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In electronic systems with flat bands, such as twisted bilayer graphene, interaction effects govern the
structure of the phase diagram. In this paper, we show that a strongly interacting system featuring fermionic
flat bands can be engineered using the holographic duality. In particular, we find that in the holographic
nematic phase, two bulk Dirac cones separated in momentum space at low temperature, approach each
other as the temperature increases. They eventually collide at a critical temperature yielding a flattened
band with a quadratic dispersion. On the other hand, in the symmetric (Lifshitz) phase, this quadratic
dispersion relation holds for any finite temperature. We therefore obtain a first holographic, strong-coupling
realization of a topological phase transition where two Berry monopoles of charge one merge into a single
one with charge two, which may be relevant for two- and three-dimensional topological semimetals.
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I. INTRODUCTION

Flat electronic bands have recently attracted significant
attention due to the experimental realization of twisted
bilayer graphene [1,2]. They naturally promote interaction
effects as dominant, leading to a rich landscape of possible
strongly correlated phases [3]. Strongly interacting sys-
tems, however, may be prohibitively difficult to address
within the traditional frameworks, such as perturbation
theory. Furthermore, numerical methods are restricted to
exact diagonalization due to the sign problem present in
systems involving fermionic degrees of freedom.
Given the necessity of using a nonperturbative approach,

the AdS/CFT correspondence, also known as holographic
duality [4–6], has been broadly used to investigate strongly
coupled systems. In the more general sense, this duality
proposes an equivalence between systems described by
strongly interacting quantum field theories and weakly
coupled systems in a curved spacetime with an extra spatial

dimension. As such, these holographic methods so far have
been useful to gain qualitative insights on condensed matter
systems, for instance, non-Fermi liquids, high Tc super-
conductors, and topological systems, among others [7–9].
Given that flat bands favor the effects of the strong
electronic interactions, including the ensuing new quantum
phases and phase transitions, it is then rather natural to
apply the holographic duality to address the physics at
strong coupling therein. In this context, it is worthwhile
emphasizing that a Lifshitz geometry may be the natural
setting for the construction of the holographic flat bands,
given that, at least from a perturbative point of view, the
scaling of the electronic density of states [ρðεÞ] with energy
(ε) in d spatial dimensions is tunable by the dynamical
exponent (z), ρðεÞ ∼ jεjdz−1. It is then expected that a tunable
dynamical exponent could yield an instability toward a
symmetry broken phase, as in the model for multi-Weyl
semimetal we have recently proposed [10], realizing a
phase transition into a nematic phase, as also found in
Ref. [11]. However, none of these holographic models
feature the fermions in the bulk geometry that may in turn
explicitly yield the holographic flat fermionic bands.
Here, we address this important problem by incorporat-

ing the fermions directly into the model of Ref. [10]. By
computing the Green function in the background geometry,
we show that the dispersion relation of the fermions indeed
displays the flattening feature. In particular, we find that in
the nematic phase (Fig. 1), two Dirac cones separated in
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momentum space at low temperature, approach each other
as the temperature increases. Eventually, at the critical
temperature, they collide yielding a flattened band with a
quadratic dispersion relation, as shown in Fig. 2. On
the other hand, in the symmetric (Lifshitz) phase, this
quadratic dispersion relation holds for any finite temper-
ature. Therefore, besides the holographic band flattening,
we find a first holographic, strong-coupling realization of a
topological phase transition where two Berry monopoles of
charge one merge into a single monopole with charge two,
which pertains to topological metals in both two [12–14]
and three [15–18] spatial dimensions.

