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Abstract Machine-learning techniques have become fun-
damental in high-energy physics and, for new physics
searches, it is crucial to know their performance in terms
of experimental sensitivity, understood as the statistical sig-
nificance of the signal-plus-background hypothesis over the
background-only one. We present here a simple method
that combines the power of current machine-learning tech-
niques to face high-dimensional data with the likelihood-
based inference tests used in traditional analyses, which
allows us to estimate the sensitivity for both discovery and
exclusion limits through a single parameter of interest, the
signal strength. Based on supervised learning techniques, it
can perform well also with high-dimensional data, when tra-
ditional techniques cannot. We apply the method to a toy
model first, so we can explore its potential, and then to a
LHC study of new physics particles in dijet final states. Con-
sidering as the optimal statistical significance the one we
would obtain if the true generative functions were known,
we show that our method provides a better approximation
than the usual naive counting experimental results.
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1 Introduction

Machine learning (ML) techniques have become basic tools
for data analysis in recent years, and particle physics is no
exception. In fact, ML algorithms are playing a fundamental
role in collider physics (for seminal papers see, for instance
[1–3] and for recent reviews see [4–11]) and are already
used practically as a standard tool in the experimental LHC
searches carried out by the ATLAS and CMS collaborations
(see, for instance, [12–20]). These ML methods can also
be applied at the ensemble level of data [21–26] and it has
been demonstrated that, under the assumption of independent
and identically distributed events, one can construct the opti-
mal multi-event classifier from a single-event classifier and,
moreover, that these multi-event classifiers give rise to opti-
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mal single-event classifiers [27,28], see also Refs. [29,30]
for some examples applied in the HEP field.

Once we have a trained classifier, the fundamental ques-
tion from the point of view of the search for beyond Standard
Model (BSM) physics is how to quantify its performance in
terms of experimental sensitivities. The most extended use of
such a classifier considers a cut or working point (WP) of its
output, which defines a region that ideally favors the signal
over the background, and then it computes the sensitivities
following standard techniques [31] taking into account only
those events passing this cut. Nevertheless, this is nothing
but a refined procedure of defining a signal region where
to perform a search, and one might still wonder whether it
is possible to directly connect the ML classifiers with the
standard statistical tests, using its output in full glory and
without the need of defining a working point. Experimental
collaborations such as ATLAS and CMS do have a method
to incorporate the full output distribution to a larger extent,
see e.g. Ref. [32].1 They treat the classifier output simply
as a better variable to bin and perform a Binned Likelihood
fit on. Although powerful, this treatment can be unsatisfac-
tory as it washes over the probabilistic interpretation of the
trained classifier. This is evident in the incorporation of sys-
tematic uncertainties which are propagated to the classifier
output as it would be for any other high-level observable,
without any re-training. This strategy means that the learned
classifier is not necessarily a monotonous function of the
Likelihood Ratio and perhaps the obtained significance is
a sub-optimal approximation of the achievable significance.
An analysis strategy that incorporates the full probabilistic
structure of the classifier would perhaps be a more natural fit
for incorporating systematic uncertainties and would be able
to guarantee a better approximation to the full Likelihood
ratio.

Some work in this direction has been recently done, see
e.g. [33–47]. In particular, Ref. [33] established that training
a classifier and then “calibrating” it to learn its distribution
under the relevant hypotheses guarantees a proper estimation
of the Likelihood Ratio and thus of the optimal significance
of an analysis. In the absence of systematic uncertainties,
when the distribution of the classifier output is approximated
by a binned Likelihood the resulting statistical model coin-
cides with the previously detailed strategy employed by the
ATLAS and CMS collaborations.

In this paper we propose a simplification of Ref. [33] that
can be used for any ensemble of events, combining the current
ML-technique power to deal with high-dimensional data with
the likelihood-based inference tests used in traditional anal-
yses to discriminate between signal-plus-background and
background-only hypotheses. Our method allows us to obtain

1 We thank Pietro Vischia and Sergio Sánchez Cruz for pointing the
existing literature to us.

the expected sensitivity when using these ML algorithms,
both for discovery and for exclusion limits.

In order to assess the potential of our method, we will
first consider a toy example in which we generate random
data samples from multivariate Gaussian distributions. The
motivation to do this is that we can compare the output of
our method to the optimal classifier, which we can build
since we know the actual generative functions. As we will
see, when facing low-dimensional problems, our method
gives close-to-optimal results2 and performs similarly to
those obtained by following a standard binned Poisson log-
likelihood approach. On the other hand, while binning a mul-
tidimensional space becomes intractable, we will show that
our method is still easy to apply when the dimensionality of
the problem increases and, moreover, that it leads to results
that are closer to the optimal classifier than those obtained
by fixing a working point. Finally, and as a more practical
example, we will apply our method to a realistic problem of
searching for heavy W ′ bosons at the LHC, where we show
that the statistical power of the analysis benefits greatly from
the implementation of the method.

The paper is organized as follows: in Sect. 2 we detail
the method proposed to enhance statistical tests through ML
classifiers, discussing in Sect. 2.1 the differences between our
method and previous ones proposed in the literature; Sect. 3 is
dedicated to the application of this method to two examples, a
toy model consisting of two Gaussians in varying dimensions
and a realistic example extracted from the LHC Olympics
datasets [48]; finally, Sect. 4 is left to summarize our results
and discuss future improvements.

2 Method

Our method combines the power of current ML techniques,
see e.g. Ref. [49] for a very pedagogical introduction, to deal
with high-dimensional data with the likelihood-based infer-
ence tests used in traditional analyses to discard different
hypotheses [31]. It is aimed as a different way to incorporate
ML techniques to supervised searches for different Standard
Model and BSM processes.

