This is the reason why we may refer
to this configuration as bulk defect.

In fact, the path integral of JT gravity, including a source term is, recovering the 16πG
factors,

ZJT[φ∂ , β, α] ≡
∫

[DΦ(x)]M [Dg(x)]M

× e
1

16πGN

∫
M

√
g(R(x)+2)Φ(x) + 1

8πGN

∫
M

√
gα(x) Φ(x)dx+ 1

8πGN

∫
∂M

√
hΦ(K−1)

.

(4.2)
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Notice that we have ommited the topological term contribution containing Φ0 for it plays no
fundamental role in the discussion. This theory agrees with the action proposed in [19, 20]
as alternative to the method of [17] to evaluate n-th refined Rényi entropy for α ≡ 1−1/n,
since it describes a self graviting “0-brane” object at x0 with tension Tn ∝ n−1

n . The
field Φ(x) can be exactly integrated out from the full path integral, resulting the off-shell
condition (4.1). Plugging this into (4.2) we obtain just an effective boundary theory

ZJT[φ∂ , β, α] ≡
∫

[Dg(x)]M(α)e
1

8πGN

∫
∂M

√
hφ∂(K−1)

. (4.3)

where the measure [Dg(x)]M must be substituted by a sum over geometries satisfying (4.1):
[Dg(x)]M(α) = [Dg(x)]M δ(R + 2 − α). This partition function can be expressed as a
Schwarzian theory for a boundary dof, that can be exactly valued [25]

ZJT[φ∂ , β, α] =
(
−C
β

)1/2
e
−C (2π−α)2

β , (4.4)

where C < 0 only depends on the boundary values φ∂ , that according to (3.14) is given by
C = − φb

16πGN .
We would like to end this section by stressing that these type of sources in the Euclidean

geometry, are hard of arguing by only using holographic ingredients if they are to come
from states built via a path integral. In our mind, the two dimensional Euclidean geometry
arises in the holographic context, because of computations involving states of the dual QFT
as the Hartle Hawking wave functional. So the type of pointlike sources described here are
hard of arguing in such contexts. This is our main motivation to propose the set up and
analysis below.

4.2 Defects from boundary corners and Hayward contribution

In this section we elaborate more on defects whose origin is a corner on the boundary, such
that the equation of motion is

R+ 2 = 0 ∀x ∈ Int[M ]

in place of (4.1). We refer to as boundary defects or simply corners, and we will show differ-
ences with the description of the bulk ones, as well as implications on certain computations
such as Rényi entropies.

Remind from arguments of section 2 that the reduced state of the boundary quantum
mechanical system can be decomposed in a direct sum on different gravitational subsystems.
So the gravitational reduced density matrix associated to the “left” of the point x0 (the
region B in figure 1(b)) in the bulk is

ρ(B, β) ≡ TrHB̄ |Ψ〉〈Ψ| =
∑
φB̄

〈φB̄|Ψ〉 〈Ψ |φB̄〉 .

We are schematically considering a configuration basis φ(B) ≡ (h|B,Φ|B) on the spacelike
interval B. Defining two arbitrary field configurations φ± ≡ φ(B±) = φ(±iβ/2)2 on

2In particular in standard JT gravity discussed in the previous subsection, this propagator/path integral
involves only two entangled dof’s associated to the two asymptotic modes ψ(xL, xR) ∈ HL ⊗HR, thus, the
partial trace is: ρ(x−L , x

+
L) ≡ TrR ψ ψ† =

∫
dxR δ(xR−yR)ψ(x−L , xR)ψ†(yR, x+

L). In section 7 we argue that
an edge mode associated to Γ appears as an extra dof.
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two copies (or branches) of the surface B, denoted as B±, which intersect in a point
Γ = B+ ∩ B−, one can express its matrix elements as the product of euclidean evolution
operators [39, 40]3

〈φ+|ρ(B, θ)|φ−〉 =
∑
φB̄

〈φ+|U (−iβ/2, 0) |φB̄〉〈φB̄|U (0, iβ/2)) |φ−〉

= 〈φ+|U (−iβ/2, iβ/2) |φ−〉, (4.5)

where we have used the completeness of the configuration basis IB̄ ≡
∫
DφB̄|φB̄〉〈φB̄| on

HB̄. This is well defined as a path integral, and one can compute this in the large N
approximation:

〈φ+|ρ(B, θ)|φ−〉 =
∫
φ±

[DΦ(x)] [Dg(x)]e−IJT[Φ,g,MP ]

≈ e−Ibulk[φ,MP ] e−Ibdy [φ±]+ (2π−θ)
8πG ΦΓ , (4.6)

where, by virtue of the saddle point approximation, we evaluated the action in a classical
solution MP = M− ∪ M+ smoothly glued on the surface B̄, whose boundaries are the
branches (curves) B− and B+ (see figure 2a). This saddle manifold is clearly a Pacman
geometry (Fig 2b) characterized by a corner with an opening angle θ. In principle the
boundary data φ± that label the matrix elements (so as the asymptotic value φ∂ charac-
terizing the state), can backreact but the local metric is always AdS2.

Remarkably, in this context the point Γ belongs to the boundary, and therefore, differ-
ently from (4.1), the saddle bulk geometry do not receive contributions from the Hayward
term and so we always have

R(x) + 2 = 0, ∀x ∈MP (4.7)

The geometric counterpart (associated saddle) of Trρ is gluing together the intervals B±,
so MP becomes a conifold M with deficit angle 2π − θ, which implies that the integral of
curvature onM is distributionally consistent with the equation (4.1):

∫
M d2x

√
g (R+2) Φ =

2(2π − θ)Φ(x0). The important consequence of this construction is that the corner of MP

becomes the tip of the cone M(2π − θ), see figure 2.
In fact, defining the partition function as the trace of (4.6) by taking φ+ = φ− on

the (open) intervals B±, which one sums over, results the JT partition function with a
remaining Hayward term valued on Γ, which belongs to the boundary

ZJT[φ∂ , β, αΓ] ≡
∫

[DΦ(x)]M0
[Dg(x)]M0

× e−
1

16πGN

∫
M0

√
g(R(x)+2)Φ(x) +

∫
M

√
gαΓ(x) Φ(x)dx− 1

8πGN

∫
∂M

√
hΦ(K−1)

,

(4.8)

where M0 ≡M − Γ, and
αΓ(x) ≡ (2π − θ)

8πG δ(x− x0).

