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In this work we study the production of two Higgs bosons at the two planned electron positron colliders
with energies at the TeV domain, CLIC and ILC, within the context of effective field theories (EFTs) to
describe beyond the Standard Model Higgs physics. We focus first on the case of the Higgs effective field
theory (HEFT) and next we compare with the case of the Standard Model effective field theory (SMEFT).
The predictions for double Higgs production in both EFTs are first presented for the most relevant
subprocess participating in the total process of our interest, eþe− → HHνν̄, which is the scattering of two
gauge bosons,WW → HH, also calledWW fusion. The predictions for the cross section σðWXWY → HHÞ
as a function of the subprocess energy are analyzed in full detail for the two EFTs, for all the polarization
channels with longitudinal and transverse modes XY ¼ LL; TT; LT; TL, and for the most relevant effective
operators in both cases. We will demonstrate that in the HEFT case, the total cross section can be fully
understood in terms of the LL contribution and this in turn is dominated at these TeV energies mainly by
two HEFT coefficients. By doing the matching between the two EFTs at the level of the scattering
amplitude for the subprocess, we will be able to find the correspondence of the leading coefficients in the
HEFT and the SMEFT. In the final part of this work we will then explore the sensitivity to these two most
relevant HEFT coefficients, at CLIC (3 TeV, 5 ab−1) and ILC (1 TeV, 8 ab−1). We will then conclude on the
accessible region of these two parameters by studying the predicted rates at these two eþe− colliders for the
final state bb̄bb̄νν̄ leading to characteristic signals with four bottom jets and missing energy.
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I. INTRODUCTION

Double Higgs production at high energy eþe− colliders
in the TeV region is one of the most promising mechanisms
to test beyond Standard Model (BSM) Higgs Physics.
The main reason for this is that, at these TeV energies, the
production of two Higgs bosons proceeds dominantly via
the scattering subprocess WW → HH (usually called WW
fusion) where the two W gauge bosons are radiated from
the initial colliding electrons and positrons. The full
process of our interest here is then eþe− → HHνν̄ occur-
ring via WW fusion, like in the generic Fig. 1. This WW
fusion subprocess is in turn highly dominated by the

contribution from the longitudinal modes, WLWL→HH,
which are the most sensitive ones to the BSM Higgs
couplings at these high energies, specially in the bosonic
sector. One indirect but simple way to understand this
extreme sensitivity is because the WL modes, by virtue of
the equivalence theorem (ET), behave at large energies,ffiffiffi
s

p
≫ mW , as the Goldstone bosons (GBs) w associated

to the spontaneous electroweak symmetry breaking,
SUð2ÞL ×Uð1ÞY → Uð1Þem, and the corresponding GB
scattering, ww → HH, provides an excellent window to
the typical derivative couplings involved in the scalar sector
of these BSM theories, which in turn give enhanced cross
sections at the TeV energies.
Testing the new Higgs couplings involved in the

WW → HH subprocess is therefore one of our main goals
in this work. For the present analysis, we will assume that
all the particle couplings to the fermions are like the SM
ones, and that the new Higgs physics appears only in the
bosonic sector. We will do this test of BSM Higgs
couplings in the bosonic sector, by means of the two most
popular effective field theories (EFTs), nowadays widely
employed in collider physics: the so-called HEFT (Higgs
effective field theory) and the SMEFT (Standard Model
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effective field theory). The advantage of using EFTs is that
they allow for a description of the relevant scattering, here
WW → HH, in a model independent way. The information
of the anomalous Higgs couplings is encoded in a set of
effective operators, built with the SM fields and with the
unique requirement of being invariant under the SM gauge
symmetry, SUð3Þ × SUð2Þ ×Uð1Þ. The coefficients in
front of these operators (usually called Wilson coefficients)
are generically unknown and encode the information of the
particular underlying fundamental theory that generates
such EFT at low energies, when the new heavy modes of
this theory are integrated out. It is well known that
depending on the kind of dynamics involved in the
fundamental theory, it is more appropriate the use of one
EFTor another. Usually, the SMEFT is more appropriate to
describe the low energy behavior of weakly interacting
dynamics, whereas the HEFT is more appropriate to
describe strongly interacting underlying dynamics (for
reviews, see for instance, [1,2]).
Wewill present first the computation of the cross section,

σðWW → HHÞ, within the HEFT and then we will com-
pare it with the corresponding cross section within the
SMEFT. We will not use the equivalence theorem, but we
will consider instead all the physical gauge boson modes,
longitudinal WL and transverses WT in the computation of
the scattering amplitudes. For the HEFT, since we are
interested in the bosonic sector, we will use the electroweak
chiral Lagrangian (EChL) which contains all the relevant
bosonic interactions for the present work. In the SMEFT,
the effective operators are ordered in terms of their
canonical dimension (dim 6, dim 8 etc), whereas in the
HEFTwith the EChL the order of the effective operators is
in terms of their chiral dimension (χdim ¼ 2, χdim ¼ 4, etc).
Since, at lowest order in the EChL case (the so-called
leading order (LO) with effective operators of χdim ¼ 2),
the consequences of Higgs anomalous couplings at the TeV
eþe− colliders have already been studied in the literature,
Ref. [3], we will focus here instead in the next to leading
order effective operators with χdim ¼ 4. The comparison
with the SMEFT prediction must therefore go beyond its
lowest order, with dim 6 operators, and include consistently
the most relevant dim 8 effective operators. The interest of

this HEFT-SMEFT comparison is that we will be able to
determine the correct matching of the two approaches at the
level of scattering amplitudes of WW → HH. Considering
the most relevant coefficients for this scattering in both
EFTs, and from this matching of amplitudes we will be able
to extract the proper relations among their corresponding
Lagrangian coefficients. This will allow us to fully describe
the wanted BSM Higgs physics in terms of just a few most
relevant coefficients with a clear relation among the two
HEFT and SMEFT approaches. The second part of this
work is the study of the sensitivity to those coefficients
at the future TeV eþe− colliders. We will focus in two
projected cases, the International Linear Collider (ILC)
[4,5] with energy

ffiffiffi
s

p ¼ 1 TeV and luminosity 8 ab−1, and
the Compact Linear Collider (CLIC) [6–8] with energyffiffiffi
s

p ¼ 3 TeV and luminosity 5 ab−1. In the final part of this
work we will determine the accessible region in these two
planned colliders to the most relevant EFT parameters, by
means of the study of the particular final state bb̄bb̄νν̄,
resulting from the decays to quark bottoms of the two
Higgs bosons and leading to a characteristic signal with
four b-jets and missing energy.
The paper is organized as follows: we review the relevant

HEFT Lagrangian and present the analytical amplitude for
the WW → HH scattering in Sec. II. Also in this section,
we study the corresponding cross section and identify
which operators are the dominant for each polarization
state at TeV energy scale. In Sec. III, we present a similar
analysis in the SMEFT context. Then, in Sec. IV, we
compare the resulting amplitudes in both approaches and
by matching them we obtain the relation among the
coefficients in the HEFT and SMEFT. Finally, we move
to the eþe− collider scenario and study the sensitivity to the
most relevant EFT coefficients in Sec. V. The conclusions
are given in Sec. VI.

II. WW → HH IN HEFT

In this section we present our study of WW → HH
within the HEFT context. For this study we select the
bosonic sector, containing the GBs, the Higgs field and
the EW gauge bosons, and use the EChL, which uses a
nonlinear parametrization of the GB fields and organizes
the set of effective operators describing the new Higgs
physics in terms of their chiral dimension. We will perform
this study at the tree level approximation and will consider
operators of both types, the lowest order chiral dimension
two, and of the next to leading order chiral dimension four.
First we present the relevant Lagrangian, then the relevant
scattering amplitude, and then the numerical predictions for
the cross sections.