Suppose we have a set of N independent measurements,
each of which consisting of an arbitrarily high-dimensional
set of observables x .3 We are interested in modelling the
likelihoodL of the data as a function of a background process
b, a signal process s and a signal strength parameter μ, which
defines the hypothesis we are testing for: a background-only
hypothesis corresponds to μ = 0 while the background-

2 We mostly focus on discovery sensitivities, although we provide all
the relevant formulae for computing the exclusion limits.
3 In the context of collider physics this could refer to kinematical vari-
ables such as pT , η, invariant mass, etc.
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plus-signal hypothesis corresponds to μ = 1. This likelihood
function is nothing more than the probability of obtaining a
given dataset conditioned on the aforementioned information
and parameters:

L(μ, s, b) = p(N , {xi , i = 1, . . . , N }|μ, s, b). (1)

A choice of likelihood function is a choice of a specific sta-
tistical model of the data. Following Ref. [50] , we define the
statistical model of N independent measurements using the
extended Likelihood

L(μ, s, b) = Poiss
(
N |μS + B

) N∏

i=1

p(xi |μ, s, b), (2)

where S (B) is the expected total signal (background)
yield, Poiss stands for a Poisson probability mass function
Poiss(n|λ) = e−λλn

n! and p(x |μ, s, b) is the probability den-
sity for a single measurement x . Looking at this equation,
there is an interplay between local and global information.
The global Poisson term reflects the ensemble factor while
p(x) encodes the event-by-event information. The latter is
the one that could be enhanced by ML analyses.

We can model the probability density as a mixture of signal
and background densities

p(x |μ, s, b) = B

μS + B
pb(x) + μS

μS + B
ps(x), (3)

where ps(x) = p(x |s) and pb(x) = p(x |b) are, respectively,
the signal and background probability densities for a single
measurement x , and μS

μS+B and B
μS+B are the probabilities of

an event being sampled from said probability densities.
Having defined a statistical model, we can follow Ref. [31]

and define the relevant test statistic t̃μ:

t̃μ =

⎧
⎪⎪⎨

⎪⎪⎩

−2 Ln
L(μ, s, b)

L(μ̂, s, b)
if μ̂ ≥ 0,

−2 Ln
L(μ, s, b)

L(0, s, b)
if μ̂ < 0,

(4)

where μ̂ is the parameter that maximizes the likelihood
L(μ, s, b). By differentiating Eq. (2) with respect to μ and
finding its zeroes one can show that μ̂ is such that

N∑

i=1

ps(xi )

μ̂S ps(xi ) + B pb(xi )
= 1. (5)

Notice that we recover the traditional counting experiment
result μ̂ = N−B

S when the x offers no discrimination power
between b and s, which implies ps = pb.

With the test statistic t̃μ, we can study the expected dis-
covery potential and the expected upper limits of the anal-
ysis. The discovery potential corresponds to studying the
background-only hypothesis μ = 0, where the test statis-
tic q0 ≡ t̃0 takes the form

q0 =
⎧
⎨

⎩
−2 Ln

L(0, s, b)

L(μ̂, s, b)
if μ̂ ≥ 0,

0 if μ̂ < 0,

(6)

and plugging Eq. (2) explicitly in

q0 =

⎧
⎪⎨

⎪⎩

−2μ̂S + 2
N∑

i=1
Ln

(
1 + μ̂S

B

ps(xi )

pb(xi )

)
if μ̂ ≥ 0,

0 if μ̂ < 0.

(7)

In general ps,b(x) are not known and are usually approx-
imated by discrete binned distributions. For D bins, one
obtains in each bin d the expected number of background
events Bd , the expected number of signal events Sd and the
measured number of events Nd , so Eq. (2) turns to [51]

L(μ, s, b) =
D∏

d=1

Poiss
(
Nd |μSd + Bd

)
. (8)

This binned log-likelihood approximation is very effective
but runs into trouble when the dimensionality of the data
grows, as the finite statistics renders the density estima-
tion unreliable. For this reason, we propose a different way
of dealing with the high-dimensional dataset. We train a
classifier to distinguish between the signal and background
hypotheses with a balanced large dataset,4 obtaining a classi-
fication score o(x) that maximizes the binary cross-entropy
(BCE) and thus approaches

o(x) = ps(x)

ps(x) + pb(x)
, (9)

as the classifier approaches its optimal performance, see
e.g. the Machine Learning Chapter in Ref. [52]. This means
that the classifier learns the per-instance likelihood ratio
ps (x)
pb(x)

, precisely the information needed in Eq. (7). We can
then reduce the dimensionality by dealing with o(x) instead
of x , using

ps(x) → p̃s(o(x)), and pb(x) → p̃b(o(x)), (10)

where p̃s,b(o(x)) are the distributions of o(x) for signal and
background, obtained by evaluating the classifier on a set of
pure signal or background events, respectively. Notice that
this allows us to approximate both signal and background
distributions individually, although only the ratio will be rel-
evant for estimating the expected sensitivities. Since these
distributions are one-dimensional, they can be easily binned
and incorporated into Eq. (2). Therefore the test statistic of
Eq. (7) becomes

q0 =

⎧
⎪⎨

⎪⎩

−2μ̂S + 2
N∑

i=1
Ln

(
1 + μ̂S

B

p̃s(o(xi ))

p̃b(o(xi ))

)
if μ̂ ≥ 0,

0 if μ̂ < 0,

(11)

4 Notice that this does not aim to reflect the measured set of N events,
as at this point, we are interested in estimating only the densities.
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and the condition on μ̂ from Eq. (5)

N∑

i=1

p̃s(o(xi ))

μ̂S p̃s(o(xi )) + B p̃b(o(xi ))
= 1. (12)

We shall name the resulting statistical model Machine-
Learned Likelihood (ML Likelihood). In this sense, we are
treating the algorithm as a dimensionality-reduction tech-
nique where we learn the appropriate one-dimensional man-
ifolds that best discriminates between signal and background.
This is different from the usual way of incorporating these
algorithms to experimental analyses. We are neither assum-
ing a working point and counting events selected by the algo-
rithm in this working point nor interpolating the Likelihood
as in Ref. [53]. Our method has a more concise goal which
is to take advantage of the full information of the data in a
supervised analysis by replacing the cut and count procedure
for the likelihood-ratio information.