3The representation of the pure states in terms of evolution operators is convenient and more illuminating
for the computations involving the replica method and was used in the past to compute the modular
Hamiltonian for excited states in holography [41].
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In other words, the (conical) geometries on which we should sum over, do not include
the tip point which must be considered as a part of the interior boundary. This partition
function comes from a pure state that in the Hartle-Hawking formalism, can be described
as a path integral of Euclidean JT gravity without any defect or source. But it emerges by
taking the trace of a state built from these wave functionals in the bulk theory.

Let us see that this subtle conceptual difference with bulk sources reviewed above have
important quantitative consequences, e.g. on the derivations of the holographic prescrip-
tions to compute the Rényi entropies, as well as many other aspects related to holography
and entanglement.

4.2.1 Fixed area sectors and gravity ensembles/partition functions
In JT gravity, the standard computation of the path integral on a disc with (or with-
out) source at x0 (eq. (4.2)) involves a measure for the Dilaton that can be writen in a
factorized form∫

[DΦ(x)]x∈M =
∫ +∞

−∞
[dΦ(x0)]

∫
[DΦ(x)]x∈M0 , M0 ≡M − {x0} . (4.9)

The last path integral factor denotes a sum over Dilaton configurations on the manifold
M0. The same factorization of the measure can be formally expressed for the space of
2d-Euclidean metrics. It is illuminating to consider the JT path integral fixing ΦΓ a priori,
or integrating it out.

In the present context it is subtly different: the path integral (4.8) already supposes
ΦΓ fixed from the beginning (i), but regarding (4.9), one can also consider the integration
of it (ii). Let us consider both possibilities in order to interpret and compare results in
different saddle geometries. We have these two cases:
(i) Fix the boundary data Φ(x0), and do not integrate it out. Because in JT gravity the

area of a codim-2 surface Γ in JT gravity is given by Φ(x0), by fixing this one obtains
a clear realization of the so-called fixed area states [18] in the JT laboratory. We will
show that this gives place to the flat spectrum of the Rényi entropies.

(ii) Consider the full integration of this field expressed in (4.9). This realizes the integra-
tion on all the areas giving place to the Maldacena-Lewkowycz-Dong (MLD) smooth
geometries [17, 42] that will be useful to compute the refined Rényi entropies, which
will have a non-trivial spectrum.

Moreover, since the relation between both possibilities lies on integrating out Φ(x0), or
not, in the partition function, the conjectured interpretation of both types of saddle as
different ensembles is automatically proved in the present JT context. In the following we
will study both cases in detail.

Analysis of (i). By fixing the value of the observable Φ(x0), interpreted as the area in
JT gravity, the partition function (4.8) expresses the trace of fixed area states ρ[Φ(x0)]

Z[φ∂ , β, θ,Φ(x0)] ≡ Trρ[Φ(x0)] (4.10)

=
∫

[DΦ(x)]M0
[Dg(x)]M0

C[θ,Φ(x0)]

× e−
1

16πGN

∫
M0

√
gΦ(R+2)− 1

8πGN

∫
∂M

√
hφ∂(K−1)

, (4.11)
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where we see that the factor

P [θ,Φ(x0)] ≡ e
(2π−θ(x0)) Φ(x0)

8πGN ≡ e
− θ(x0) Φ(x0)

8πGN D[Φ(x0)] . (4.12)

captures the tip/corner local features and can be viewed by its own as a operator inserted
in a standard JT theory

Z[φ∂ , β, θ,Φ(x0)] ≡ Tr (P [θ,Φ(x0)] ρJT) .

It is worth emphasizing that we are making contact with the so called defect operator
proposed in [2] from totally different arguments. The referred defect operator consists of
the non additive part of this operator, and independent on θ

D[Φ(x0)] = e
Φ(x0)
4GN ⇒ P = D−θ/2π+1.

By integrating out the fields Φ(x ∈ M0) in (4.10), we can eliminate the bulk contribution
and obtain the remarkable expression

Z[φ∂ , β, θ,Φ(x0)] =
∫

[Dg(x)]M(2π−θ) e
(2π−θ(x0)) Φ(x0)

8πGN e
− 1

8πGN

∫
∂M

√
hφ∂(K−1)

. (4.13)

The measure [Dg(x)]M0
above became restricted to a sum over all the 2d geometries such

that R + 2 = 0, ∀x 6= x0 with a conical singularity at x0 and deficit angle 2π − θ;
specifically, a sum over the AdS cones M(2π−θ). The total action that results is local and
the Hayward term describes a local dof on the tip (In section 7 we shall revisit this point in
more detail), therefore, we can write the asymptotic term in terms of the reparametrization
mode which gives a Schwarzian action. By evaluating this in the dominant solution (3.16),
and computing the one loop contribution as usual [25], finally results

Z[φ∂ , β, θ,Φ(x0)] =
∫

[Dg(x)]M(2π−θ) e
(2π−θ(x0)) Φ(x0)

8πGN e
− 1

8πGN

∫
∂M

√
hφ∂(K−1) (4.14)

=
(

φb
16πGNβ

)1/2
e

(2π−θ(x0)) Φ(x0)
8πGN e

−C[φb] θ
2
β .

Notice the contrast of this expression with the standard formula (4.4).

Analysis of (ii). In agreement with the standard measure of JT gravity (4.9), one can
integrate (4.8) over all values of Φ(x0), and interpret this as summing over all the fixed
area states [18], giving place to a new partition function

Z[φ∂ , β, θ] ≡
∫ +∞

−∞
dΦ(x0)Z[φ∂ , β, θ,Φ(x0)], (4.15)

which can be rewriten as

Z[φ∂ , β, θ] ≡
∫

[DΦ(x)]M0
[Dg(x)]M0

P [θ] e−
1

16πGN

∫
M0

√
gΦ(R+2)− 1

8πGN

∫
∂M

√
hφ∂(K−1)

,

(4.16)
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where we have integrated first in Φ(x0), and thus the local tip operator is (we take a Wick
rotation Φ→ iΦ)

P [θ] ≡
∫ +∞

−∞
dΦ(x0) e

(2π−θ(x0)) Φ(x0)
8πGN = δ (2π − θ(x0) ) , (4.17)

which projects the measure

[DΦ(x)]M0
[Dg(x)]M0

→ [DΦ(x)]M(2π−θ) [Dg(x)]M(2π−θ)

This shows that in the resulting gravitational path integral (4.16) we must sum over smooth
geometries (θ = 2π), giving place to a pure gravitational partition function without any
conical defect. So in this case, the saddle geometry is the disk. The partition function can
be valued similarly to (4.4) but using the constraint (4.17) to obtain

ZJT[φ∂ , β] =
(

φb
16πGNβ

)3/2
e
−C[φb] (2π)2

β . (4.18)

Note that as expected from the fact that the remaining geometry is a disk we have the
partition function obtained in [11].