A. The relevant HEFT Lagrangian

The relevant HEFT Lagrangian for the present compu-
tation is the EChL. The bosonic fields and building blocks

FIG. 1. Double Higgs production at eþe− via WW fusion.
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of the EChL are as follows. The four EW gauge bosons,Wa
μ

(a ¼ 1, 2, 3) and Bμ, that are the interaction eigenstates
associated to the SUð2ÞL and Uð1ÞY symmetries, respec-
tively, the three GBs wa (a ¼ 1, 2, 3) associated to the
spontaneous breaking SUð2ÞL ×Uð1ÞY → Uð1Þem, and the
Higgs boson H. The GBs are introduced in a nonlinear
representation, usually via the exponential parametrization,
by means of the unitary matrix U:

UðwaÞ ¼ eiw
aτa=v; ð2:1Þ

where, τa, a ¼ 1, 2, 3, are the Pauli matrices and
v ¼ 246 GeV. Under an EW chiral transformation of
SUð2ÞL × SUð2ÞR, given by L∈SUð2ÞL and R∈SUð2ÞR,
the field U transforms linearly as LUR†, whereas the GBs
wa transform nonlinearly. This peculiarity implies multi-
ple GBs interactions in the HEFT, not just among them-
selves but also with the other fields, and it is the main
feature of this nonlinear EFT. TheH field is, in contrast to
the GBs, a singlet of the EW chiral symmetry and the EW
gauge symmetry and, consequently, there are not limi-
tations from symmetry arguments on the implementation
of this field and its interactions with itself and with the
other fields. Usually, in the EChL, the interactions ofH are
introduced via generic polynomials.
The EW gauge bosons are introduced in the EChL by

means of the SUð2ÞL ×Uð1ÞY gauge prescription, namely,
via the covariant derivative of the U matrix, and by the
SUð2ÞL and Uð1ÞY field strength tensors, given by:

DμU ¼ ∂μU þ iŴμU − iUB̂μ;

Ŵμν ¼ ∂μŴν − ∂νŴμ þ i½Ŵμ; Ŵν�;
B̂μν ¼ ∂μB̂ν − ∂νB̂μ; ð2:2Þ

where Ŵμ ¼ gWa
μτ

a=2 and B̂μ ¼ g0Bμτ
3=2. For the con-

struction of the EChL and in addition to these basic

building blocks, it is also customary to use the following
objects:

Vμ ¼ ðDμUÞU†; DμO ¼ ∂μOþ i½Ŵμ; O�: ð2:3Þ

The physical gauge fields are then given, as usual, by:

W�
μ ¼ 1ffiffiffi

2
p ðW1

μ ∓ iW2
μÞ; Zμ ¼ cWW3

μ − sWBμ;

Aμ ¼ sWW3
μ þ cWBμ; ð2:4Þ

where we use the short notation sW ¼ sin θW and
cW ¼ cos θW , with θW the weak angle.
We consider here only the relevant effective operators for

the scattering of our interest, WW → HH, and restrict
ourselves to the subset that is invariant under the custodial
symmetry, an approximation which is very reasonable
for the study of this scattering process at TeV energies.
The operators selected in the EChL are organized as usual by
their chiral dimension into two terms: L2, with chiral
dimension two and L4 with chiral dimension four. In
momentum space, a χdim ¼ 2 contribution means Oðp2Þ
whereas a χdim ¼ 4 contribution means Oðp4Þ. For this
chiral counting, we consider as usual that all involved masses
count equally as momentum, namely, with chiral dimension
one. Consequently, ∂μ; mW; mZ; mH; gv; g0v; λv ∼OðpÞ.
Thus, the relevant EChL, that is SUð2ÞL ×Uð1ÞY gauge
(and custodial) invariant, and that is valid for NLO tree level
calculations which include χdim ¼ 2 and χdim ¼ 4 operators,
is summarized by:

LEChL ¼ L2 þ L4 ð2:5Þ

where the relevant chiral dimension two Lagrangian for
WW → HH is

L2 ¼
v2

4

�
1þ 2a

H
v
þ b

H2

v2

�
Tr½DμU†DμU� þ 1

2
∂μH∂

μH − VðHÞ − 1

2g2
Tr½ŴμνŴ

μν� − 1

2g02
Tr½B̂μνB̂

μν� þ LGF þ LFP;

ð2:6Þ

and the relevant chiral dimension four Lagrangian for WW → HH is

L4 ¼ −addVV1
∂
μH∂

νH
v2

Tr½VμVν�− addVV2
∂
μH∂μH

v2
Tr½VνVν� þ a11Tr½DμVμDνVν�−m2

H

4

�
2aHVV

H
v
þ aHHVV

H2

v2

�
Tr½VμVμ�

−
�
aHWW

H
v
þ aHHWW

H2

v2

�
Tr½ŴμνŴ

μν� þ i

�
ad2 þ aHd2

H
v

�
∂
νH
v

Tr½ŴμνVμ� þ
�
a□VV þ aH□VV

H
v

�
□H
v

Tr½VμVμ�

þ ad3
∂
νH
v

Tr½VνDμVμ� þ
�
a□□ þ aH□□

H
v

�
□H□H

v2
þ add□

∂
μH∂μH□H

v3
þ aHdd

m2
H

v2
H
v
∂
μH∂μH ð2:7Þ
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In the Lagrangian with χdim ¼ 2, in Eq. (2.6), LGF and LFP
are the gauge-fixing Lagrangian and Fadeev-Popov
Lagrangian, respectively, and VðHÞ is the Higgs potential,
which we take here as

VðHÞ ¼ 1

2
m2

HH
2 þ κ3λvH3 þ κ4

λ

4
H4; ð2:8Þ

withm2
H ¼ 2λv2. Concretely, for the present computation of

theWW → HH scattering we will set the Feynman-’t Hooft
gauge with gauge fixing parameter ξ ¼ 1. The specific
formulas for LGF and LFP in generic covariant Rξ gauges,
within the EChL context, are presented in [9–11] (other
works containing this L2, in various gauges can also be
found in those references).
The reference values for the coefficients in the EChL to

reach the SM predictions are a ¼ b ¼ κ3 ¼ κ4 ¼ 1 in L2

and ai ¼ 0 for all the coefficients in L4. This means that
the new physics BSM is encoded in the chiral coefficients
a, b, κ3, and κ4 of L2 when they are different from one, and
in the nonvanishing values of the ai coefficients of L4. This
Lagrangian L4 in Eq. (2.7) describes the new interactions
given by the ai’s of the Higgs boson with the EW gauge
bosons and the new Higgs self-interactions, in addition to
those introduced by a, b, κ3, and κ4 in L2. This Lagrangian
and the full renormalization program for the involved ai’s
coefficients have been presented recently in [11], from
which we inherit the notation that we use here. Notice that
the effective operators contained in Eq. (2.7) are a subset
of the full HEFT Lagrangian presented in [12,13] using a
different notation.
The previous Lagrangian with χdim ¼ 4 in Eq. (2.7) can

be further reduced by the use of the equations of motion
(EOMs) if these operators are to be used in a tree level
computation of a scattering amplitude where the external
legs are on-shell, like the one we are interested in here.
Then, one can rewrite the operators including the □H or
DμVμ pieces in terms of other operators in L4 by using the
following equations, as in [12]:

□H ¼ −
δVðHÞ
δH

−
v2

4

F ðHÞ
δH

Tr½VμVμ�;
Tr½τjDμVμ�F ðHÞ ¼ −Tr½τjVμ�∂μF ðHÞ; ð2:9Þ

where

F ðHÞ ¼
�
1þ 2a

H
v
þ b

H2

v2

�
: ð2:10Þ

In particular, for the present scattering WW → HH
with external W� and H on-shell states, one can use the
following EOMs, where we have kept in Eq. (2.9) just the
terms that provide a maximum of two H or two W gauge
bosons in the operator:

□H ¼ −m2
HH −

3

2
κ3m2

H
H2

v
−
a
2
vTr½VμVμ�

−
b
2
HTr½VμVμ�;

Tr½τjDμVμ� ¼ −Tr½τjVμ� 2a
v
∂μH: ð2:11Þ

Thus, it is convenient to use the simplified Lagrangian
that is obtained after the use of these EOMs in Eq. (2.11)
which is written in terms of a reduced set of couplings.
In particular, the operators of a11 and ad3 can be written in
terms of the operator of addVV1; the operator of add□ in
terms of the operators of addVV2 and aHdd; and the operators
of a□VV , aH□VV , a□□, and aH□□ in terms of the operators
of aHVV and aHHVV (and also with other operators which do
no enter in this observable). Thus, after the use of the
EOMs there is just the reduced basis of operators with the
corresponding combinations of coefficients which can be
renamed again, to simplify, as in the starting Lagrangian.
For instance, the combination of coefficients entering in
the first operator of Eq. (2.7) after the use of the EOMs
is ð−addVV1 − 4a2a11 þ 2aad3Þ which we rename as
ð−addVV1Þ, and that for the second operator is ð−addVV2 þ
ða=2Þadd□Þ which we rename as ð−addVV2Þ.
Finally, for the present computation of WW → HH, this

reduced version of L4 can be written as follows:

LþEOMs
4 ¼ −addVV1

∂
μH∂

νH
v2

Tr½VμVν� − addVV2
∂
μH∂μH

v2
Tr½VνVν� −

m2
H

4

�
2aHVV

H
v
þ aHHVV

H2

v2

�
Tr½VμVμ�

þ aHdd
m2

H

v2
H
v
∂
μH∂μH −

�
aHWW

H
v
þ aHHWW

H2

v2

�
Tr½ŴμνŴ

μν� þ i

�
ad2 þ aHd2

H
v

�
∂
νH
v

Tr½ŴμνVμ�. ð2:12Þ

In summary, our starting EChL contains the following
relevant coefficients for WW → HH: 3 coefficients in
L2, a, b, and κ3 (κ4 does not enter in this process) and

9 coefficients in L4, addVV1, addVV2, ad2, aHd2, aHdd, aHWW ,
aHHWW , aHVV , and aHHVV . Notice, that other scattering
processes different than WW → HH would require a
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different set of reduced operators in L4. For a complete list
of effective operators in the HEFT, see for instance [12].
Notice also that we have used here a different notation
than in that reference. The relation among the two sets
of coefficients can be summarized by: addVV1 ↔ c8,
addVV2 ↔ c20, a11 ↔ c9, aHWW ↔ aW , aHHWW ↔ bW ,
ad2 ↔ c5, aHd2 ↔ a5, a□VV ↔ c7, aH□VV ↔ a7,
ad3 ↔ c10, aHd3 ↔ a10, a□□ ↔ c□H, aH□□ ↔ a□H,
add□ ↔ cΔH, aHVV ↔ aC, and aHHVV ↔ bC.