II. FREE MODEL

Let us first discuss the flat bands within a (2þ 1)-
dimensional free Dirac fermion model. Our aim is to extract

from it the symmetry breaking pattern that we will later
export into the holographic realm. It is defined by the
Hamiltonian

H0
D ¼ −γtðγxpx þ γypyÞ⊗ 12×2 þ im�ðγx ⊗ σ2 − γy ⊗ σ1Þ;

ð1Þ
where γμ ¼ ðσ3;−iσ2; iσ1Þ are the Dirac gamma matrices,
and the Pauli matrices σi in the second term act on
an internal flavor index. This is analogous to the con-
struction of the effective Hamiltonian for bilayer graphene
by coupling two single layers each containing a linearly
dispersing Dirac fermion. The spectrum reads

ω ¼ �m� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þm2�
q

ð2Þ

with gapped conduction and valence bands corresponding
to both positive or both negative signs respectively, while
otherwise the valence and conduction bands cross at
zero energy. In the latter case, we obtain a low-energy
(p2

x þ p2
y ≪ m2�) quadratic dispersion

ω ≈� 1

2m�
ðp2

x þ p2
yÞ; ð3Þ

which still preserves rotational invariance.
The wave equation resulting from the Hamiltonian in

Eq. (1) can be obtained from the action

S ¼ Sfree − i
Z

d3x Ψ̄=WΨ: ð4Þ

Here the first term is the free Dirac action for a pair of
two-component spinors, while the deformation corresponds
to a coupling of the pair to a constant non-Abelian vector
field W ¼ m�ðσ1dxþ σ2dyÞ. This explicitly breaks the
Uð2Þ symmetry down to the Uð1Þ. Notice that spatial
rotational invariance is also broken. However, there is a
“mixed” rotational symmetry preserved in the system
which is realized by compensating a spatial rotation with
an internal transformation generated by σ3. The latter is
enough to preserve the rotational invariance of the
spectrum.

III. HOLOGRAPHIC MODEL

We now construct a bottom up holographic dual to a
strongly coupled version of the model in Eq. (4). To do so,
we first extend the global boundary symmetries to the
bulk as gauge symmetries, introducing the relevant bulk
gauge fields. Gauged space-time symmetries require a
dynamical metric, minimally described by Einstein gravity.
We include a negative cosmological constant in order to get
AdS asymptotics. Moreover, we add the corresponding
Yang-Mills fields needed to gauge the boundary Uð2Þ
symmetry, and the total action takes the form

FIG. 1. Phase diagram of the model in Eq. (4), showing the
nematic phase close to the origin and the Lifshitz one away from
it. Top panel: the fermionic dispersion relation for infinite T=m�
(blue), with the dotted grey lines corresponding to the approxi-
mation in Eq. (16). Right-hand side panel: the dispersion
corresponding to the Lifshitz phase for T=m� ¼ 47.74 (blue),
with the grey lines corresponding to the approximation given by
Eq. (17). Bottom panel: the anisotropic dispersion relation in the
nematic phase, just below the critical temperature T=m� ≈ 0.075,
along the two directions of Fig. 2. The yellow (orange) curve
corresponds to the dispersion in the diagonal (antidiagonal)
direction in momentum space, k ¼ ðk; kÞ [k ¼ ðk;−kÞ]. We
here set q ¼ qD ¼ 2, i.e., z ¼ 2.48.
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ − 1

4

Z
½F ∧ ⋆F þ TrðG ∧ ⋆GÞ�;

ð5Þ

where the last integral is defined over the AdS boundary.
Here, F ¼ dA represents a Uð1Þ gauge field strength
accounting for the conservation of particle number, while
G ¼ dB − iðq=2ÞB ∧ B is the strength of a SUð2Þ gauge
field, accounting for the flavor symmetry in UV of the
model in Eq. (4). One may therefore roughly state that,
at this step, matter is hidden behind the black hole horizon,
and an exterior observer can only see the total charges.
Hence, we look for asymptotically AdS black holes

solutions, with the generic ansatz for the metric

ds2 ¼ 1

r2

�
−Nfdt2 þ dr2

f
þ dx2 þ dy2 þ 2h dx dy

�
; ð6Þ

in terms of purely r–dependent functions f, N, and h,
which close to the boundary satisfy f, N → 1, and h → 0.
To describe a boundary system at finite temperature, we
focus on black hole solutions with a horizon at finite
r ¼ rh, at which N and h are bounded, and f vanishes
linearly with f0 ¼ 4πT=

ffiffiffiffi
N

p
.