4.2.2 Random matrix model and spectral density
The physical properties of JT gravity can be captured by a doubly scaling limit of random
matrix models [11]. So, from the analysis above it is now straightforward to compute
the spectral density, Ω(E), for the hypothetical matrix model that is dual to the solution
with the Hayward term. It can be read from the expression for the partition function of
the theory

Z[β] =
∫ ∞

0
dE Ω(E) e−βE ,

by taking an inverse Laplace transform. The results reported here holds in the limit when
Φ0 is very large, otherwise higher genus topologies and non-perturbative corrections are
important. Because of this we will restore the contribution of the topological term along
this discussion.

The partition function is a modification of the one obtained for bulk defects in [25, 27].
Then, in our model we get (4.13)

Z[β] =
(

φb
16πGβ

)1/2
e

θ2
16πGβ φb−

(θ−2π)
8πG (Φ0+ΦΓ)+ Φ0

4G , (4.19)

from which the spectral density can be obtained

ΩΦΓ(E, θ) = e
2π(2Φ0+ΦΓ)−θ(Φ0+ΦΓ)

8πG

√
φb

4π
√
GE

cosh
(
θ
√
Eφb

2
√
Gπ

)
.

This spectral density has the same dependence in energy dependence as the one obtained
for bulk defects.

Note that if we compute the density of states obtained from the partition func-
tion (4.16) after integration in Φ(x0) (4.18) we recover the result for the disk [11]

Ω(E) = φb
32Gπ5/2 sinh

√πφbE

G

 .
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4.3 Classical solutions in JT gravity with/without conical defect

One of the main conclusions of the analysis above is that JT gravity formulated on Pac-
man geometries yields the same eoms (and solutions) than the standard analysis of JT
gravity with source term. Nevertheless their on-shell actions are subtly different and it
has consequences in some computations as we will see in forthcoming sections. In fact as
argued before, the eom R+ 2 = 0 on the interior of MP (2π− θ) becomes the distributional
equation

R+ 2 = 2(2π − θ)δ(x− x0),

as the Pacman closes and the base manifold becomes the conifoldM with deficit 2π−θ. The
most general classical solutions of this system can be written in Schwarschild coordinates as

ds2 = (r2 − r2
0)dτ2 + dr2

r2 − r2
0
, Φ(r) = r φb, r > r0, τ ∈ [0, β] . (4.20)

The metric (3.13) can be obtained from this one by a re-scaling of the coordinates r → r
r0

and τ → τr0, and the periods are related by θ = βr0. We choose this period to be
coincident with the circumference of the boundary (eq. (3.16)).

Notice that ∂τ is a Killing vector and the horizon is on r = r0. A particular solution is
completely determined by three constants/data: BC ≡ (φb , r0 , β). Near the horizon, this
geometry can be mapped to an ordinary cone with metric4

ds2 = ρ2dτ2 + dρ2 Φ(r) = φb

√
ρ2 + 1, 1� ρ > 0, τ ∈ [0, r0 β] , (4.21)

implying that the period near the tip/horizon is given by

θ = r0 β. (4.22)

This is the reason why θ is the so-called opening angle, and α ≡ 2π− θ is the deficit angle.
Therefore, the cone is a disk without conical singularity iff θ = 2π. The presence of a conical
defect in JT gravity is intimately related to the possibility of giving arbitrarily the value of
the field in two places e.g. on the asymptotic boundary φb, and on the horizon ΦΓ ≡ Φ(x0),
the point where there is a conical singularity. This is what could be interpreted as an extra
dof at the horizon (edge), apart from the boundary mode.

In fact, since ΦΓ = r0φb, then the parameter r0 in the solution can be written

r0 = ΦΓ
φb
, (4.23)

4By doing a new redefinition of the radial coordinate ρ2 = r2 − 1 we get the solution

ds2 = ρ2dτ2 + dρ2

ρ2 + 1 Φ(ρ) = r0 φb
√
ρ2 + 1 ρ > 0 τ ∈ [0, θ = r0β] .

and for ρ ≈ 0 (r ≈ 1) the metric approaches

ds2 = ρ2dτ2 + dρ2 Φ(ρ) ≈ r0 φb ρ > 0 τ ∈ [0, θ = r0β] .

which proves that there is no conical singularity iff θ(≡ r0β) = 2π.
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and the solution (4.20) can be completely determined from the data: BC? ≡ (φb ,ΦΓ, β),
which are the arguments of the partition function (4.10).

So, the opening/deficit angles of the geometry result dynamically determined by
these data5

θ = ΦΓ
φb
β, α = 2π − ΦΓ

φb
β. (4.24)

This shows that the JT case is consistent with the analysis of the canonical variables in
gravity with Hayward term in arbitrary dimensions [16], since given ΦΓ(/area) one obtains
α/θ dynamically and vice-versa, because they are canonically conjugate variables.

According to the analysis of the previous section, one can integrate out the number
ΦΓ in the Path integral (4.16), and then results the constraint α = 0 which implies that
the saddle manifold is a disk without conical singularity. In that case is very well known
that the solution is given just by giving two parameters/data: (φb , β). In that case α = 0
(θ = 2π), and then using (4.22) and (4.23)

r0 = 2π/β ⇒ ΦΓ = 2π
β
φb , (4.25)

and the metric is

ds2 =
(
r2 −

(2π
β

)2
)
dτ2 + dr2

r2 −
(

2π
β

)2 , Φ(r) = rφb, r >
2π
β

τ ∈ [0, β] .