B. Scattering amplitude in HEFT

Here and in the following of this work, the notation for
the momenta assignments and Lorentz indexes involved in
the scattering of our interest WW → HH is set as follows:

Wþ
μ ðpþÞW−

ν ðp−Þ → Hðk1ÞHðk2Þ; ð2:13Þ

where p� and k1;2 (with pþ þ p− ¼ k1 þ k2) are the
incoming and outgoing momenta of the bosons. The W�
polarization vectors are ϵ�, respectively.

For the computation of the amplitude from the EChL, we
work at the tree level, set the Feynman-’t Hooft gauge (i.e.,
with massive GBs) and write the result in terms of the
corresponding contributions from the different channels:
the S-channel, the T-channel, the U-channel, and the
contact term. Notice that in this section we use capital
letters for the s, t, and u Mandelstam variables. The one-
loop computation for this observable in the EChL was
performed in [11]. Thus, the tree level amplitude within the
HEFT at NLO is given by:

AðWW → HHÞjHEFT ¼ Að2Þ þAð4Þ ð2:14Þ

where the chiral-dim 2 and chiral-dim 4 contributions are
given, respectively, by:

Að2Þ ¼ Að2ÞjS þAð2ÞjT þAð2ÞjU þAð2ÞjC
Að4Þ ¼ Að4ÞjS þAð4ÞjT þAð4ÞjU þAð4ÞjC ð2:15Þ

with the corresponding contributions from the various
channels given by:

Að2ÞjS ¼
g2

2
3aκ3

m2
H

S −m2
H
ϵþ · ϵ−

Að2ÞjT ¼ g2a2
m2

Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2
T −m2

W

Að2ÞjU ¼ g2a2
m2

Wϵþ · ϵ− þ ϵþ · k2ϵ− · k1
U −m2

W

Að2ÞjC ¼ g2

2
bϵþ · ϵ−

Að4ÞjS ¼
g2

2v2
1

S −m2
H
ð3κ3ad2m2

HðSϵþ · ϵ− − 2ϵþ · p−ϵ− · pþÞ

þ 6κ3aHWWm2
HððS − 2m2

WÞϵþ · ϵ− − 2ϵþ · p−ϵ− · pþÞ − ð3κ3aHVVm4
H þ aaHddm2

HðSþ 2m2
HÞÞϵþ · ϵ−Þ

Að4ÞjT ¼ g2

2v2
a

T −m2
W
ðad2ð4m2

Wm
2
Hϵþ · ϵ− þ 2ðT þ 3m2

W −m2
HÞϵþ · k1ϵ− · k2

− 4m2
Wðϵþ · k1ϵ− · pþ þ ϵþ · p−ϵ− · k2ÞÞ

− 8aHWWm2
WððT þm2

W −m2
HÞϵþ · ϵ− þ ϵþ · k1ϵ− · pþ þ ϵþ · p−ϵ− · k2Þ

− 4aHVVm2
Hðm2

Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2ÞÞ
Að4ÞjU ¼ Að4ÞjT with T → U and k1 ↔ k2

Að4ÞjC ¼ g2

2v2
ð−2addVV1ðϵþ · k2ϵ− · k1 þ ϵþ · k1ϵ− · k2Þ

þ ð−2addVV2ðS − 2m2
HÞ þ 4aHHWWðS − 2m2

WÞ þ aHd2S − aHHVVm2
HÞϵþ · ϵ−

− 2ðaHd2 þ 4aHHWWÞϵþ · p−ϵ− · pþÞ ð2:16Þ

Notice that the SM prediction is reached from the previous HEFT result by taking a ¼ b ¼ κ3 ¼ 1 (κ4 does not enter in this
scattering amplitude) and all the remaining EChL coefficients inL4 set to zero, ai ¼ 0. We include the SM amplitude below
for comparison, where we also use the Feynman-’t Hooft gauge and m2

H ¼ 2λv2, m2
W ¼ g2v2=4,

DOUBLE HIGGS BOSON PRODUCTION AT TeV eþe− … PHYS. REV. D 106, 115027 (2022)

115027-5



AðWW → HHÞjSM
¼ g2

2
3

m2
H

S −m2
H
ϵþ · ϵ− þ g2

m2
Wϵþ · ϵ− þ ϵþ · k1ϵ− · k2

T −m2
W

þ g2
m2

Wϵþ · ϵ− þ ϵþ · k2ϵ− · k1
U −m2

W
þ g2

2
ϵþ · ϵ− ð2:17Þ

Some comments are in order about the previous analytical
results for the scattering amplitude AðWW → HHÞjHEFT.
First of all, notice that it is written in terms of the
polarization vectors of the initial Wþ and W−, given by
ϵþðpþÞ and ϵ−ðp−Þ, respectively. Therefore, the particular
physical helicity amplitudes for the polarized gauge
bosons, longitudinal WL and transverse WT , can be
obtained from these expressions above, just by replacing
the corresponding polarization vectors for these L and T
modes. The expressions of Að2Þ above have been found
previously in the literature, Ref. [3], and we have checked
the agreement with those results. The expressions of Að4Þ
above are new. Other previous computations in the
literature, contain some simplifications. In [14] this ampli-
tude is computed using the equivalence theorem, therefore,
it is computed with GBs w in the external legs. The
corresponding amplitude Að4Þ of the GB scattering
Aðww → HHÞ is given in terms of two coefficients, called
η and δ in [14], that correspond to the two scalar operators
of χdim ¼ 4 that are the relevant ones in that case.
Concretely,

Lscalar
4 ¼ η

∂
μH∂

νH
v2

Tr½∂μU†
∂νU�

þ δ
∂
μH∂μH

v2
Tr½∂νU†

∂νU� þ… ð2:18Þ

Notice that this scalar part is contained in our EChL
Lagrangian. Concretely, this is inside the first two terms
of Eq. (2.12) which can be rewritten as,

L4 ¼ addVV1
∂
μH∂

νH
v2

Tr½DμU†DνU�

þ addVV2
∂
μH∂μH

v2
Tr½DνU†DνU� þ… ð2:19Þ

Thus, the relation of the two above Lagrangians in
Eqs. (2.18) and (2.19) can be simply obtained by replacing
addVV1 by η and addVV2 by δ.
The tree level analytical computation of Að4Þ in [15] is

performed with physical external gauge bosons and with
a reduced set of effective operators in the EChL.
Their analytical results for the various channels in the
WW → HH scattering amplitude are given in the Landau
gauge, i.e., with massless GBs. The reduced set of effective
operators and χdim ¼ 4 coefficients, named η, δ, and χ that
are involved in the results of this reference correspond to
our addVV1, addVV2, ad2, and aHd2. We have checked the

agreement of the contributions to the amplitude for this
subset of operators with those results in [15] by doing the
following replacement, addVV1 by η, addVV2 by δ, ad2 by
b1χ, and aHd2 by 2b2χ. The other contributions in the
amplitude from the remaining ai’s are not included in [15].
In summary, in this section we have determined the

scattering amplitude for all the generic polarization chan-
nels, in AðWXWY →HHÞjHEFT with XY ¼ LL; TT; LT;
TL, in terms of 3 coefficients of L2: a, b and κ3 and of
9 coefficients ofL4: addVV1, addVV2, ad2, aHd2, aHdd, aHWW ,
aHHWW , aHVV , and aHHVV . In the next section we will
determine which coefficients among these ones are the
most relevant coefficients to describe the BSM Higgs
physics at the TeV colliders.