This method is a simplification of the one detailed in Ref.
[33] for likelihood-free inference, where we do not construct
an unbinned likelihood ratio but use instead the “calibrated”
estimated likelihoods obtained by applying density estima-
tion techniques to the learned output function for each pro-
cess. Although we are also using machine learning to reduce
the dimensionality of the problem, we are taking an inter-
mediate step where we only aim to approximate individual
likelihoods and not to replace the likelihood-based test statis-
tics with a learned, likelihood-free generalized log-likelihood
ratio. This is evidenced by the fact that we exclude the sig-
nal strength from the training step, being instead a param-
eter to maximize in the manner detailed in Ref. [33]. The
simplification is possible because we are dealing with addi-
tive signal whose probability distribution does not depend
on the signal strength. The parameterization of the Likeli-
hood implemented here is in some sense analogous to the
use of parameterized Likelihood Ratios for Effective Field
Theory searches, see e.g. Ref. [38]. Our parameterization is
even simpler but, as we show in Sect. 3, still very useful to
increase the statistical power of a given analysis.

The test statistic in Eq. (11) is estimated through a finite
dataset of N events and thus has a probability distribution
conditioned on the true unknown signal strength μ′. For a
given hypothesis described by the μ′ value, we can esti-
mate numerically the q0 distribution. With this distribution,
one can estimate the median expected discovery significance
med [Z0|μ′] by considering the median of the test statistic

med [Z0|μ′] = √
med [q0|μ′]. (13)

In particular, in our results we will report the discov-
ery significance of the signal-plus-background hypothesis
med [Z0|1], where the significance encodes how likely is
to the background-only hypothesis to explain data that fol-
lows the signal-plus-background hypothesis. A higher sig-

nificance will thus imply that the background-only hypoth-
esis can be excluded in favor of the signal-plus-background
hypothesis with a larger confidence.

Notice that we do not introduce Asimov datasets here to
provide an asymptotic estimation of the significance. This
is because the introduction of p(x) renders the definition of
an Asimov dataset more complicated. We do instead a full
numerical estimation where we generate a set of datasets
generated under the signal-plus-background hypothesis and
compute for each of them the test statistic q0. Since our
method is relatively simple, a numerical estimation of the
q0 distribution is a feasible task. Indeed, this is an advantage
of the one-dimensional representation of the data.

Nevertheless, since we will be interested in comparing our
method to other standard techniques, we also introduce here
the median discovery significance estimate for the binned
likelihoods in Eq. (8) through the use of Asimov datasets,
given by the well known formula [31]:

med [Zbinned
0 |1] =

[

2
D∑

d=1

(
(Sd + Bd ) Ln

(
1 + Sd

Bd

)
− Sd

)]1/2

,

(14)

where again Bd and Sd are the expected number of back-
ground and signal events in bin d.

For a realistic problem, the trained classifier is usually sub-
optimal and the learned observable o is an approximation of
the log-likelihood ratio which may miss relevant information,
thus reducing the power of the considered tests. Since we are
not considering a specific working point but instead taking
advantage of the full information retained in o, the degree
of classification power of a classifier is captured by global
metrics such as the Area-Under-Curve (AUC). The AUC is
the integral of the Receiver Operating Characteristic (ROC)
curve εs/b(WP), where εs/b(WP) are the fraction of correctly
classified signal/background events as a function of the WP,
with a higher AUC signaling a higher overall performance.
The closer the AUC is to its largest possible value (which
usually is below 1), the better o captures the full distributions’
information. Because of this, a higher AUC correlates with
a larger significance, with an upper limit set by the optimal
classifier. We emphasize that our method works regardless
of whether the classifier is optimal or not, with optimality
providing an upper limit of the test performance (which holds
regardless of the method considered). The usefulness of this
method is that it approximates the true likelihoods better than
a binned log-likelihood analysis and thus provides a larger
significance.

For completeness, we also provide the relevant steps to
derive upper limits on μ. In this case, we need to consider
the test statistic [31]:
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q̃μ =

⎧
⎪⎪⎨

⎪⎪⎩

0 if μ̂ > μ,

−2 Ln L(μ,s,b)
L(μ̂,s,b) if 0 ≤ μ̂ ≤ μ,

−2 Ln L(μ,s,b)
L(0,s,b) if μ̂ < 0,

(15)

and to look at its median expected significance when the true
hypothesis is assumed to be the background-only one:

med [Zμ|0] =
√

med [q̃μ|0], (16)

where we estimate the q̃μ distribution by generating a set
of datasets with background-only events. Then, to set upper
limits to a certain level, we select the lowest μ which achieves
the required median expected significance.

Finally, we would like to mention that we have neglected
the different systematic uncertainties that arise when per-
forming any measurement. It is important to notice that one
should also include in Eq. (2) a set of nuisance parameters θ

to capture these systematic uncertainties, so S, B, ps and pb
will be functions of these parameters. Extending our method
with systematics could be relatively straightforward, with
problems potentially arising when obtaining the ML Likeli-
hood. The reason for this issue is that we need to compute
ML Likelihood by training a ML algorithm, so dealing with
these systematic errors requires some ingenuity. A possibil-
ity is to extend our training dataset from x to (x, θ) with θ

sampled from a prior distribution p(θ |x ′) from any additional
measurements x ′, in line with the treatment detailed in Ref.
[33,54]. For the sake of simplicity, we will not include them
in this analysis and leave them for future works.