(4.26)
Here it is worth add a note on the relation between the cases discussed in (i), (ii) and the
point of view explained in section 2. In general

ΦΓ = min{Φ(x) x ∈M}, (4.27)

is a condition extra satisfied by the classical solution ΦΓ = Φ(x0), this could be obtained
as an extra eom by considering an alternative definition to the gran ensemble (4.15) as

Z ≡
∫
M

√
g[d2xΓ]Z[BC?] =

∫
M

√
g[d2xΓ]eΦΓ

2π−θ
8πG e−IJT[BC?] (4.28)

where a priori, the embedding xΓ : Γ → M is also considered an independent variable in
the partition function. Then if the deficit is positive, the leading contribution to this path
integral is giving by (4.27), whose solution is xΓ = x0 (i.e, the minimum of the Dilaton
occurs for the position of the tip x0 of the spacetime).

This formulation coincides with our original proposal [1] and the arguments of section 2,
and moreover, it is necessary to recover the Dong’s recipe to compute Rényi entropies.
This can be interpreted as a Nambu Goto theory for the (pointlike) “cosmic brane” on a
2d backreacted spacetime. Furthermore, the perturbative analysis of [27] remarkably leads
to a path integral with the same integration measure. It would be interesting to perform
the same analysis with the new Hayward term in future studies.

5In path integral language, “dynamically” means that 〈α〉 = − ∂ logZ[BC?]
∂ΦΓ

gives (4.24) as one uses the
saddle point approximation.
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The reader can verify that this formulation is subtly equivalent to (ii) to recover the
(smooth) gravitational path integral, since using the classical relation between θ and ΦΓ
the correct saddle point of (4.28) requires θ = 2π as (4.17). This point shall be developed
in more detail in a future work.

5 The replica trick in JT gravity with a Hayward term

The computation of the Rényi entropy Sn and Refined Rényi entropy Ŝn require to compute
the partition function associated to n powers of the density matrix ρ,

Zn(β) ≡ Tr ρn. (5.1)

Then, the analytical extension of this to real values of n around n = 1 allows to take the
limit n→ 1 and compute the von Neumann entropy. Moreover, as has been noticed in [1],
if such analytical extension can be done to purely imaginary values n → is we obtain the
modular flow, and one can directly compute its generator: the modular Hamiltonian. This
will be the subject of the next section.

We are interested first in reproduce the holographic computation of both spectra Sn, Ŝn
in two set-ups: Fursaev and MLD scenarios in order to understand the replica procedure
in 2d gravity. In doing this we will show that both constructions are in conflict with the
traditional way of considering defects in JT gravity and these problems can be cured with
a Hayward term.

The replica technique consists in consecutively gluing n equal boundaries intervals
[0, β], and then the trace operation of (5.1) corresponds to identify the extremes of the
interval such that the boundary of the geometry is a circle S1 of circumference nβ. The
question is how in different scenarios the opening angle θ depends on n, giving place to
different Rényi spectrum. For instance the Fursaev set up [29] is characterized by conifolds
whose opening angle spectrum is θ(n) = 2πn, such that for n = 1 the corresponding
geometry is the disc (θ(1) = 2π), while the MLD family is θ(n) = 2π , ∀n (the replicated
geometry Mn is smooth).

The von Neumann entropy measures the entanglement of a physical system in a given
state and for a specific subset of degrees of freedom. The celebrated Ryu-Takayanagi
(RT) [21] formula is a powerful tool to compute it in quantum field theory in the context
of the gauge/gravity correspondence. This generalizes the Bekenstein-Hawking law for
the thermodynamic entropy of Black Holes [22, 23] and tell us that the entanglement
entropy is given by a quarter of the area of the minimal surface embedded in the dual
higher dimensional spacetime with gravity. Since its discovery evidence of its validity had
been collected (see [43] for a review), and it was finally been derived by computing the
gravitational entropy with different replica methods [29, 42].

The Rényi entropies are a generalization of the von Neumann entropy labeled by an
integer n,

Sn ≡
1

1− n logTrρn, (5.2)

such that the standard von Neumann entropy S ≡ −Trρ log ρ is recovered in the limit
n→ 1. There is an alternative family of measures of entanglement entropy related to the
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Rényi entropies (called refined or modular Rényi entropies [44]), given by

Ŝn ≡ −n2∂n

( 1
n

logTrρn
)

= (1 − n∂n) logTrρn, (5.3)

that also coincides with the von Neumann entropy as n → 1. This entropy is specially
easy to interpret in terms of thermodynamics [45], in fact, the last equality of (5.3) is
the definition of the thermodynamic entropy in the canonical ensemble, but valued on the
inverse temperature β = 2πn.

A similar area-law prescription for these entropies has been provided [17], but in this
case the extremal surface interacts with the background spacetime through a tension that
depends on the replica index in a specific way

Tn = n− 1
4nGN

. (5.4)

As we explained in the previous section the formula obtained for the effective action (free
energy) has an additional term w.r.t. the traditional computation that comes from the
corner in the Pacman geometry

I[M(2π − θ)] = − φb θ
2

16πGβ + 2π − θ
8πG (Φ0 + ΦΓ). (5.5)

Here we will check that this is the right formula to recover known results for the Rényi
entropies.

5.1 Rényi entropies

5.1.1 Fixed area sectors, Fursaev saddle and flat spectrum

In our approach these three concepts are related in the same scenario that we are going to
describe. We call the Fursaev set up to solutions to BCs: (φb,ΦΓ), where the condition on
ΦΓ is nothing but fixing the area sector, and the circumference of the replicated boundary
is βn ≡ nβ. So (φb,ΦΓ) are fixed and independent of this replica number, then using that
r0 = ΦΓ/φb is independent on β, then it is also independent on n. Thus the Fursaev’s
geometries Fn, are the saddle point configuration with these BCs, which are conifolds with
opening/deficit angle dynamically determined by these data,

θ = ΦΓ
φb
nβ,

and metric (with Dilaton)

ds2 =
(
r2 −

(ΦΓ
φb

)2
)
dτ2 + dr2

r2 −
(

ΦΓ
φb

)2 , Φ(r) = rφb, r >

(ΦΓ
φb

)
, τ ∈ [0, nβ], (5.6)

where the radial coordinate is bounded by the position of the entanglement surface/defect

r0 = ΦΓ
φb

= independent on n .
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Then substituting θn = r0βn, r0β ≡ θ0 in the metric and demanding that for n = 1
there is no conical singularity, we have that r0β = ΦΓ

φb
β = 2π, therefore we have that (in

the Fursaev set up) the opening angle on the tip is θ = 2πn. By taking the quotient of
the geometry (4.26) notice that in this case the fundamental domain is the solution for
n = 1: F1 = Fn/Zn. In other words, the solution (4.26) are n consecutive copies of the
same manifold glued consecutively. The replicated solution Fn , n > 1 is singular at the
tip Γ, and by evaluation of the on-shell action (5.5) reads

I[Fn] = C (2π)n + 2π(1− n)
8πG (Φ0 + Φ(x0)), θ = 2πn, rn = 1. (5.7)

Therefore, it is easier to compute first the refined Rényi entropy

Ŝn = Φ0 + ΦΓ
4G .