For the gauge fields, we write

A ¼ 0

B ¼ 1

2
ðQ1σ1 þQ2σ2Þdxþ

1

2
ðQ1σ2 þQ2σ1Þ dy: ð7Þ

The gauge field A, coupled at the boundary to the par-
ticle current, is turned off, implying that the chemical
potential vanishes. Here Q1;2 are the r-dependent functions
which are finite at the horizon. On the boundary, we turn
on a deformation analogous to the second term of the
action (4), by requiring B → W or equivalently Q1 → 2m�.
This reproduces the symmetry breaking pattern of our free
model in the present holographic (i.e., strongly coupled)
setup. We notice at this point that a similar approach has
already been used to construct holographic duals of
fermions with particular dispersion relations, as, for in-
stance, Weyl semimetals [19], multi-Weyl semimetals
[11,20], nodal line semimetals [21], and Weyl Z2 semi-
metals [22].
The resulting phase diagram in terms of the gauge

coupling q and the dimensionless temperature T=m� is
shown in Fig. 1. At high enough T=m� and q, only
rotational invariant solutions are present, with h and Q2

vanishing. The model flows toward a metastable Lifshitz
geometry in the IR, with a scaling exponent z that is
completely fixed by the coupling q, as the root of a cubic
polynomial [23]

q2ðz3 þ z2Þ þ ðq2 − 24Þz − 3ðq2 þ 8Þ ¼ 0: ð8Þ

As we lower the temperature or the gauge coupling, a
boundary nematic phase develops, since the fieldsQ2 and h
in the bulk spontaneously acquire nonvanishing expect-
ation values. Full rotational invariance, featuring z ¼ 1, is
however recovered in the deep IR.

IV. FERMIONS IN THE BULK

To confirm that our holographic model actually describes
flat bands, we need to obtain its fermionic dispersion
relation. In holography, boundary matter fluctuations are
encoded by the fermionic degrees of freedomΨ in the bulk,
satisfying the Dirac equation [24]

ΓADAΨ ¼ 0: ð9Þ

Here, ΓA with A ∈ f0; 1; 2; 3g are the (3þ 1)-dimensional
flat-space Dirac γ–matrices, andDA is the curved space and
gauge covariant derivative. The field Ψ is an SUð2Þ doublet
of (3þ 1)–dimensional spinors, containing a total of eight
independent components.

FIG. 2. Real (top panel) and imaginary (bottom panel) parts of
the quasinormal frequencies for the fermionic excitations as a
function of momentum k ¼ ðkx; kyÞ in the nematic phase, just
below the critical temperature T=m� ≈ 0.075. The contour plots
on the right hand side correspond to the 3D plots on the left. The
orange and yellow lines denote the cuts which were plotted at the
bottom panel of Fig. 1.
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As our model is closely related to the non-Abelian
p-wave superconductor [25–30], here we only sketch the
construction ofDA. The key step is to write the metric in the
tetrad formalism

ds2 ¼ ηABeAeB; ð10Þ

where ηAB ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric and
eA are the coframe fields, given by

e1 ≡ 1

2r
½ð ffiffiffiffiffiffiffiffiffiffiffi

1þ h
p þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − h

p
Þdxþ ð ffiffiffiffiffiffiffiffiffiffiffi

1þ h
p

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − h

p
Þ dy�;

e2 ≡ 1

2r
½ð ffiffiffiffiffiffiffiffiffiffiffi

1þ h
p

−
ffiffiffiffiffiffiffiffiffiffiffi
1 − h

p
Þdxþ ð ffiffiffiffiffiffiffiffiffiffiffi

1þ h
p þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − h

p
Þ dy�;

e3 ≡ 1

r
ffiffiffi
f

p dr; e0 ≡ 1

r

ffiffiffiffiffiffiffi
Nf

p
dt: ð11Þ

The corresponding spin connection can be then found from
the torsionless condition; for the technical details and
conventions, see Ref. [31]. We furthermore conveniently

perform Fourier transform from the transverse coordinates,
ðt; x; yÞ → ðω; kx; kyÞ, and rescale the spinors as