2.1 Similar approaches in the literature

There have already been several approaches to marry ML
classifiers and statistical tests, see e.g. [33–47]. To our knowl-
edge, the most similar methods to the current proposal can
be found in Refs. [35,37,38,42,44,45], with the latter two
appearing during the completion of this work. Although we
share several aspects, there are enough differences that war-
rant this proposal.

In Refs. [35,37,42,45], the authors propose a method to
detect deviations from a reference dataset (namely, the SM).
They parameterize the alternative hypothesis in terms of a
learnable function, a Neural Network in Refs. [35,37,42]
and a non-parametric kernel in Ref. [45], which is trained
to quantify discrepancies between the data and the refer-
ence model. The function then provides the log-likelihood
ratio between the two hypotheses, which can then be used
for hypothesis testing to discard the reference hypothesis.
This is a very powerful tool for anomaly detection, but is not
exactly what we are proposing in this work. We consider a
supervised search where the two hypotheses are well defined
and we are reducing the hypothesis test to a single parameter

of interest, the signal strength μ. Our method is thus sim-
pler and easier to implement because we are not asking the
algorithm to learn the dataset but only to learn the discrimi-
nator between two different processes in a high-dimensional
space. The trade-off is a lack of flexibility and, at least in this
form, an impossibility to perform a model-agnostic search.

On the other hand, Ref. [44] states a similar goal to
what we present in this work: to obtain the significance of
a supervised search that incorporates ML classifiers. They
also extend the method to unsupervised searches, which is
something our method is currently not designed to do. How-
ever, we note that the proposed statistical model and thus the
questions that the statistical tests can answer are different.
While our formulation in terms of statistical mixture models
is an enhancement of traditional analyses, their likelihood
proposal intends to differentiate between different types of
ensembles. The authors obtain the output distribution for the
background-only and for the signal-plus-background cases,
while we obtain the background-only and signal-only dis-
tributions and introduce them as part of the mixture model.
The question we aim to answer is thus different: while Ref.
[44] aims to discriminate between different types of ensem-
bles, we intend to discriminate between different possible
compositions of a single measured ensemble of data. The
statistical test obtained reflects this difference. In our case,
the test statistic is a simple extension of the usual method-
ology while in their case it is a different test. An additional
advantage of our method is that we are reducing the problem
to a single parameter of interest which we can then study.

The search for optimal sensitivity through parameteriza-
tion in this work relates it to Ref. [38]. There, the parameter-
ization occurs at the Likelihood ratio level and is specific to
the Effective Field Theory scenario, see also Refs. [55,56]
for a detailed explanation of the method. Parameterizing ps

pb
explicitly in terms of the parameters of interest, the Wil-
son coefficients, the learning task changes from learning the
Likelihood Ratio to learning a set of functions which com-
bined with the parameters of interest yield the Likelihood
Ratio. The authors of Ref. [38] show that this parameteriza-
tion provides optimal discriminating power for a wide range
of possible values of the parameters of interest without spe-
cific retraining. Our method is different in the sense that it
tackles a different physics scenario, additive resonant physics
as opposed to non-resonant EFT, and thus considers a differ-
ent parameterization. The additive resonant physics scenario
implies that we learn a mixture model where the parameter
of interest is the signal strength μ, which we do by estimat-
ing the individual likelihoods in the learned one-dimensional
embedding space. This is in contrast to Ref. [38] where the
unbinned Likelihood ratio is learned by parameterizing it in
terms of the known dependence on the parameters of interest
at parton level.
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3 Applications

To explore the Machine-Learned Likelihood approach that
connects ML classifiers with the standard statistical tests, in
this section we compare the expected discovery significance
Z0 estimated following the method described in the previ-
ous section against the usual and naive counting experiment
result. First we consider a toy model, where the data is gener-
ated from Gaussian variables. In this simple example, we can
explore the potential and robustness of our ML Likelihood
approach by comparing its performance against the optimal
log-likelihood ratio statistical test obtained using the true
underlying probability density functions (pdfs). Moreover,
we also compare it with the calculation of S/

√
B consider-

ing a subset of events obtained by applying different cuts, i.e.
defining a working point, with the same classifier used in our
estimation. Finally we study a more realistic situation, where
the true generative functions are unknown, by considering a
search for new BSM particles in a dijet final state at the LHC.

In both examples we train our per-event classifiers using
XGBoost [57], an optimized gradient boosting library
that provides a parallel tree boosting. Maximum depth
was set to 5, the number of estimators up to 500, and
binary:logistic as objective to perform a logistic
regression for binary classification. The evaluation metric
for validation data is logloss, and early stopping was
established after 50 rounds to avoid overtraining. We have
checked that modifying slightly the XGBoost parameters
does not change significantly our results. Furthermore, other
ML algorithms suitable for the classification problem can
also be used as long as they give good performance, for exam-
ple deep neural networks. The use of Boosting algorithms for
High Energy Physics is certainly not new, but its implemen-
tation for Likelihood estimation is not so common. This is
probably due to the fact that its basis algorithm, Decision
Trees, has been known to introduce non-smooth regions in
the Likelihood Ratio estimator due to its very nature [33].
However, the Boosting strategy circumvents that problem by
the recursive application of Decision Trees. See Ref. [58] for
a similar example of the power of Boosting Decision Trees
for Likelihood Ratio estimation. In each scenario involving
toy models 1M events per class where generated, while in
the BSM analysis 100k signal and 100k background events
were used. The training procedure was performed with half
of the dataset available.