C. Cross-section results in HEFT

In this subsection we present the numerical results for
the cross section of WþW− → HH. Since the numerical
analysis of the effects from the three coefficients inL2, a, b,
and κ3, has already been done in the literature [3], we
will focus here in the numerical analysis of the effects from
the 9 coefficients in L4, and set a ¼ b ¼ κ3 ¼ 1. In
principle, all the 9 coefficients contribute to the total
(unpolarized) cross section σðWþW− → HHÞ. However,
in order to understand which are the most relevant
coefficients among these 9, it is very illustrative to compute
first the cross section for the polarized modes, i.e.,
σLL ¼ σðWþ

LW
−
L → HHÞ, σTT ¼ σðWþ

TW
−
T → HHÞ, and

σLTþTL ¼ σðWþ
LW

−
T → HHÞ þ σðWþ

TW
−
L → HHÞ, where

the average over the initial helicities is understood (with
helicities: 0 for L and �1 for T). In the case of the SM, it is
a well-known result the clear dominance of the σLL over
σTT and σLTþTL at the TeV energies.
This is shown in Fig. 2 where we plot the SM cross

section as a function of the WW center-of-mass energy,

FIG. 2. Cross-section prediction in the SM for the polarized
channels WXWY → HH as a function of the WW center of mass
energy

ffiffiffi
s

p
. The lines are for XY ¼ LL (blue), XY ¼ TT (orange),

and XY ¼ LT þ TL (green). The total (unpolarized) SM cross
section is also shown (red line).
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separating the various polarization channels, LL, TT, and
LT þ TL, and also the total (unpolarized) cross section. In
fact, we see that the two lines for the total (red) and for LL
(blue) coincide in the full energy range studied (up the
obvious factor 1=9 in the unpolarized cross section due to
the average over the initial helicities). Thus, the total cross
section in the SM is very well approximated at the TeV
energies by σLL. Besides, the SM result, both for LL and for
the total, shows the well known behavior with energy, being
flat with

ffiffiffi
s

p
above around 500 GeVand reaching a constant

value, that for the LL channel is σSMLL ≈ 53 pb. We will see
here that this dominance of σLL also happens in the EFT
case, and the size of the total cross section and its behavior
with energy can be fully understood in terms of the
polarized σLL.
The BSM results for σLL, σTT , and σLTþTL as a function

of the WW center of mass energy
ffiffiffi
s

p
are shown in

Figs. 3–8. In each plot we explore the effect of each
coefficient ai separately, setting the others to zero values.
We explore the cross sections for the following numerical
values for the nonvanishing coefficient: �0.1, �0.01,
�0.001, and �0.0001. Consequently, there are 9 plots
for each polarization case. In all plots of these figures the
corresponding predictions for the SM case are also included
for comparison.
We start with the analysis of the results for σLL in Figs. 3

and 4. We have selected first in Fig. 3 the two most
prominent results, meaning the ones with the largest cross
sections. The two coefficients in these plots of Fig. 3,
addVV1, addVV2, are therefore the most relevant ones, since
for a given assumed numerical value for these two ai’s they
provide sizeable cross sections at the TeV region which are
clearly above (by orders of magnitude) the corresponding
predictions from the other ai coefficients having the same
assumed value. Furthermore, the size of the HEFT cross
section for these two coefficients grow faster with the
process energy than in the other cases. In particular, these
can be several orders of magnitude above the SM prediction

for the cases ai ¼ �0.1 and ai ¼ �0.01. The predictions
for the other 7 coefficients, less relevant than the two
previous ones, are presented in Fig. 4. It is clear from this
figure also the hierarchy in the relevance of the various
coefficients, being the ones in the first row more relevant
than those on the second row and these in turn more
relevant than those in the last row.
In order to understand the origin of this hierarchy in the

relevance of the various coefficients, we have performed an
expansion of the amplitude Að4Þ in powers of s (here s
denotes the total center-of-mass energy squared, which was
named in the previous section with capital letter as S). For
this expansion we have also taken into account the different
behavior with energy of the corresponding polarization
vectors. The result of this expansion can be understood
considering that at energies higher than the masses
involved, the longitudinal polarization vector of a massive
gauge boson, with mass mV , grows with energy as
ð∼ ffiffiffi

s
p

=mVÞ, whereas the transverse polarization vector
goes as constant ∼ð ffiffiffi

s
p Þ0 and the propagators decrease

as ∼s−1. In most cases, the resulting energy behavior of the
amplitude can be inferred from a naive power counting by
using these simple features. For instance, the dominance of
the LL amplitude over the others at large s, can be easily
derived from the growing of the corresponding polarization
vectors with energy. Then, for the LL case we have found
the following behavior for the highest OðsnÞ terms in
Að4ÞðWLWL → HHÞ:
(1) The contributions from addVV1 and addVV2 grow

as ∼s2.
(2) The contributions from ad2, aHd2, aHdd, aHVV , and

aHHVV grow as ∼s1.
(3) The contributions from aHWW and aHHWW go as ∼s0.

And this explains the behavior of the cross sections in
Figs. 3 and 4.
The results for σTT are shown in Figs. 5 and 6 where we

have set the same order in the presentation of the plots as in
the previous LL case, to make the comparison clear. We see

FIG. 3. Cross-section prediction in the HEFT at subprocess level corresponding to the polarization state LL for different parameter
values of addVV1 (left) and addVV2 (right). The SM prediction (black) is shown for comparison and corresponds to vanishing EChL
coefficients.
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in Fig. 5 that the coefficients addVV1 and addVV2 are also
relevant in the TT case. However, it is also clear that the
size of the corresponding cross section is considerably
smaller than in the LL case. From Fig. 6 we see that the

most relevant coefficient in the TT case is aHHWW . Again,
to understand the hierarchy among the coefficients we
present next the behavior of the expansion in powers of s
that we have found for the Að4ÞðWTWT → HHÞ:

FIG. 5. Cross-section prediction in the HEFT at subprocess level corresponding to the polarization state TT for different parameter
values of addVV1 (left) and addVV2 (right). The SM prediction (black) is shown for comparison and corresponds to vanishing EChL
coefficients.

FIG. 4. Cross-section prediction in the HEFT at subprocess level corresponding to the polarization state LL for different parameter
values of aHVV , aHHVV , ad2, aHd2, aHdd, aHWW , and aHHWW , displayed from left to right and from upper to lower panels, respectively.
The SM prediction (black) is shown for comparison and corresponds to vanishing EChL coefficients.
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(1) The contributions from addVV1, addVV2, aHd2, and
aHHWW grow as ∼s1.

(2) The contributions from ad2, aHdd, aHWW , aHVV , and
aHHVV go as ∼s0.

And this explains the behavior of the cross sections in
Figs. 5 and 6.
The results for σLTþTL are shown in Figs. 7 and 8 where

the order chosen in the plots are as before. In this case, we
observe that there are several cases where the coefficients
do not affect at all to the cross section and the result is
indistinguishable from the corresponding SM prediction.
The most relevant coefficient in this case is addVV1. The
hierarchy found in the behavior of the expansion with
energy of Að4ÞðWLWT → HHÞ is
(1) The contributions from addVV1 grow as ∼s3=2.
(2) The contributions from ad2, aHVV , and aHWW grow

as ∼s1=2.
(3) The contributions from addVV2, aHd2, aHdd, aHHWW ,

and aHHVV vanish. It is because ϵþ:ϵ− ¼ 0 for these
LT and TL cases, thus, these coefficients do not
contribute to σLTþTL.

And this clearly explains the behavior of the cross sections
in Figs. 7 and 8.
Finally, we show in Fig. 9 the predictions of the total

(unpolarized) cross section as a function of the center-of-
mass energy for the two most relevant coefficients addVV1
and addVV2. Comparing these two plots with the corre-
sponding ones of σLL in Fig. 3 one can see that the
contributions from the LL modes explains fully the pattern
with

ffiffiffi
s

p
and the size of the total cross section (with a factor

of (1=9) difference due to the average over the 9 helicity
combinations). Notice also that we have included in this
figure the points in energy where the unitarity border is
crossed. For the studied interval in energy here, this
crossing into the unitarity violating region occurs only in
the LL channel, only for the largest studied values of
addVV1 and/or addVV2, and it is characterized by its dominant
J ¼ 0 partial wave, ja0ðsÞj, crossing above one for that
signaled energy.
In summary, we have shown in this section that the

total cross section of this scattering process WW → HH is
dominated by he longitudinal modes and the BSM Higgs

FIG. 6. Cross-section prediction in the HEFT at subprocess level corresponding to the polarization state TT for different parameter
values of aHVV , aHHVV , ad2, aHd2, aHdd, aHWW , and aHHWW , displayed from left to right and from upper to lower panels, respectively.
The SM prediction (black) is shown for comparison and corresponds to vanishing EChL coefficients.
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FIG. 8. Cross-section prediction in the HEFT at subprocess level corresponding to the polarization state LT þ TL for different
parameter values of aHVV , aHHVV , ad2, aHd2, aHdd, aHWW , and aHHWW , displayed from left to right and from upper to lower panels,
respectively. The SM prediction (black) is shown for comparison and corresponds to vanishing EChL coefficients.

FIG. 7. Cross-section prediction in the HEFT at subprocess level corresponding to the polarization state LT þ TL for different
parameter values of addVV1 (left) and addVV2 (right). The SM prediction (black) is shown for comparison and corresponds to vanishing
EChL coefficients.
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physics in the HEFT is mainly determined by the two EChL
coefficients addVV1 and addVV2.