Ψ ¼ r3=2ðfNð1 − h2ÞÞ−1=4ψkðrÞ: ð12Þ

Projecting now onto the (2þ 1)–dimensional transverse
spacetime by taking the eigenvectors of the radial
γ–matrix, we obtain the form of the projected spinor
ψ⊤
k ¼ ðψþ;ψ−Þ⊤, with the two components ψ� obeying

the following equations:

ψ 0
− −

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fð1 − h2Þh̃

q U · ψþ ¼ 0;

ψ 0þ þ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fð1 − h2Þh̃

q U · ψ− ¼ 0: ð13Þ

Here, h̃≡ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p
, H ≡ hþ ih̃, and

U ¼

0
BBBBBBBBBB@

h̃ky − hkx h̃kx − hky þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−h2Þh̃

fN

q
ω 1

2
qDðHQ1 − iH�Q2Þ 1

2
qDðHQ2 −H�Q1Þ

h̃kx − hky þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−h2Þh̃

fN

q
ω hkx − h̃ky

1
2
qDðHQ2 − iH�Q1Þ 1

2
qDðH�Q1 þ iH�Q2Þ

1
2
qDðH�Q1 þ iHQ2Þ 1

2
qDð−iH�Q1 −H�Q2Þ h̃ky − hkx h̃kx − hky þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−h2Þh̃

fN

q
ω

1
2
qDð−iHQ1 þH�Q2Þ 1

2
qDð−H�Q1 − iHQ2Þ h̃kx − hky −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−h2Þh̃

fN

q
hkx − h̃ky

1
CCCCCCCCCCA
: ð14Þ

Close to the boundary, the fields ψ� are asymptotically
constant, ψ� → ψUV

� . The four components of ψUVþ are
interpreted as the expectation values of the dual fermionic
operator, while those of ψUV

− are instead proportional to the
external sources. On the other hand, close to the black hole
horizon, in-going boundary conditions yield

ψ� ¼ ψh�ðr − rhÞ− iω
4πT ð15Þ

with ψhþ ¼ −iðI2×2 ⊗ σ2Þ · ψh−. This constraint implies
that ψUV

� are not all independent. Indeed, since the
equations are linear, we can assume the linear relations
ψUVþ ¼ Mþψh and ψUV

− ¼ M−ψh, where the matrices M�
must be obtained by numerical integration. This in turn
implies ψUVþ ¼ MþM−1

− ψUV
− , allowing us to identify the

retarded fermionic correlator as G ¼ MþM−1
− . Then the

poles of the correlator can be simply read off from the zeros
of the determinant of M−. Notice that in contrast to
previous construction [32], in our model we apply the
standard relativistic boundary conditions and the flatness of
the bands arises from the bulk dynamics.

V. FERMIONIC DISPERSION RELATION

Focusing on the lowest lying poles of the previously
discussed retarded correlator, we obtain the dispersion
relation of the holographic fermion. Starting at the infinite
temperature limit, its form reads

ω ≈ −iþ vfk − iΓk2 þ… ð16Þ

featuring a purely imaginary gap and a real part scaling
linearly with k, as expected for a massless fermion. At large
k nonlinear contributions coming from the broken con-
formal symmetry have to be included. The corresponding
dispersions are shown at the top panel of Fig. 1.
As the temperature is lowered, the fermionic dispersion

relation in Eq. (16) gets modified to

ω ≈ −iþ ck2 − iΣk4 þ… ð17Þ

in agreement with expectations based on the free model.
This can be seen in the plots at the right panel of Fig. 1. We
emphasize that the dispersion relation in Eq. (17) fits to a
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quadratic real part close enough to the origin. This behavior
holds until the system enters the instability toward the
nematic phase, where the dispersion relation becomes
direction dependent. To illustrate this behavior, two rep-
resentative cuts along the diagonal and antidiagonal direc-
tions in the k–plane are shown at the bottom panel of
Fig. 1. We observe a rather notable breaking of the
rotational invariance. Interestingly, a zero frequency exci-
tation at a finite k ¼ k� along one of the directions shows
up yields a relativistic behavior in its vicinity. This is a
consequence of a z ¼ 1 fixed point, which corresponds to
the deep IR of the zero temperature limit in the nem-
atic phase.
Additionally, in Fig. 2 we show a 3D plot with the