This is the so called flat spectrum. The remarkable observation here is that the formula for
the action (5.5) in fact requires the second (Hayward) term to obtain the correct result.

5.1.2 Smooth solutions, MLD saddle/spectrum and the Dong prescription

Once more, here we are going to show many results that only agree with the previous
literature if we take into account the last Hayward term in the action (5.5) which in the
standard computations is absent. In particular we shall verify that the Dong’s prescrip-
tion [17] works correctly in JT gravity6 with the ingredient of solving the Nambu-Goto
action coming from the Hayward tip term. We will begin describing the replica trick in
the MLD approach.

We define the MLD boundary conditions to fixing φb on [0, β], repeated n times on
the respective copies of the boundary, and the circumference of the replicated boundary is
β(n) ≡ nβ. Notice that in this case one does not fix the area sector by giving ΦΓ, but it
shall be fixed dynamically. As we explained before (section 4), these conditions imply that
the JT path integral Z(φb, β) is given by (4.18), corresponding to an ensemble where one
sums over ΦΓ.7 Then the saddle point approximation implies to minimize with respect to
(the JT area) ΦΓ, in agreement with the Ryu-Takayanagi-Dong prescription. This imposes
a constraint of smoothness α = 0 on the saddle geometries Mn expressed by

θ = 2π ∀n ⇔ β(n) r0(n) = 2π (5.8)

Thus, we obtain the positions of the extremal point Γ and the corresponding MLD spec-
trum [1, 17, 18]

r0(n) = 2π
nβ

= ΦΓ
φb

⇔ φb 2π
nβ

= ΦΓ .

6To our knowledge, this has not been verified in its original form for the JT case. However, other similar
formulations that add explict cosmic “brane” term have been recently probed in the context of replica
wormholes [19].

7Alternatively, one could fix the deficit angle, that in the “cosmic brane” set up is nothing but fixing
the tension.
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and the geometry of Mn is described by the metric

ds2 =
(
r2 −

( 2π
nβ

)2
)
dτ2 + dr2

r2 −
(

2π
nβ

)2 , Φ(r) = rφb, r >

( 2π
nβ

)
, τ ∈ [0, nβ] .

(5.9)
The on-shell action is

I[Mn] = −(2π)2C

nβ
. (5.10)

According to the definition of replicas and the semi-classical approximation we have

I[Mn] ≈ logTrρn (5.11)

then using (5.2) we obtain a wrong result

Sn = 1
1− n

(2π)2C

nβ
.

The reason is that the direct calculus of Sn involves infinities that, with a suitable regu-
larization cancel out, and one can obtain the correct result. However, one can achieve this
if computes first the refined Rényi entropy

Ŝn ≡ −n2∂n

(
(2π)2C

n2β

)
= −2(2π)2C

nβ
= 2(2π)2

nβ

φb
16πGN

= ΦΓ(n)
4GN

, (5.12)

where in the last equality we have used that the Dilaton at the horizon is: ΦΓ(n) = 2πφb
nβ .

From this expression, the Rényi entropies can be obtained by integrating the identity

Ŝn = n2∂n

(
n− 1
n

Sn

)
, (5.13)

and the result is
Sn = φb

4G
π

β

n+ 1
n

. (5.14)

Nevertheless we have not even used the Dong prescription. This is an interesting point for
analysis.

By taking the quotient of the geometry (5.9) we obtain the fundamental domain M̂n =
Mn/Zn whose boundary is S1

β , and the metric (+ Dilaton) of this space is the same as (5.9)
but on the range of coordinates

r >

( 2π
nβ

)
, τ ∈ [0, β], (5.15)

while the opening angle now is θ̂ = r0(n)β = 2π
nβ β = 2π

n , and according to our general
expression (5.5) the on-shell action is

I[M̂n] = C
(2π)2

n2β
+ 2π

8πG
n− 1
n

(Φ0 + Φ(x0)) , r0(n) = 2π
nβ

. (5.16)
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Then, the solution (5.9) is given by n copies of M̂n glued consecutively. Comparing
with (5.10), the first term of traditional JT gravity is additive and satisfies

IJT[Mn] = nIJT[M̂n].

Equation (5.16) is the JT action of gravity plus (coupled to) a Nambu-Goto term describing
a cosmic brane with tension T = n−1

4Gn as the model [17]. Remarkably we have derived it
from a Hayward term present in the original Pacman geometry.

As an aside, note that the capacity of entanglement (a quantum information quantity
analogous to the heat capacity in thermodynamics) can be written as

C = ∂2
n(log Trρn)|n=1 = 〈K〉2n − 〈K2〉n,

where K is the modular Hamiltonian and the expectation value is taken w.r.t. the state
ρn ≡ ρn. So, the capacity of entanglement measures quantum fluctuations of the modular
Hamiltonian. In [46] was claimed (for the vacuum state) that 〈K2〉 − 〈K〉2 = A(Σ)

4GN (Σ is a
Rindler horizon) for any strongly coupled CFT with a large N gravitational dual that is
described by the Einstein action. Here note that using (5.14) the capacity gives C = φ∂

2G
π
β ,

which using (4.25) gives C = φΓ
4G and is in agreement with the expectation of [46].

6 Replica symmetry, the modular flow and area operator

In this section we will evaluate the modular flow (and the modular Hamiltonian) from the
computation of the n−th power of the density matrix, ρn. We shall use a path integral
expression for the matrix elements of the bulk representations of this state, that obviously
involves Hayward term associated to the n-dependent opening angle θ(n), and as a result,
we’ll obtain the area operator [47, 48] as part of the modular Hamiltonian, in agreement
with the JLMS conjecture [24].