III. WW → HH IN SMEFT

A. The relevant SMEFT Lagrangian

The SMEFT [1] is built upon the same field content and
the same linearly realized SUð3Þ × SUð2ÞL ×Uð1ÞY sym-
metry as the SM. Contrarily to the HEFT, the Higgs boson
is embedded in a SUð2ÞL doublet,

ϕ ¼
� −iωþ

Hþvþiω0ffiffi
2

p

�
; ð3:1Þ

that is normalized such that the Higgs mass is m2
H ¼ 2λv2.

Assuming lepton and baryon number conservation, the
SMEFT Lagrangian takes the form:

LSMEFT ¼ LSM þ L6 þ L8 þ…; with Ld ¼
ai

Λd−4 O
ðdÞ
i

ð3:2Þ

and OðdÞ
i denoting a gauge invariant operator with mass

dimension d > 4. The complete nonredundant basis of dim
6 operators was presented in Ref. [16], while that of dim 8
became available only recently [17,18]. In the Lagrangian
above, the suppression by d − 4 powers of the cutoff scale
naturally implies that operators with d ¼ 6 are LO correc-
tions to the SM Lagrangian, d ¼ 8 are NLO corrections,
and so on. However, depending on the physical problem,
there can be cases when the higher-dimensional operators
become more relevant while making sense of the SMEFT
expansion [19].
The primary goal of this section is to relate the operators

in the SMEFT with the most relevant operators in the
HEFT contributing toWW → HH at large

ffiffiffi
s

p
. Here again,

large
ffiffiffi
s

p
means energies at the TeV domain. Hence, we

focus on operators that affect mostly the longitudinal
amplitude and lead to the largest growth of the latter
with s. At dim 6, these are

L6¼
aϕ□
Λ2

ðϕ†ϕÞ□ðϕ†ϕÞþaϕD
Λ2

ðϕ†DμϕÞððDμϕÞ†ϕÞ; ð3:3Þ

while the relevant dim 8 SMEFT Lagrangian is

L8 ¼
að1Þ
ϕ6

Λ4
ðϕ†ϕÞ2ðDμϕ

†DμϕÞ

þ
að2Þ
ϕ6

Λ4
ðϕ†ϕÞðϕ†σIϕÞðDμϕ

†σIDμϕÞ

þ
að1Þ
ϕ4

Λ4
ðDμϕ

†DνϕÞðDνϕ†DμϕÞ

þ
að2Þ
ϕ4

Λ4
ðDμϕ

†DνϕÞðDμϕ†DνϕÞ

þ
að3Þ
ϕ4

Λ4
ðDμϕ

†DμϕÞðDνϕ†DνϕÞ: ð3:4Þ

The two-derivative dim 8 operators in the Lagrangian
above give the same effects to the scattering process of
our interest as the dim 6 operators but their contributions
are further suppressed by Oðv2=Λ2Þ. Therefore, the former
are neglected in our analysis.
For purposes of illustration, given the different

power counting in the SMEFT and the possibly non-
negligible contribution to the total cross section, we carry
OϕW ≡ ðϕ†ϕÞWa

μνWaμν in the analysis but do not consider
higher dimensional operators containing field strengths.

FIG. 9. Total unpolarized cross section prediction in the HEFT at subprocess level for different parameter values of addVV1 (left) and
addVV2 (right). The SM prediction (black) is shown for comparison and corresponds to vanishing EChL coefficients. The energy for
which unitarity is broken is also shown. Notice that it only occurs in these plots for parameter values of �0.1 and �0.01.
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B. Scattering amplitude in SMEFT

Analogously to Sec. II B, below we present the tree level amplitude for the scattering process of our interest from the
relevant SMEFT Lagrangian,

AðWW → HHÞSMEFT ¼ ASM þA½6� þA½8�; ð3:5Þ

whereASM is the SM contribution defined in Eq. (2.17). The superscripts in squared brackets in the expression above refer
to the canonical dim 6 and dim 8 contributions for which the various channels read:

A½6�jS ¼
g2

4

v2

Λ2
δaϕD

Sþ 8m2
H

S −m2
H

ϵþ · ϵ− þ 6
v2

Λ2
aϕW

m2
H

v2
2ϵ− · pþϵþ · p− − ðS − 2m2

WÞϵþ · ϵ−
S −m2

H
;

A½6�jT ¼ g2

2

v2

Λ2
δaϕD

m2
Wϵþ · ϵ− þ ðϵ− · pþ − ϵ− · k1Þϵþ · k1

T −m2
W

þ 2g2
v2

Λ2
aϕW

ϵþ · ϵ−ð−m2
H þm2

W þ TÞ − ϵ− · k1ϵþ · p− þ ϵ− · pþðϵþ · p− þ ϵþ · k1Þ
T −m2

W
;

A½6�jU ¼ Að6ÞjT with T → U and k1 ↔ k2

A½6�jC ¼ g2

4

v2

Λ2
δaϕDϵþ · ϵ− þ v2

Λ2
aϕW

1

v2
ð−2ðS − 2m2

WÞϵþ · ϵ− þ 4ϵ− · pþϵþ · p−Þ;

A½8�jC ¼ −
g2

4

v2

Λ4
ððað1Þ

ϕ4 þ að2Þ
ϕ4 Þðϵ− · pþϵþ · k1 þ ϵ− · k1ðϵþ · p− − 2ϵþ · k1ÞÞ þ að3Þ

ϕ4 ϵþ · ϵ−ðS − 2m2
HÞÞ ð3:6Þ

up to Oða2ϕW; δa2ϕD=Λ4Þ terms that we have omitted for
simplicity. The kinematic variables are defined as in Sec. II B
and momentum conservation (pþ þ p− ¼ k1 þ k2) has
being used.
The expressions above are obtained after normalizing

canonically the fields, as several of the Wilson coeffi-
cients contribute to the kinetic terms of the Higgs and
the gauge bosons [20,21]. The corresponding field
redefinitions produce vertices which were zero in the
EFT before the rotations. Namely, the coefficients aϕD
and aϕ□ contribute only to the triple Higgs vertex before
canonical normalization while after they are manifest
in all the vertices relevant to the process, producing
contributions to all S, T, U, and C channels. Moreover,
such coefficients appear always in the same combina-
tion δaϕD ≡ 4aϕ□ − aϕD.
Moreover, the effective operators under study give

corrections to some of the EW inputs in the set
fαem; m2

Z; GF;m2
Hg. We absorb these corrections by rede-

fining the gauge and the Higgs couplings; therefore, all the
parameters in the previous expressions are to be understood
as barred parameters, e.g., g → ḡ ¼ ð1þ δgÞg. The explicit
rotations are obtained following Ref. [22] in order to
produce the plots in Sec. III C.
Note that the dim 8 four-derivative operators contribute

solely to theWWHH vertex hence to the contact amplitude.
These and the two-derivative operators are accompanied by
different energy dependencies and hence contribute differ-
ently to the cross section.

C. Cross-section results in SMEFT

In this subsection, we present the numerical results for
the cross section of WW → HH sourced by the SMEFT
Lagrangian presented in Sec. III A. We have focused on the
operators contributing mostly to the LL modes which are
expected to give the largest contributions to the process under
study, following the results obtained in previous sections.
Indeed, performing an expansion of the amplitude

A½6� þA½8� in powers of s, we have found the following
behavior for the highestOðsnÞ terms inAðWLWL → HHÞ:
(1) The contributions from að1Þ

ϕ4 ; a
ð2Þ
ϕ4 and að3Þ

ϕ4 grow
as ∼s2.

(2) The contributions from aϕD and aϕ□ grow as ∼s1.
(3) In comparison, the contribution from aϕW goes

as ∼s0.
Considering the same expansion in AðWTWT → HHÞ, we
have found:
(1) The contributions from að1Þ

ϕ4 , að2Þ
ϕ4 and að3Þ

ϕ4 grow
as ∼s1.

(2) The contributions from aϕD and aϕ□ grow as ∼s0.
(3) In comparison, the contribution from aϕW goes

as ∼s1.
Concerning AðWLWT → HHÞ, the hierarchy found in the
behavior of the expansion with energy is
(1) The contributions from að1Þ

ϕ4 and að2Þ
ϕ4 grow as ∼s3=2.

(2) The contributions from aϕD and aϕ□ decay as s−1=2.

(3) The contribution from að3Þ
ϕ4 vanishes.