3.1 Toy example with multivariate Gaussian distributions

We begin with our first example involving events generated
by multivariate Gaussian variables, Ndim(m,�), in several
scenarios by increasing the dimensionality dim = 1, . . . , 10
of the problem. For each dim we consider two multivariate
Gaussian distributions with their covariance matrices fixed

Fig. 1 Multivariate Gaussian random variables, dim = 2 example.
N2(+0.3 12, I2×2)(x) for signal, N2(−0.3 12, I2×2)(x) for back-
ground

to the dim × dim identity matrix, � = Idim×dim , i.e. with
no correlation between them, but with different means of
m = +0.3 1dim for the signal and m = −0.3 1dim for the
background, with 1dim the size dim vector of ones.

Dimension 2 case

To ease visualization, we consider first dim = 2, as shown
in Fig. 1 with the signal in green and background in red.
For concreteness, let us consider a fixed expected number of
background events, 〈B〉 = 50k, and a free number of signals
events, 〈S〉, that we vary to evaluate the performance of the
ML Likelihood method. On the left panel of Fig. 2 we show
an example of how an ensemble with S = 500 events would
look like. We stress again that this is just a toy model in
abstract space (x1, x2). In a real life experiment, such as a
collider analysis, this could correspond for example to the
transverse momentum and pseudorapidity of a jet, x1 = pT
and x2 = η. Moreover, the expected signal-to-background
ratio would be set by the relative cross-sections and the total
amount of events by the effective luminosity.

In order to apply the ML Likelihood method introduced in
the previous section, we need to estimate the likelihood ratio
ps(x)/pb(x), which we obtain by training a supervised per-
event classifier, XGBoost. At this stage we are only inter-
ested in obtaining a classifier to distinguish between signal
and background, therefore to train and test the algorithm we
employ all the events in our dataset, i.e. a large and balanced
sample. As usual, we label signal events with a 1 and back-
ground events with a 0. A histogram of the resulting classifi-
cation score, o(x), can be seen on the right panel of Fig. 2 for
two new independent datasets of pure signal (green) and pure
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Fig. 2 Left panel: histogram of an hypothetical experiment with B = 50k and S = 500 events divided into 10 × 10 bins. Signal and background
distributions can be seen in Fig. 1. Right panel: classification score, o(x), for a binary classifier using the XGBoost algorithm

background (red) events. Then, we use these classification
output distributions to estimate the per-instance likelihood
ratio

ps(x)

pb(x)
→ p̃s(o(x))

p̃b(o(x))
. (17)

This is a key step of the method, where we approximate
the signal and background dim-dimensional pdfs, ps,b(x), by
binning the 1-dimensional ML classification score o(x), and
thus taking advantage of its dimensionality-reduction power.

Now we can focus on the test statistic of Eq. (11). Fol-
lowing the procedure of Sect. 2, first we need to compute μ̂,
the signal strength value that maximizes the likelihood. To
do this we construct 10k ensembles mixing background and
signal events such that the number of events per class are
taken from Poisson distributions with means 〈B〉 = 50k and
a value of 〈S〉. For each ensemble, solving Eq. (12) we obtain
numerically a value of μ̂ that we finally use to calculate the
test statistic q0.

The median expected discovery significance for the ML
Likelihood method, estimated as the median of the test statis-
tic, is shown in Fig. 3 as a red curve. Notice that Z0 is depicted
as a function of S/

√
B, therefore the identity relation (black

dotted curve) represents the naive significance approxima-
tion of Eq. (14) considering a single bin and S 
 B. We can
see that the curve is above this naive estimate even for low
significances, Z0 < 1.

On the other hand, since we are dealing with a low dimen-
sional problem, we can also employ a binned Poisson log-
likelihood approximation, Eq. (8), and its median discovery
significance estimated by introducing the Asimov dataset,
Eq. (14). Then, we calculate numerically Bd and Sd con-
structing ensembles of 10×10 bins with 〈B〉 = 50k and dif-
ferent values of 〈S〉 from a 1M events database of per class.
The resulting median significance is also shown in Fig. 3 as
a light blue curve.

Fig. 3 Discovery significance calculated with various methods for the
example in Fig. 2 for fixed background, 〈B〉 = 50k, and different signal
strengths 〈S〉. Red lines show the results implementing the ML Likeli-
hood method with XGBoost used to estimate the probability density
for single events and green lines when using the true multivariate distri-
butions. The black dotted line represents the result of the usual counting
method, S/

√
B, in the entire range of interest (only one bin), and the

light blue curve the result of a binned counting experiment

Finally, we also present in Fig. 3 as a green curve the
significance using the true probability density functions, i.e.
ps,b(x) = N2(±m,�)(x) for our example. Since we do not
use a classifier to approximate ps,b(x), we can consider it
as an optimal scenario and, thus, the green curve represents
an upper limit for Z0. For this simple example, we see that
the results obtained using the ML Likelihood approach are
very close to the optimal scenario and slightly outperforms
the binned Poisson method.
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Before moving to a higher dimensional scenario, let us
explore the new method in more detail. First of all, it is
important to highlight that the classification score is one-
dimensional by construction regardless of the dimensional-
ity (the number of components) of our data and therefore
can be easily binned. This is not the case for the binned
Poisson log-likelihood approximation, where the number
of bins needed to estimate the density increases with the
number of components and can eventually be problematic.
In this dim = 2 example each feature range on the left
panel of Fig. 2 is divided in 10 bins, therefore we end up
with 10dim=2 = 100 bins. However, as the complexity, i.e.
the dimension, of the problem grows, the problem of effi-
ciently binning every feature becomes exponentially more
challenging, and in practice intractable for a finite number of
events. On the other hand, with the ML Likelihood method
we do not need to bin the original features, but the one-
dimensional classification score, which was divided into 100
bins to approximate p̃s,b(o(x)) as can be seen on the right
panel of Fig. 2. The introduction of binning can reduce the
obtained significance for the ML Likelihood as the Likeli-
hood ratio p̃s(o(x))/ p̃b(o(x)) is approximated to an aver-
aged version, just as it does when going from the True Like-
lihood to the Binned Likelihood. However, we emphasize
again that because we are binning in one dimension, optimal
choices of binning can be easily explored.