Recalling our prescription (2.1) for the left (reduced) density matrix, the n power of
it preserve the SS sectors structure

ρn(L) =
⊕

Γ
ρ(n,Γ) ∼

⊕
Γ

d(Γ) e−nK(Γ) . (6.1)

The left hand side of this expression stands for the boundary quantum theory, while the
right hand side refers to the density matrix in (JT) gravity. Since each sector is labeled by
the position of the entangling point xΓ, and since the Dilaton is considered an observable
(see section 2), they can also be labeled by ΦΓ and referred to as fixed area sectors. So
these density matrix elements are functionals: ρ[ΦΓ, φ

±] = 〈φ+|ρ(Γ)|φ−〉. In the mindset
of section 4, the suitable path integral expression for each block of (2.5) is

〈φ+|ρ(n,Γ)|φ−〉 =
∫

(Φ(B±),g(B±))=φ±
[DΦ(x)]MP

[Dg(x)]MP
e

(2π−θ(n)) ΦΓ
8πGN

× e
1

16πGN

∫
MP

√
gΦ(R+2) + 1

8πGN

∫
∂MP

√
hφ∂(K−1)

, (6.2)
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where φ± denotes the Dirichlet boundary conditions on geodesics B±. This is the reason
why the GHY terms associated to B± vanish. For simplicity we assume that Φ is at least
C0 (continuous) on the total boundary ∂MP , then ΦΓ ≡ limx→xΓ Φ±(x) ≡ ΦΓ , x ∈ B±.
As argued in section 5, the saddle geometry is MP (1) = M− ∪M+ smoothly glued on the
shared surface B̄, whose boundaries are the branches (curves) B− and B+ with an opening
angle θ(1). As we consider n (consecutively) replicated boundaries, the euclidean geometry
is a new Pacman MP (n) characterized by a corner with an opening angle θ(n).

Now, integrating out the Dilaton in (6.2), results

〈φ+|ρ(n,Γ)|φ−〉=
∫

(Φ(B±),g(B±))=φ±
[Dg(x)]MP (n) e

(2π−θ(n)) Φ(x0)
8πGN e

1
8πGN

∫
∂M0

P
(n)

√
hφ∂(K−1)

,

(6.3)
where M0

P (n) is locally AdS2. For geodesic boundaries B±: K = 0, one can define h±(r) ≡
h(r,±τ), whose proper length is

ds2
± ≡ h±(r)dr2 , 0 ≤ τ ≤ θ ≡ τ+ − τ− .

With a suitable redefinition of the timelike coordinate τ the metric in the Pacman saddle
geometry M0

P is

ds2
P = (r2 − 1)dτ2 + dr2

r2 − 1 , 1 ≤ r <∞ 0 < τ < θ = r0 β . (6.4)

Let us highlight that this is not periodic and does not have any conical singularity. Just
upon taking trace of the state the to compute the partition function, the Pacman mouth
closes by gluing B±, and the geometry turns out to be a (periodic) cone: M(2π − θ(n)).

Therefore, in the same way that has been argued in the section 5 in the case that the
splitting point of the geometry Γ (i.e, the SS sector) is fixed, we must have r(Γ) = r0 =
fixed, then θ = r0βn = 2πn, and we finally have

〈φ+|ρ(n,Γ)|φ−〉 =
∫

(Φ(B±),g(B±))=φ±
[Dg(x)]M0

P
e

(2π−2πn) Φ(x0)
8πGN e

n
8πGN

∫
∂MP (1)

√
hφ∂(K−1)

= 〈φ+| e
(2π−2πn)Φ(x0)

8πGN ρnJT(Γ)|φ−〉,

where we have used that
1

8πGN

∫
∂MP (n)

√
hφ∂(K − 1) = n

8πGN

∫
∂MP (1)

√
hφ∂(K − 1) .

Finally, following [1] the formula for the generator of the modular flow U(s) is

K = − lim
n→0

U(−i2πn) ∂
∂n
U(i2πn) = − lim

n→0
ρ(−n)∂ρ(n)

∂n
, (6.5)

for each area fixed sector Γ. Clearly, because of the factor e
(2π−2πn)ΦΓ

8πGN in (6.3) the dominant
sector (for arbitrary number of replicas n > 1) is for the minimum of the function ΦΓ in
the dominant AdS geometry. Upon quantization, the Dilaton field has to be promoted to
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an operator, and the result of this calculus is the modular Hamiltonian associated to the
(say) left QM system

K(L) = Φ̂Γ
4GN

+ 2πHJT(L), (6.6)

where HJT is nothing but the (left-side) boundary mode Hamiltonian computed in the liter-
ature on JT gravity [2, 49], and we shall evaluate the matrix elements using the Schwarzian
theory. The important conclusion of this part is that, since Φ̂Γ is the area operator on JT
gravity, this shows the JLMS proposal in the JT context. Roughly speaking, the interpreta-
tion of the formula (6.5) is that the replica symmetry is nothing but a restriction (to integer
numbers) of the continuous symmetry generated by the modular flow U(s) ≡ ρis [1].

The derivation above is a computation at level of operators and one could test it
by computing some related quantity directly. For instance, the expectation value of the
modular Hamiltonian under replicas, and/or standard inequalities of information theories.
Taking β ≡ 2π we have

logZn ≡ log Tr ρn = I[Mn] = C
(2π)2n

β

∣∣∣∣∣
β=2π

+ 1− n
4G ΦΓ . (6.7)

Then, by taking derivative with respect to n

∂

∂n
logZn = 1

Zn

∂

∂n
Zn = 1

Zn
Tr ∂

∂n
ρn = 1

Zn
Tr log ρ ρn = − 1

Zn
TrK ρn ≡ −〈K〉n,

the result is
〈K〉n = − (2π)C + ΦΓ

4G = 2π EL + ΦΓ
4G .

Which shows that the operator K contains the areas operator as a term, in agreement
with the result (6.6). EL is the energy of the boundary mode computed from the
Schwarzian action.

7 A note on the asymptotic and edge modes

In arbitrary spacetime dimension the Pacman opening angle is associated to the canonical
conjugate of the area element of the codim-2 surface Γ, and this dof at the corner plausibly
encodes edge modes in JT gravity [16]. We have seen that JT gravity can be effectively
formulated as a quantum mechanical system with a single asymptotic dof associated to the
reparameterization of the time field τ(u). Here we elaborate a bit more on the edge mode
in this Schwartzian theory.