(4) In comparison, the contribution from aϕW grows
as s1=2.
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These results explain the behavior of the cross sections in
Figs. 10 and 11, where the BSM results for σLL; σTT, and
σLTþTL as a function of

ffiffiffi
s

p
are shown. In each plot, we

explore the effect of each coefficient ai separately, setting
the others to zero values. In all these plots we assume the
cut-off scale Λ ¼ 3.5 TeV and ai ¼ f�1.0;�1.5;�10;
�100g. In all plots of these figures the SM predictions
are also included.
The large input values chosen above point already to the

fact that large BSM Wilson coefficients in the SMEFT are
required to see non-negligible deviations from the SM
prediction. Focusing at first on the dim 6 derivative
interactions, it can be seen in Fig. 10 that the respective
contributions can dominate over the SM in a range of
energy 1 TeV≲ ffiffiffi

s
p

< Λ, but only for aϕ□; aϕD ≳Oð1Þ.
For Wilson coefficients close to the unity, the contribu-

tions from dim 6 and dim 8 operators are comparable but
correcting the SM prediction only slightly. For example, the

contributions from aϕ□ ¼ −0.5 and að3Þ
ϕ4 ¼ 0.5 to σLL, atffiffiffi

s
p ¼ 3 TeV, read 54.4 and 53.3 pb, respectively. In
comparison, the SM prediction is σLL ≈ 53.0 pb.
Enlarging, e.g. aϕ□, the quadratic terms on the dim 6

coefficients contributing to the cross section eventually
start dominating over linear terms and the prediction starts
to deviate significantly from the SM. Assuming the same

numerical values for aðiÞ
ϕ4 , and for this large cutoff value of

Λ ¼ 3.5 TeV, the dim 8 contributions are subleading as
observed in Fig. 11. Note however that depending on the
choice for Λ, the relative size of dim 6 versus dim 8
contributions may change. All numerical arguments in this
discussion follow the results presented in the plots.
As a remark, we point out that the contribution

from nonderivative operators like OϕW can actually be
comparable to that of the derivative operators due to the
large enhancement of the TT modes. However, in weakly
interacting UV theories, aϕ□ ≫ aϕW [25]. More impor-
tantly, there are strong experimental bounds on the dim 6
coefficients from individual operator at a time or global
marginalized fit analyses [26]. Under the former
assumption, bounds on aϕ□=Λ2 require that it is
Oð0.1Þ TeV−2 at most, while aϕD=Λ2 and aϕW=Λ2 are
bounded to beOð0.01Þ TeV−2 or smaller, depending on the
sign. Such values correspond approximately to aϕ□ ∼Oð1Þ
and aϕD;W ∼Oð0.1Þ for the cut-off scale of Λ ¼ 3.5 TeV,
leading to only small corrections to the SM prediction. In
the marginalized fit analyses, bounds on these coefficients
become weaker and values ∼10 become allowed.
On the other hand, bounds on the dim 8 Wilson

coefficients allow aðiÞ
ϕ4=Λ4 ∼ 1 TeV−4 (or even larger,

depending on the unitarization procedure adopted [27])
which is compatible with the largest input shown in Fig. 11.

For aðiÞ
ϕ4 > 10, we observe that the four derivative operators

can lead to sizable departures from the SM prediction,
specially in bins closer to the cutoff.
A few other comments are in order concerning the last

point. First, we verified that when the dim 8 contribution to
the cross section dominates over that of the SM, the
quadratic terms on the dim 8 coefficient start to take over
linear terms in the most energetic bins. This can occur while
making sense of the SMEFTexpansion; see for example the
discussion in Ref. [19]. Second, even though the dim 8
Wilson coefficients are allowed by data to be larger than the
dim 6 Wilson coefficients, we may want to understand if
such hierarchy can be accomplished by realistic UV
models. This holds trivially if the dim 6 interactions are
not generated at tree level by the UV but the dim 8
interactions are. For example, for certain UV theories
comprising heavy scalar particles, as that presented in
Appendix C of Ref. [24], the coefficients of the two dim 6
derivative operators can vanish without making the dim 8
coefficients vanish as well. Moreover, it may happen that
both dim 6 derivative operators are generated and nonzero
but interfere destructively in the amplitude, such that their
contribution vanishes altogether; see Sec. III B.
To summarize, we have identified in this section regimes

(experimentally and theoretically consistent) where the total
cross section of theWW → HH process is dominated by the
longitudinal modes and the BSM Higgs physics in the
SMEFT at the TeV energy domain is mainly dominated by

the coefficients að1Þ
ϕ4 , a

ð2Þ
ϕ4 , and að3Þ

ϕ4 . These regimes generi-

cally occur for large Wilson coefficients which reflects the
proximity to a strongly coupled theory. For a discussion on
the size of the SMEFT coefficients and dimensional/loop
counting rules see, for instance, Refs. [28,29].

IV. COMPARISON HEFT VS SMEFT

The comparison of SMEFT and HEFT is an interesting
research by itself when aiming to describe the new Higgs
physics beyond the SM by means of an EFT approach. It is
well known that depending on the kind of fundamental
physics operating at high energies, i.e., above the UV cut-
off, the use of one or another EFT may be more adequate to
describe the new Higgs physics signals at low energies
(below the cutoff). If the underlying dynamics is strongly
interacting, like for instance in the Higgs composite
models, the HEFT seems to be more appropriate. In
particular, the HEFT can incorporate naturally, BSM
Higgs signals at low energy that are not necessarily
suppressed by inverse powers of the cutoff. Whereas if
the underlying dynamics is weakly interacting, the SMEFT
is an appropriate tool, where all the new Higgs physics
effects are suppressed by inverse powers of the cut-off.
Then, by comparing the predictions from the various
EFTs with data one should be able to extract which one
fits better. In addition one could also perform this com-
parison by looking at possible correlations among the
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FIG. 10. Contributions to the process WW → HH in the SMEFT from dim 6 operators for Λ ¼ 3.5 TeV and different values of the
Wilson coefficients. The black, red, blue, and green colors show the contributions to σtot, σLL, σTT , and σLTþTL, respectively. The SM
prediction is also included for comparison.
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effective couplings in the given EFT. Some correlations
appearing in the SMEFT and not appearing in the HEFT
have already been discussed in the literature. See, for
instance, Refs. [30,31].
In this section we compare the previous results for the

two EFTs, HEFT, and SMEFT. We perform the matching
of the two theories not at the Lagrangian level, but at the
amplitude scattering level. That means, in practice, the
following identification:

AðWW → HHÞHEFT ¼ AðWW → HHÞSMEFT: ð4:1Þ

If we split the amplitude in both sides separating explicitly
the SM contribution (which cancels in this equation), then
this matching can be simply written as:

Að2Þ þAð4Þ ¼ A½6� þA½8�: ð4:2Þ

Notice that in this previous equation, we are keeping just
the linear terms in all the coefficients. Notice also that Að2Þ
should be rewritten after separating the SM part, and this
can be done by considering Δa≡ 1 − a, Δb≡ 1 − b, and
Δκ3 ≡ 1 − κ3. These two features, then imply replacing, in
Að2Þ of Eq. (2.16) ðaκ3Þ by −ðΔaþ Δκ3Þ, a2 by −2Δa, and
b by −Δb, and in Að4Þ of Eq. (2.16) setting a ¼ κ3 ¼ 1.
Finally, the equation of the matching of the amplitudes

is solved in terms of the EFT coefficients. This solving
takes into account all kinematical structures, including the
dependence in s and cos θ with θ the scattering angle, the
polarization vector products, and the mass dependencies.

FIG. 11. Contributions to the process WW → HH in the SMEFT from dim 8 operators for Λ ¼ 3.5 TeV and different values of the
Wilson coefficients. The black, red, blue, and green colors show the contributions to σtot, σLL, σTT , and σLTþTL, respectively. The SM
prediction is also included for comparison. As shown in [23], the class of operators represented in these figures is subject to tree level
positivity constraints. However, these can be spoiled by quantum corrections [24]. Hence, in this work we do not take positivity into
account and assume that the dim 8 coefficients can have either sign.
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We then arrive at the following matching equations among
the EFT coefficients:

a − 1 ¼ 1

4

v2

Λ2
δaϕD

b − 1 ¼ v2

Λ2
δaϕD

κ3 − 1 ¼ 5

4

v2

Λ2
δaϕD

aHWW ¼ −
v2

2m2
W

v2

Λ2
aϕW

aHHWW ¼ −
v2

4m2
W

v2

Λ2
aϕW

addVV1 ¼
v4

4Λ4
½að1Þ

ϕ4 þ að2Þ
ϕ4 �

addVV2 ¼
v4

4Λ4
að3Þ
ϕ4 ð4:3Þ

while aHVV , aHHVV , ad2, ad2, and aHdd have no counterpart
in the SMEFT (given the reduced set of operators under
study). The results in the first two equations involving aϕ□
agree with those obtained in Ref. [30] where the matching
was performed at the Lagrangian level.
Some comments on the above relations are in order.

First, we see that the matching among the coefficients
occurs across different orders of the two expansions, in
chiral and canonical dimensions respectively. While the
HEFT coefficients a, b, and k3, of chiral dim 2, are related
with the coefficient δaϕD of canonical dim 6, the HEFT
coefficients aHWW and aHHWW , of chiral dim 4, are related
with aϕW , also of canonical dim 6. On the other hand, the
HEFT coefficients addVV1 and addVV2 from chiral dimen-

sion 4 are related with að1;2;3Þ
ϕ4 from canonical dimension 8.