Second, we want to explore how the new method behaves
when changing the performance of the classifier itself. In
order to do that, we still consider the same two dim = 2
multivariate Gaussian distributions, but we vary their means,
m. Notice that increasing values of m imply larger separation
between signal and background, and therefore the classifier
performs better. This is seen on the left panel of Fig. 4, where
we display the classification power of the ML algorithm,
measured by its AUC. As expected, from the left and right
panels of Fig. 4 we can see that larger values of AUC imply
higher significances.

We also observe that the difference between the ML Like-
lihood significance and the True Likelihood significance
increases with the AUC, even when the classifier is approxi-
mately optimal as seen in the left panel of Fig. 4. This is an
effect of the suboptimal choice of binning. There is thus an
additional approximation involved beyond the dimensional-
ity reduction mentioned in Sect. 2 that can reduce the signif-
icance of the ML Likelihood method compared to the True
Likelihood significance. Recall that, if the classifier is sub-
optimal, the ML Likelihood significance will be inevitably
lower than the true significance as the dimensionality reduc-
tion causes information loss. Additionally, the ML Likeli-
hood significance can be further reduced if the o(x) binning
is suboptimal in the sense of capturing the ps(o(x))/pb(o(x))
behavior appropriately. This is amenable by exploring opti-
mal choices of one dimensional binning. In Fig. 4 we include

additional binning choices and observe a clear dependence
on the ML Likelihood significance. From this we can be cer-
tain that the classifier is indeed optimal and thus any loss in
significance can be attributed to the choice of binning. We
also include the Significance obtained by using the classifier
output to estimate directly the unbinned Likelihood Ratio
ps(x)/pb(x) through Eq. (9) that is needed to estimate the
test statistic detailed in Eq. (7). We observe how the unbinned
Likelihood Ratio performance lies between the 100 bins per-
formance and the 1000 bins performance. If the unbinned
Ratio was perfectly estimated, its performance should be
identical to the true Likelihood performance. However, finite
statistics of the training sample lead to imperfect estimation
and, specially, to numerical uncertainties. The latter is one
of the main motivations behind the introduction of calibra-
tion in Ref. [33]. We thus show how our method, although
binning dependent, yields a comparable performance to the
unbinned method but with increased stability and robustness
against numerical effects on the Likelihood Ratio estimation.

On the remainder of this work we consider the interme-
diate choice of 100 bins as it is a good compromise between
approximating the optimal results and increasing comput-
ing costs. In realistic applications, the optimal AUC is not
known a priori and thus one should explore binning choices
to achieve maximum significance for a given AUC. A pos-
sible avenue is suggested by previous experimental analyses
[12–20], where the binning is decided in terms of a number of
bins and a maximum statistical uncertainty per bin. An alter-
native is to implement other density estimation techniques
such as Kernel Density Estimation or Normalizing Flows.

Finally, a practical comment about the implementation
is in order. Notice that we treat each value of 〈S〉 as a dif-
ferent hypothesis, thus we construct independent ensembles
and compute μ̂ for each scenario. This can be a somewhat
tedious task and could be the source of numerical errors
in the significance estimation, so one possible simplifica-
tion is to repeat the significance estimation procedure fix-
ing μ = 1. The change in strategy between learning the
parameter of interest and keeping it fixed amounts to change
from a composite hypothesis test to a simple hypothesis test
where the two hypothesis are fixed. In Fig. 5 we compare
the results when μ̂ is calculated numerically from data sat-
isfying Eq. (12), and when we fix μ = 1, using both the
true probability densities and the ML Likelihood. We see
that the relative differences are small. This has a two-fold
importance: it shows that the numerical procedure for μ̂ is
correct, and also that the simple and composite hypotheses
yield consistent significances, i.e. that the simple hypothe-
sis with no learned parameters of interest and the composite
hypothesis where we estimate μ̂ have the same discriminat-
ing power. The latter is extremely useful to assess optimality,
as the Neyman–Pearson Lemma that ensures optimal power
for the Likelihood Ratio test is valid for simple hypothe-
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Fig. 4 Left panel: AUC obtained with XGBoost (red curve) and the
optimal classifier calculated with Eq. (9) (green dotted curve) for the
multivariate Gaussian example of Fig. 2, but with increasing signal-
background separation m. Right panel: discovery significance calcu-
lated with various methods for the same example. Here we fixed

〈B〉 = 50k and 〈S〉 = 500. Color coding is the same as in Fig. 3,
but we also include the results for the ML Likelihood method with dif-
ferent binning choices of the classification score and the significance
obtained using the estimated unbinned Likelihood Ratio

Fig. 5 Discovery significance calculated with various methods for the
same multivariate Gaussian example used in Fig. 4, increasing signal-
background separation m, and fixed 〈B〉 = 50k and 〈S〉 = 500. We
compare the results when computing μ̂ numerically from data (solid)
with those obtained after the approximation μ̂ = 1 (dot-dashed). Both
ML Likelihood results use a classification score divided into 100 bins

ses. Notice moreover that this is true when using either the
true Likelihoods or our ML-estimated Likelihoods, showing
that our method yields an optimal test statistic that can be
obtained using the one-dimensional learned output. Indeed,
we have checked that the simple and composite hypotheses
are consistent for all the examples considered in this work
both for the ML Likelihood and the true Likelihoods when
available, although for brevity we only report the cases with
estimated μ̂.