position of the poles of the two point function in the
momentum space. We see explicitly that rotational sym-
metry is broken while a discrete Z2 symmetry around the
kx þ ky axis is preserved. As we can see in Fig. 3 the real
part of the zero momentum quasinormal frequency quickly
grows for the nematic phase, while the imaginary part drops
to zero. These gaps lift the degeneracy at low energies
according to the expected instability of flat bands in
interacting systems. On the other hand, the imaginary part
drops to zero, making otherwise incoherent fermionic
quasiparticle excitations long lived as the temperature is
lowered.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we realized a construction of fermionic flat
bands in the context of holography by directly including the
fermions in the bulk geometry within a standard bottom-up
approach. We consider a holographic system inspired by a
free fermionic model that mimics two copies of Dirac
fermions hybridizing as in a graphene bilayer and yielding
a quadratic low-energy dispersion. Interestingly, we found
that the holographic fermions inherit this quadratic
dispersion relation from the free model, while the thermo-
dynamics of the system points toward a different Lifshitz

exponent. This should not be surprising given that the
holographic system is strongly coupled with the strongly
renormalized critical exponents, which is then encoded in
the scaling of the thermodynamic response functions.
We here point out that since a holographic system is

intrinsically strongly coupled, and, on the other hand, a flat
electronic band is highly degenerate, we expect that the
holographic flat band undergoes a phase transition toward a
phase where the degeneracy is lifted. This is in fact
consistent with the present holographic setup, since the
Yang-Mills black holes, featured in the model, are generi-
cally unstable. This fact is reflected as a phase transition
toward a nematic phase. The concomitant rotational sym-
metry breaking then leads to the splitting of the quadrati-
cally dispersing nodes into two relativistic Dirac points that
move apart as we lower the temperature. As such, this
process can be thought as a holographic realization of the
Berry monopole splitting at strong coupling.
We emphasize that our model contains the minimal

ingredients required by a holographic construction, i.e.,
Einstein gravity with a negative cosmological constant and
a Yang-Mills field gauging the boundary global sym-
metries. Our results should therefore hold also in more
general models realizing flat bands holographically, with a
similar symmetry breaking pattern. As a consequence, we
expect that the emergence of a nematic phase at low
temperatures represents a ubiquitous feature of flat bands
at strong coupling. This nematic phase implies a richer
fermionic content which should be responsible for the form
of the anomalous Hall effect, as reported in Ref. [10].
In turn, one may consider this observable as a bench-
mark imprint for the Berry monopole splitting in the
conductivity.
We also point out that the nematic phase we found in

our holographic model shows some qualitatively similar
features as the one recently observed in twisted double
bilayer graphene [33], such as the breaking of the rotational
symmetry down to the Z2 subgroup while preserving
the translational one. These properties can be seen
directly from the quasinormal mode spectrum in Fig 1.
Additionally, we predict that the nematic phase should
exhibit anomalous Hall conductivity, with the qualitative
form as in Figs. 7 and 8 in Ref. [10].
As for the future directions, one may consider a UV

completion of our bottom-up model where the relation
between the bosonic and fermionic sector arises from
a stringy construction [34–37]. Furthermore, the free
fermionic construction can be extended to an arbitrary
integer n with the dispersion ω ∼ kn by using n fermionic
flavors and the generators of the spin-ðn − 1Þ=2 represen-
tation of the SUð2Þ group [11]. It would be therefore
interesting to investigate holographic duals of the models
with higher-n fermionic dispersions. Finally, one may
explore generalizations of these fermionic models to
non-relativistic Goldstone bosons [38,39].

FIG. 3. Real and imaginary part of the quasinormal frequencies
at k ¼ 0 for the fermionic excitations as a function of the
temperature for the nematic phase (orange) and the flat bands
phase (blue).
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