Second, in these HEFT/SMEFT relations we detect some
correlations. For instance, whereas in the HEFT aHWW and
aHHWW are independent parameters, they are correlated in
the SMEFT by aHWW ¼ 2aHHWW. Similarly, a and b are
independent parameters in the HEFT, whereas they are
correlated in the SMEFT by ðb − 1Þ ¼ 4ða − 1Þ. These and
other correlations reflect the fact that, in some sense, the
SMEFT is contained in the HEFT. On the other hand, we
also see that some NLO effects of the SMEFT cannot be

matched to the HEFT if one assumes a ¼ b ¼ κ3 ¼ 1.
For example, we see in Eq. (4.3) that it is not possible to
match the effect of aϕ□ alone with HEFT coefficients after
imposing that a ¼ b ¼ κ3 ¼ 1.
Finally, to learn on the relative size of the coefficients

in the two theories, we present in Table I the numerical
predictions of the matching relations in Eq. (4.3) for the
most relevant NLO-HEFT parameters, addVV1 and addVV2,
and for three possible values of the SMEFT cutoff of
Λ ¼ 1, 2, 3 TeV. In this table, we clearly see that, in order to
get large departures with respect to the SM in the SMEFT
cross sections from the canonical dimension 8 coefficients,

að1;2;3Þ
ϕ4 , being comparable to those in the HEFT from the

chiral dimension 4 coefficients, addVV1;2, one needs rather
large SMEFT coefficients, as already said. For instance, a

value of addVV2 ∼ 0.001 requires a value of að3Þ
ϕ4 ∼ 1.1 for

Λ ¼ 1 TeV and að3Þ
ϕ4 ∼ 88 for Λ ¼ 3 TeV. This is compat-

ible with what we have learnt in the previous section
by studying numerically the departures, as a function of
energy, of the SMEFT cross section with respect to the SM
one. Concretely, by fixing Λ ¼ 3.5 TeV we found relevant
departures from the dim 8 operators, at the TeV energy
domain, if the coefficients are taken as large as Oð100Þ,
signaling a strongly underlying interacting UV theory. In
the next section, we will evaluate some phenomenological
consequences from these dim 8 operators at eþe− colliders
with energies in the TeV domain.

V. SENSITIVITY TO THE EFT COEFFICIENTS
AT TeV e+ e − COLLIDERS VIA HHνν̄

PRODUCTION

In this section we explore the sensitivity to the EFT BSM
Higgs couplings at the future planned TeV eþe− colliders.
We first perform a numerical computation of the total cross
section at these colliders for the full di-Higgs production
process σðeþe− → HHνν̄Þ and later we analyze the sensi-
tivity to the EFT coefficients by considering the particular
events with four b-jets and missing energy, coming from
the dominantH decay into bb̄ pairs, namely, we analyze the
total process eþe− → bb̄bb̄νν̄. For this analysis we focus
on the two most relevant EFT coefficients, δ and η of the
NLO tree level scattering amplitude, which have been

TABLE I. Numerical matching among the HEFT and SMEFT coefficients for several choices of the Λ cutoff. We
display here just the most relevant HEFT coefficients for the forthcoming study at TeV eþe− colliders which are
addVV1 ¼ η and addVV2 ¼ δ.

Matching: HEFT (SMEFT) Λ ¼ 1 TeV Λ ¼ 2 TeV Λ ¼ 3 TeV

�0.01 (�11) �0.01 (�175) �0.01 (�885)

addVV1ðað1Þϕ4 þ að2Þ
ϕ4 Þ �0.001 (�1.1) �0.001 (�17.5) �0.001 (�88.5)

addVV2ðað3Þϕ4 Þ �0.0001 (�0.11) �0.0001 (�1.75) �0.0001 (�8.85)
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related in the previous sections with the coefficients in
both EFTs, the HEFT and the SMEFT. The corresponding
analysis of the LO tree level HEFT coefficients, a, b, and κ3
was done in Ref. [3], thus we do not repeat it here. For
the present analysis of the NLO coefficients we set the LO
ones to their SM values, i.e., in the HEFT case, we
set a ¼ b ¼ κ3 ¼ 1.
For the computation of the full cross section we use

MADGRAPH5 (MG5) [32] which generates and accounts for
all the Feynman diagrams contributing to the full scattering
process, eþe− → HHνν̄. Therefore, all the participating
diagrams are included, i.e., those with WW fusion con-
figuration and also the others that do not have this
configuration, like those with intermediate Z bosons which
decay to νν̄, i.e., eþe− → HHZ → HHνν̄. These latter
configurations are known to be highly subdominant as
compared to the WW fusion ones, in the case of eþe−
colliders with TeVenergies. For a comparison of these two
contributions in the SM case, see for instance Ref. [3]. In
this work, we focus on two particular projects with very
high energy in the TeV range: CLIC [6–8] with

ffiffiffi
s

p ¼
3 TeV and L ¼ 5 ab−1, and ILC [4,5] with

ffiffiffi
s

p ¼ 1 TeV
and L ¼ 8 ab−1.
In order, to check the importance of the WW fusion

channel for the present study of the most relevant BSM
Higgs coefficients, δ and η, and before going to the study of
the accessible region to these coefficients at future col-
liders, we have compared first the two following cross
sections. On one hand we have determined the full cross
section with MG5, as already said. On the other hand we
have computed the cross section within the so-called
effective W approximation (EWA) where the process is
factorized into the production of two W’s that are radiated
by the initial electrons and positrons and the subsequent
production of the two Higgs bosons by the scattering
subprocess, WW → HH, as it is represented generically in
Fig. 1. The EWA takes into account only the WW fusion
contribution to di-Higgs pair production in eþe− colliders
and, therefore, by comparing the two results for the cross
section from the EWA and from MG5 we will be able to
determine quantitatively the relevance of thisWW channel.
In short, the prediction in the EWA displaying the above-

mentioned factorization is given by:

σEWAðeþe− → HHνν̄ÞðsÞ

¼
Z

dx1

Z
dx2

X
X;Y

fWX
ðx1ÞfWY

ðx2Þσ̂ðWXWY → HHÞðŝÞ;

ð5:1Þ

where
ffiffiffi
s

p
is the center-of-mass energy of the eþe− process

and
ffiffiffî
s

p
the one of the WW subprocess. x1 and x2 are the

corresponding momentum fractions of the two W’s with
respect to the parent fermions. These x1;2 also relate the two
center-of-mass energies of the process

ffiffiffi
s

p
and subprocess

ffiffiffî
s

p
by ŝ ¼ x1x2s. The subindices X, Y refer to the

polarization of the W bosons (longitudinal or transverse).
Notice that different polarizations must be taken into
account separately, as the probability of radiating a W
boson depends on whether it is longitudinally or trans-
versely polarized. Consequently, one has to make the
convolution of each polarized cross section with the
corresponding distribution functions of the W bosons
fWL;T

ðxÞ. To compute this cross section σ̂ we write it in
terms of the polarized amplitudes AðWXWY → HHÞ
(already presented in the previous sections) which we
generate using FEYNARTS-3.10 [33] and FORMCALC-9.6

[34], and then perform the integration using VEGAS
[35] and a private PYTHON code. The analytical expressions
that we use for the W distribution functions fWL;T

ðxÞ are
taken from [36] and correspond to the so-called improved
EWA, that keeps corrections of order m2

W=E
2, with E being

the energy of the parent fermion radiating the W. This
improved EWAworks better than the most frequently used
leading log approximation (LLA) EWA, which is only valid
in the very high energy limit, E ≫ mW . The formulas for
the LLA-EWA can also be found in [36].
The results of this comparison, σEWA versus σMG5, are

shown in Fig. 12. These plots display the contour lines for
the cross section predictions in the ðδ; ηÞ plane. The first
(second) row shows the EWA (MG5) results for the two
chosen colliders, ILC (on the first column) and CLIC (on
the second column). The corresponding SM predictions
are also included for comparison. The parameter values
explored for these most relevant EFT parameters, η and δ,
in these plots are chosen in the range ½−0.1;þ0.1� for ILC
and ½−0.01;þ0.01� for CLIC.
The most important conclusions from these plots are the