High-dimensional cases

We repeat the procedure considering higher dimensional
data, Ndim(m,�), with dim = 1, . . . , 10, � = Idim×dim ,

and m = +0.3 1dim for the signal and m = −0.3 1dim for
the background. Notice that we treat each value of dim as
an independent hypothesis. The results are shown in Fig. 6.
On the left panel we present the AUC of the classifier and,
as expected, it increases with the data dimensionality, since
we introduce more information with each extra component
making it increasingly easier to distinguish signal from back-
ground. We can also see that the classifier found is approx-
imately optimal. On the right panel we show the discovery
significances obtained with several procedures for a fixed
value of 〈B〉 = 50k and 〈S〉 = 500.

As before, the green line is computed using the true pdf
distributions, and therefore provides an upper limit for the
performance of obtaining Z0. The results of the ML Likeli-
hood method, which can be easily computed also for higher
dimensions, are shown in red. By comparing the two lines,
we see that both have the same tendency, although the dif-
ference between the two increases for higher dim. This can
again be attributed to a suboptimal choice of o(x) binning.
The increase of dimensions produces the same behavior as
the increase in separation for a fixed dimension (shown in
Fig. 4): the two Gaussians are more distinguishable and the
optimal AUC increases. Since the classifier is able to capture
the increase in AUC, the o(x) distribution gets more concen-
trated on the boundaries and thus the binning is not able to
capture the likelihood ratio granularity as efficiently as for
lower AUCs. Although it lies beyond the scope of this work,
a ML Likelihood implementation in a real analysis where
we do not know the true pdf can explore different binning
choices. Even if suboptimal, ML Likelihood still provides a
good estimate of the significance for relatively high dimen-
sional problems.

Nevertheless, the main difference of increasing the dimen-
sionality of the problem is the challenge it implies for com-
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Fig. 6 Left panel: AUC for the binary classifier using XGBoost (red
curve) and the optimal classifier calculated with Eq. (9) (green dot-
ted curve) as a function of the data dimension, dim, for multivariate
Gaussian variables. Right panel: significance calculated with various
methods as a function of dim. For every case, the background and
signal strengths were fixed, 〈B〉 = 50k and 〈S〉 = 500. Solid lines
show the results implementing the method described in this work with:
XGBoost used to estimate the probability density for single events

(red), the true multivariate distributions (green). The dashed curves rep-
resent the result of the usual counting method (only one bin, S/

√
B),

but for a subsample of the original data found with XGBoost assuming
several working points, WP = 0.75, 0.5, 0.25 to obtain signal enriched
regions. The black dashed line also represents the result of the usual
counting procedure, but considering the entire dataset (equivalent to
WP = 0)

puting the binned Poisson likelihood, as we did before for
dim = 2. For example, if every component range is divided
in 10 we get 10dim bins, which rapidly becomes intractable
for a finite amount of statistics (we recall that each of our
ensemble has ∼ 50k events). A commonly followed proce-
dure to face this kind of situations is to used a ML algorithm
as a classifier and to define a lower cut or working point in its
output o(x) to define signal enriched regions and to calculate
Z0 = S/

√
B on the resulting subset. We do this using the

already trained XGBoost classifier and defining several WP,
including the particular case of WP=0 equivalent to applying
no cut. The results of this method are shown as dashed lines
in the right panel of Fig. 6. For this example, we see that
increasing the value of the WP does help improving the sig-
nificances, and for values of WP=0.75 they approach to our
results from the ML likelihood. Notice that this is an inter-
esting result, since the ML Likelihood method was able to
perform better, i.e. closer to the optimal green line, without
the need of defining and optimizing a WP. This is due to the
fact that it makes use of the complete output of the classifier,
thus including as much information as possible. In addition
to including all WPs, this method has the advantage that it
does not need to lose events by defining a more exclusive
signal region. For relatively low total number of events, this
is an important enhancement.

3.2 Realistic application: a W ′ study at the LHC

In this subsection we will focus on a collider physics example
taken from the LHC Olympics [48] challenge. The database
is comprised by dijets events from two different sources: SM

quantum chromodynamics (QCD) processes (background),
and the production of a BSM new resonance W ′ with mass
mW ′ = 3.5 TeV. This new particle decays to two new parti-
cles X and Y with masses mX = 500 GeV and mY = 100
GeV, which in turn both decay promptly to a pair of quarks
producing two large-radius jets with two-prong substructure
(signal). The selected events have a reconstructed dijet mass
within [3.3, 3.7] TeV.

Four features are considered to characterize the process
and used to test the ML Likelihood method (thus we are
dealing with a dim = 4 problem): the invariant mass of the
lighter jet (m j1), the mass difference of the leading two jets
(�m j ), and the N-subjettiness ratios of the leading two jets
(τ21,1 and τ21,2) [59,60]. The latter parameters quantify if a
jet is described by one or two subjets, indicating a two-prong
substructure for smaller values. In Fig. 7 we show the dis-
tributions of these parameters for the signal and background
database.