Recall that the time coordinate is nothing but a local (scalar) field defined on all the
spacetime. Therefore τ(u) refers to this field on the points near the asymptotic boundary
C ≡ ∂M , and we call τΓ(u) to the same field on Γ. The corresponding boundary condition
for a conifold M(2π − θ) is

τ(u+ β) = τ(u) + θ

r0
, (7.1)

and on the corner
τΓ(u+ β) = τΓ(u) + θ

r0
. (7.2)
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Thus the Hayward term can be written in this field as

IH(τΓ) := 2ΦΓ(2π − θΓ) = 2
∫ β

0
du φΓ

(2π
β
− r0τ̇Γ

)
. (7.3)

Notice that here φΓ plays a similar role than φ∂ in the asymptotic term, and it is thought
as an independent Dirichlet data. So the total action becomes

IJTH(τ, τΓ) = 2
∫
∂

√
hΦ(K − 1) + 2ΦΓ(2π − θΓ)

= 2
∫ β

0
du

(
φb Sch

(
tan

[
r0τ

2

]
;u
)

+ φΓ

(2π
β
− r0τ̇Γ

))
. (7.4)

Note that it is written in terms of a Lagrangian in the fields τ(u), τΓ(u).
A surface B(u), 0 ≤ u ≤ β, of the Pacman intersects these two curves, and thus the

canonically conjugate momentum associated to the τ(r, u) field in these two points is

πτ (∂M) = ∂LJT( ...τ , τ̈ , τ̇ , τ)
∂τ̇

, (7.5)

and on the tip, the momentum remarkably is the Dilaton field

πτ (Γ) = ΦΓ, (7.6)

as we expected from canonical analysis. We want to stress that eq. (7.5) is schematic
and only expresses the first momentum field, one should define more fields associated to
derivatives of τ in order to obtain a Lagrangian depending only on these fields and their
first time derivative.

Notice that instead of having [θΓ, φΓ] = i/2, see appendix B, we have the consis-
tent CCR

[τΓ, φΓ] = i/2, (7.7)

where
∫ β

0 du τ̇Γ = τΓ(β) − τΓ(0) = θ/r0. The main novelty of this description is that the
total (JTH) path integral (4.13) reduces to an integral only over the fields τ(u), τΓ(u),
satisfying (7.1)–(7.2). The path integral can then be written as

ZJTH(φb ,ΦΓ) =
∫

[Dτ(u)][DτΓ(u)] exp−IJTH(τ,τΓ), (7.8)

and τΓ is what we can identify wth the JT edge mode, in line with the observations of [16].
In fact notice that any arbitrary τΓ(u) minimizes the action, which realizes it as parameter
for the gauge symmetry associated to the edge. This implies that Z = Z(∂M)Z(Γ) where
Z(Γ) becomes proportional to the volume of the space of functions τΓ(u), and one recover
the results from section 4.

8 Concluding remarks

In the context of the holographic duality, the quantum state of a subsystem is described
by the reduced density matrix built up from the Hartle-Hawking wave function by tracing
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out the complementary dofs. In the semiclassical approximation, the matrix elements of
the density operator can be evaluated from the (dominant) solutions of gravity for suitable
Dirichlet boundary conditions on Pacman-shaped manifolds.

In this work we consider these Pacman geometries in JT gravity. As this kind of
geometries have a corner in its boundary we added a Hayward term to the action in order
to have a well-posed Dirichlet problem. We did the explicit computation in JT gravity and
showed the resulting action as well as it on-shell solution.

We study more in depth the hypothesis of [1] on the von Neumann decomposition
of the density operator (and Hilbert space) in block diagonal form, summing over all the
possible splittings of bulk dofs as the SS sectors. Since in JT quantum gravity the area
(ΦΓ) should be a natural observable of codim 2 surfaces, these are also fixed area sectors.

Indeed, the Hayward term contribution is shown to be relevant to study details on that
decomposition, and the edge modes contribution to the entanglement entropy given by the
RT formula [21]. In particular we gave some constraints on the underlying symmetry group
of JT gravity as viewed as a diffeomorphism gauge theory, recover some results obtained
previously with different methods [9], and obtain some interesting generalizations.

By studying the partition function obtained for closing the Pacman geometry we ar-
rived to a new description for the case with a conical defect, different in spirit to the
previously obtained in [25, 26]. We showed that after summing over all the possible values
for ΦΓ the defect contribution disappears and we end up with the standard JT gravity
partition function for a disk geometry. Also, we computed the spectral density of states
corresponding to this solution and that hypothetically can be the same density of states
that corresponds to a dual random matrix model.

We then compute the Rényi and refined Rényi entropies in this context, showing results
consistent with the literature and pointing out several subtleties in the computation. Using
this we obtained from first principles the JLMS relation for the modular Hamiltonian.

We conclude our work with two possible future directions. The first would be that of
considering multiple corners Γi as boundary condition to the HH state studied in section 3.
The resulting spacelike surface Σ will now contain pieces that do not immediately corre-
spond to either boundary subsystems which would be interesting to study on their own.
Moreover, in building a density matrix associated to it, one can consider several intermedi-
ate objects upon taking partial traces on different bulk subregions. For two corners Γ1 and
Γ2, one can envision a thermo-mixed double state in the fashion of [50]. In a more general
scenario and especially in replica trick computations, multiple gluing possibilities arise that
spontaneously break the replica symmetry and their possible dominance at different time
regimes are goals for future research.

We also leave for future work the interesting situation on which we prepare the a
state using the Pacman geometry but on the deformed JT gravity theory [25, 26]. This
is interesting because in such a case we will end up with geometries with both kinds of
defects, bulk and boundary, and the resulting partition function will be very different from
those obtained before.
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A Schwarzian action

Here we will show how to get the Schwarzian action used in section 3.2. We start by writing
the metric

ds2 = (r2 − r2
0)dτ2 + dr2

r2 − r2
0
, 0 < τ < θ/r0 (A.1)

which has the asymptotic boundary at r →∞. But, we want to cut the spacetime before
that and we will parametrize a general boundary curve by the proper boundary time u.
Using that the curve will be γ(u) = (τ(u), r(u)) and the line element over it reads

ds2|∂ = du2

ε2
.