As in the multivariate Gaussian example, we trainXGBoost
with the same hyper parameters to obtain a per-event binary
classifier. We obtain AUC = 0.96, meaning that the algo-
rithm can distinguish between signal and background very
efficiently, as can be seen on the left panel of Fig. 8 where
the classification score, o(x), is shown divided into 100 bins.
Then, we estimate ps,b(x) by the discrete binned distribu-
tion of the ML output: p̃s,b(o(x)). We would like to high-
light again that we are binning a one-dimensional distribu-
tion, while in the usual binned Poisson approximation a four-
dimensional space (the number of features that describes the
process) would have to be binned.

123



Eur. Phys. J. C (2022) 82 :993 Page 11 of 14 993

Fig. 7 Distribution of the four features that characterize the dijet
events. Signal corresponds to a new resonanceW ′ → XY both decaying
to two large-radius jets with two-prong substructure, and background
to QCD dijet processes. The signal distributions on the top panels are

centered at mY = 100 GeV (left) and mX − mY = 400 GeV (right),
while on the bottom panels the lower values τ21 signal distributions
indicate a two-prong substructure

To illustrate the method we fixed the expected number of
background events 〈B〉 = 50k and vary the expected signal
events 〈S〉 within the range [10, 300], since the signal-to-
background ratio value would be determined by a particu-
lar model. We obtain numerically μ̂ satisfying Eq. (12) by
constructing 10k ensembles mixing B and S events taken
from Poisson distributions with means 〈B〉 = 50k and dif-
ferent fixed 〈S〉. We obtain the ML Likelihood test statistic
of Eq. (11) for each value of 〈S〉, and finally estimate the
median expected discovery significance as the median of the
test statistic. The results are shown on the right panel of Fig. 8
as a red curve.

We also use the already trainedXGBoost classifier to cal-
culate the significance by a traditional method. We consider
the following working points to define a subsample within
an enriched signal region, WP = 0.75, 0.5, 0.25. We count
only the events that satisfy o(x) >WP and compute S/

√
B,

shown as dashed lines on the right panel of Fig. 8. The spe-
cial case WP = 0 shown as a black dotted line represent
the naive counting significance S/

√
B in the entire range,

i.e. using all the events. Comparing the results it is clear
that the ML Likelihood method exceeds the usual ones. For
example a 5σ discovery significance would be obtained for

S � 85, while the number of expected signal events needs
to be � 151, 200, 272, 1118 for WP = 0.75, 0.5, 0.25, 0,
respectively.

4 Discussion and outlook

In this paper we have developed a simple method, called
Machine-Learned Likelihood (ML Likelihood), which can
be used for any ensemble of events, that combines the cur-
rent ML-technique power to deal with high-dimensional data,
with the likelihood-based inference tests used in standard
analyses to discriminate between different hypotheses in a
minimal way, which makes it amenable for exploratory anal-
yses without high computational costs. It allows to obtain
the expected experimental sensitivity when using ML algo-
rithms, both for discovery and exclusion limits, evidencing
the utility of these sort of algorithms even for resonance
searches where the parameter of interest is a signal strength.

Unlike other methods, the one proposed here makes use of
all the output of the classifier, taking advantage of the entire
ROC curve, and therefore its performance is better described
by global quantities such as the AUC. Nevertheless, it is a

123



993 Page 12 of 14 Eur. Phys. J. C (2022) 82 :993

Fig. 8 Left panel: classification score for the BSM search of W ′ using
a XGBoost binary classifier. Independent pure signal and pure back-
ground test samples are evaluated to estimate ps,b(x). Right panel: sig-
nificance calculated with several methods as a function of the signal-to-
background ratio for 〈B〉 = 50k and 〈S〉 within [10, 300]. Same color

coding as in Fig. 6. A 5σ discovery significance could be found for
S � 85 with our method, and for S � 151, 200, 272, 1118 with a usual
counting method on enriched signal regions obtained with the same
classifier but WP = 0.75, 0.5, 0.25, 0, respectively

rather simple method, as it is based on a single classifier that
is used to estimate the individual probability densities and
then to evaluate the significance in the statistical test given the
values of S and B for the considered ensemble, in the manner
of the calibrated classifiers proposed in Ref. [33]. Notice
that this is actually a key ingredient of the method, since the
output of the classifier is one-dimensional by construction,
and therefore the method has the advantage of always being
easy to bin or even fit accurately, irrespectively of the actual
dimensionality of the problem at hand.

In order to test the potential of the proposed method, we
have applied it to two cases: a toy model with data generated
from Gaussian variables, and a W ′ search in dijet final states
at the LHC. The former was particularly relevant to under-
stand the performance of the method, as we were able to com-
pare the results obtained using the ML-estimated pdf against
the true generative ones. We found that the new method leads
to results that are close to the optimal case and, as expected,
they remain so also for high-dimensional problems. More-
over, while its performance is similar to traditional binning
analysis for low-dimensional problems, we saw that the ML
Likelihood method is particularly effective for more complex
problems, where traditional binning is no longer possible
and standard ML analysis are used by defining a particular
working point. This improvement has been found also in the
more realistic analyses of W ′ searches at LHC, where the true
generative functions are unknown. Again, we obtain higher
significances with the ML Likelihood method.

To summarize, we proposed a simple method to estimate
statistical significances when using ML classification algo-
rithms. It has the main advantages of remaining simple and
reliable also for high dimensional problems, and of making
use of the full knowledge of the ML algorithm, without the

need of relying on a given working point for the analysis. Yet,
we have seen that it leads to excellent results, approaching
the optimal ones computed with the true generative func-
tions, and improving those obtained by traditional analysis
techniques.

Finally, it should be mentioned that the main lacks of
the ML Likelihood method are that it is not valid for
anomaly detection nor can be applied to unsupervised anal-
yses. Besides, we have not incorporated systematic uncer-
tainties in the calculation of significance presented here. All
these issues are relevant for any real analysis and will thus
be addressed in future publications.
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