As was explained in the main text the parameter ε is a regulator such that ε → 0. The
length of γ(u) is L =

∫ β
0 ds = β

ε but along the text and as is usual in the literature we will
call by β to the length of the curve. The tangent vector to γ(u) can be writen as

~η = r′(u)dr + τ ′(u)dτ,

and the unit normal vector is

vτ = − r′√
r2 − r2

0

√
τ ′2(r2 − r2

0) + r′2
, vr = (r2 − r2

0)3/2τ ′√
τ ′2(r2 − r2

0) + r′2
.

Using that the trace of the extrinsic curvature K = ∇µvµ and differentiating the line
element we obtain

K = r − εr′′

τ ′(r2 − r2
0)ε ,

which can be expanded to second order in ε to get

K = 1 + ε2
(

(2r2
0 − 1)τ ′4 − 3τ4 + 2τ ′τ ′′′

2τ ′2

)
+ . . .

= 1 + ε2
(
Sch

[
tan

(√
2r0 − 1

2 τ(u), u
)])

+ . . . . (A.2)

The dots represents order ε4 corrections and higher. So,

− 1
8πGN

∫
∂M

√
hΦ(K − 1) = − φb

8πGN

∫ β

0
duSch

[
tan

(√
2r0 − 1

2 τ(u), u
)]

,
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where is clear that the term 1
8πGN

∫
∂M

√
hΦ was added to the usual Gibbons-Hawking

term because of holographic renormalization to cancel the divergent order ε−2 term coming
from K in (A.2). This is the first term written in (3.15) where we used r0 = 1. In these
coordinates the equation of motion

Sch[τ, u]′
τ ′

− τ ′′ = 0,

is satisfied by the solution (3.16)
τ(u) = θ

β
u,

where the constant was fixed to ensure that τ(u+ β) = τ(u) + θ.

B ADM analysis and edge modes

In order to build the ADM analysis we borrow from [49, 51]. We stress that the ADM
formalism does require a real-time set-up. We rewrite the metric as

ds2 = −N2dt2 + σ2(dx+Nxdt)2 (B.1)

and rewrite the dynamical piece of the action in terms of these functions

S =
∫ √

g Φ (R+ 2) =
∫ √

g Φ R+ 2
∫ √

g Φ = 2
∫ √

g Φ R1
212

g22
+ 2

∫ √
g Φ (B.2)

where the key relation is that in 2d gravity R = 2
g22
R1

212. Disregarding boundary terms,
one can show that all terms with no derivatives in Φ other than 2

∫ √
gΦ cancel between

each other, leading to,

S = 2
∫ Φ̇
M

(−σ̇ + (Nxσ)′) + 2
∫

Φ′
(
M ′

σ
+ Mx

M
(σ̇ − (Nxσ)′)

)
+ 2

∫ √
gΦ (B.3)

where we used that √g = Mσ. One then gets ΠM = ΠNx = 0

ΠΦ = 1
N

(−σ̇ + (Nxσ)′) = K σ Πσ = 1
N

(−Φ̇ +NxΦ′) = ∂nΦ (B.4)

where the timelike normal vector is n = N−1{−1, Nx}, n2 = −1 and K = ∇µnµ is the
asymptotic extrinsic curvature. One can then show that the canonical Hamiltonian, again
disregarding boundary terms,

HADM =
∫
dx
(
ΠΦΦ̇ + Πσσ̇ − L

)
=
∫
dxNH+NxHx (B.5)

H = −ΠΦΠσ + Φ′′
σ
− σΦ′

σ2 − σΦ Hx = ΠΦΦ′ − σΠ′σ . (B.6)

By combining these constraints, one can define

− 2
σ

(Φ′H+ ΠσHx) =
(

Π2
σ + Φ2 − Φ′ 2

σ′ 2

)′
≡ S2 ≈ 0 (B.7)
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By choosing the gauge in which the normal derivative of Φ vanishes, ∂nΦ = Πσ = 0,
one can explicitly solve the constraint as(

Φ2 − Φ′ 2
σ′ 2

)′
≡ S2 ⇒ Φ(σx) = S cosh(σx) (B.8)

which explicitly coincides with the classical solution on Σ. This indicates that the complete
information on Σ is completely determined by a single number. In particular, depending
on the variational problem of interest, this can be either S or θ. On this gauge, the θb
angles between Σ and the asymptotic boundaries are always θb = π/2.

A complementary analysis comes from the variation of the dynamical piece of the
Lorentzian action. Consider a real time evolution from t = −∞ up to a surface Σ containing
a cusp Γ at a certain point in the interior. As shown above, one can put θb = π/2 via a
gauge fixing, so we can disregard the contributions coming from the asymptotic boundaries.
The variation of the Lorentzian action can be written as

δID + δ

(
2
∫

Σ

√
hΦK

)
= (eoms) +

∫ Σ

−∞
dt
d

dt
Θ

= (eoms) +
∫

Σ
ΠΦ δΦ +

∫
Σ

Πνρ
h δhνρ + 2 ΦΓδθΓ (B.9)

which can obtained in a similar fashion as (3.10) starting from the Lorentzian signature
action. In the expression above we have introduced (eoms) to collectively denote the
equations of motion, and the symplectic potential Θ from where one can directly read
the dofs of the phase space [16]. The first two terms in Θ contain the standard codim-1
gravitational dofs one would expect from a Dilaton+gravity problem. The appearance of a
codim-2 term in this expression shows that the Γ corner has induced a new set of dof θΓ and
its conjugate momentum ΦΓ in the problem. Its commutations relations are (16πG = 1)

[θΓ,ΦΓ] = i/2 (B.10)

much like the x, p commutation relations in standard QM, disregarding the 2 which can
be modified via a parameter redefinition. As stated in the main text, these new dofs arise
commonly in gauge theories when splitting the spacetime into subregions. The intuition
is that there are infinite non-vanishing gauge transformations that mix the interior and
exterior that impede a straightforward splitting. One can see these new codim-2 dofs as
a manifestation of the broken gauge symmetries becoming physical dofs in each subsys-
tem [16].

Two comments are due. The first is that technically one can also include the topological
piece of the action in our analysis and define the canonical momentum as Φ0 + ΦΓ. Since
Φ0 is a constant for all our present purposes, this just represents a rigid displacement on
the conjugated momentum, which is unimportant. As a final comment, notice that θΓ in
this Lorentzian context is a boost rather than a proper angle as in the Euclidean approach
in most of the main text. Their connection is straightforwardly made via a Wick rotation
θΓ → iθΓ.
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