following. First, all the contour lines in the ðδ; ηÞ plane
display the expected elliptical shape, which can be easily
understood from the dependence already shown of the
subprocess amplitudes in terms of these two parameters η
and δ. Second, the departures of the BSM predictions with
respect to the SM ones are quite sizeable, particularly in the
upper right corners of these plots, where a factor of about
10 larger cross sections than in the SM case are obtained.
For instance, for ðδ; ηÞ ¼ ð0.1; 0.1Þ we get (with MG5)
σBSMILC ¼ 0.9 fb to be compared with σSMILC ¼ 0.081 fb;
and for ðδ; ηÞ ¼ ð0.01; 0.01Þ we get σBSMCLIC ¼ 8.54 fb to
be compared with σSMCLIC ¼ 0.834 fb. Thirdly, the lowest
predictions in these plots do not correspond to
ðδ; ηÞ ¼ ð0; 0Þ. This means that in some regions of the
ðδ; ηÞ parameters space there are negative interferences
producing lower predictions for BSM than in the SM.
Finally, regarding the σEWA versus σMG5 comparison, we
find that the EWA is indeed an excellent approximation
for CLIC and a quite reasonable approximation for ILC.
The compared rates for the SM case are σSMEWA ¼ 0.875 fb
versus σSMMG5 ¼ 0.834 fb for CLIC; and σSMEWA ¼ 0.123 fb
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versus σSMMG5 ¼ 0.081 fb for ILC. The convergence of the
EWA and the MG5 results are substantially better for the
BSM results than for the SM ones, in particular, in the areas
of the ðδ; ηÞ plane with the largest cross sections. For
instance, in the upper right corner of these plots, we find the
following results: (1) for ðδ; ηÞ ¼ ð0.01; 0.01Þ at CLIC we
get σEWA ¼ 8.545 fb versus σMG5 ¼ 8.545 fb, i.e., in full
agreement and (2) for ðδ; ηÞ ¼ ð0.1; 0.1Þ at ILC we get
σEWA ¼ 0.907 fb versus σMG5 ¼ 0.907 fb, i.e., in full
agreement again. The most important conclusion from
this good agreement EWA versus MG5 is that the WW
fusion channel fully dominates the cross section of
eþe− → HHνν̄.
Finally, to complete this study of the BSMHiggs physics

with the use of the EWA, we have also computed the

differential cross section for eþe− → HHνν̄ with respect to
the invariant massMHH of the di-Higgs pair as a function of
the two relevant EFT parameters, η and δ. The interest of
this distribution is clear, since that departures of the BSM
with respect to the SM predictions in the largeMHH region
precisely reflect the departures of the cross section at the
subprocess WW → HH level with respect to the SM ones
in the large subprocess s region. In Fig. 13 the two
predictions of σðWW → HHÞ as a function of the sub-

process energy
ffiffiffi
s

p
(left) and dσðeþe−→HHνν̄Þ

dMHH
as a function of

MHH (right) are displayed together, for various values of
the relevant EFT parameters, to show this correlation. We
also learn from this figure that a more detailed study of this
enhancement in the tails of the distribution rates for MHH
values at the TeV region could be used to improve the

FIG. 12. EFT predictions for the cross section σðeþe− → HHνν̄Þ in the ðδ; ηÞ plane for ILC (left panels) and CLIC (right panels). The
approximate results using the EWA are displayed in upper panels and the full results using MG in the lower panels. The SM predictions
are also included.
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experimental sensitivity to these δ and η parameters at the
future eþe− colliders.
In the last part of this section, we present a devoted study

of the sensitivity to these most relevant parameters, η and δ,
based on the analysis of the event rates for the production
of 4b-jets and missing energy, via the dominant Higgs
decay into bb̄ pairs. The full process considered now is
eþe− → HHνν̄ → bb̄bb̄νν̄. We study the two colliders
cases, CLIC with

ffiffiffi
s

p ¼ 3 TeV and L ¼ 5 ab−1, and ILC
with

ffiffiffi
s

p ¼ 1 TeV and L ¼ 8 ab−1. We (naively) define the
b-jets at the parton level and the missing energy as that
coming from the νν̄ pairs. We do not introduce detector
simulation, showering effects, nor compute real back-
grounds, thus this is rather a rough estimate of the
sensitivity. The following minimal detection cuts are
applied to the final b-jets and missing energy variables:

pb
T >20GeV; jηbj<2; ΔRbb >0.4; =ET >20GeV

ð5:2Þ

where, ΔRbb ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηbbÞ2 þ ðΔϕbbÞ2

p
. Δηbb and Δϕbb are

the separations in pseudorapidity and azimuthal angle of
the two b-jets, pb

T and ηb are the transverse momentum and
pseudorapidity of the b-jet and =ET is the transverse missing
energy. These cuts are similar to those in Refs. [3,6].
Obviously, additional cuts more refined than these ones
above could improve the acceptance in the ratio of the
signal to background rates. Particularly efficient could
be requiring cuts on the invariant mass of the two b-jets
pairsMbb to be close to the Higgs mass. But, for simplicity,
we keep our study just based on the above simplest/
minimal cuts.

FIG. 14. EFT predictions for the cross section σðeþe− → bb̄bb̄νν̄Þ in the ðδ; ηÞ plane for ILC (left panel) and CLIC (right panel). Here
the cuts and efficiencies described in the text are applied. The SM predictions are also included.

FIG. 13. Correlation between the enhancements due to BSM physics in the subprocess (left), σðWW → HHÞ, at large subprocess
energy

ffiffiffi
s

p
, and in the eþe− process (right), dσ=dMHH at large invariant mass MHH , for various values of the relevant EFT parameters,

addVV1 ¼ η and addVV2 ¼ δ. Here the CLIC energy 3 TeV is set. The SM predictions are also included in these plots for comparison.
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For the generation of these events, and the computation
of the cross section with the above cuts implemented we
employ MG5. In addition to the reduction factors due to the
Higgs decays, with BR2 ∼ 0.582, we have also applied the
reduction factor ðϵbÞ4 due to the b-tagging efficiency, which
we assume here to be ϵb ∼ 0.8. The final predicted cross
sections with MG5 including all those cuts and reduction
factors, σð4b − jetsþ =ETÞ, are shown in Fig. 14. The
corresponding event rates are shown in Fig. 15. The rates
for ILC are displayed to the left, and for CLIC to the right,
in these figures. The corresponding SM predictions are also

included for comparison. As we can see in both figures the
rates from the BSM Higgs couplings are sufficiently large,
compared to the SM ones, to be detected, both at ILC and
CLIC, if these effective couplings δ and η are not too small,
i.e., if they are at the upper right and lower left regions of
these plots. For instance, at ILC for ðδ; ηÞ ¼ ð0.1; 0.1Þ we
find 1087 events to be compared with 95 events in the SM;
and at CLIC for ðδ; ηÞ ¼ ð0.01; 0.01Þ we find 3681 events
to be compared with 255 events in the SM. These BSM
rates are well separated from the SM rates and could be
presumably tested at these colliders.

FIG. 16. Estimate of the potentially accessible regions in the ðδ; ηÞ plane based on the EFT prediction of the ratio R defined in
Eq. (5.3), for ILC (left panel) and CLIC (right panel). Solid, dashed and dotted contour-lines are for R ¼ 3, 5, 10 respectively. Bright
green areas correspond to R > 3.

FIG. 15. EFT predictions for the number of events Nðeþe− → HHνν̄ → bb̄bb̄νν̄Þ in the ðδ; ηÞ plane for ILC (left panel) and CLIC
(right panel). Here the cuts and efficiencies described in the text are applied. The SM predictions are also included.
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Finally, in order to quantify a bit better the sensitivity to
these two EFT parameters, η and δ, we have computed the
following (theoretical) ratio R, that is defined in terms of
the previous mentioned event numbers for the BSM and
SM cases, NBSM and NSM, respectively, by:

R ¼ NBSM − NSMffiffiffiffiffiffiffiffiffi
NSM

p ð5:3Þ

Our naive criterion of accessibility to a given parameter is
set here in terms of the size of this ratio R. We show in
Fig. 16 the predictions (ILC at the left and CLIC at the
right) for the contour lines in the ðδ; ηÞ plane corresponding
to R ¼ 3 (solid lines), R ¼ 5 (dashed lines) and R ¼ 10
(dotted lines). Thus, our conclusions on the accessible
regions to these two parameters, δ and η can be immedi-
ately extracted from this plot, depending on the required
minimum R value. For instance, by requiring R > 3 the
areas in bright green are our estimates of the accessible
regions to these δ and η parameters. It is also clear from this
figure that the accessible regions at CLIC will be broader
that at ILC, as expected due to the higher energy. As we
already stated, a detailed analysis taking into account all
the backgrounds and the characteristics of the particular
detectors at ILC and CLIC will be needed for a more
precise conclusion, but it is beyond the scope of this work
and we leave it for another future research.

VI. CONCLUSIONS

In this work we have studied in detail the scattering
process WW → HH within the context of two EFTs: the
HEFT and the SMEFT. Both approaches parametrize in a
very different way the possible departures from BSMHiggs
physics with respect to the SM. Within the HEFT the Higgs
is a singlet field under the relevant EW and chiral
symmetries, whereas in the SMEFT it is a component of
a doublet together with the GBs of the EW symmetry
breaking, SUð2ÞL ×Uð1ÞY → Uð1Þem. The use of a linear
(as in SMEFT) or a nonlinear (as in HEFT) representation
for the GBs may be more appropriate (or not), for the study
of BSM Higgs physics, depending on the kind of dynamics
underlying the UV fundamental theory that provides such
EFT at lower energies. If the underlying dynamics is
strongly interacting the HEFT seems to be more appro-
priate, and the usual ordering of operators in the EChL by
the increasing chiral dimension is the proper one that
provides the hierarchy of the relevance of the EChL
coefficients involved. In contrast, the ordering in the
relevance of the operators in the SMEFT is done in terms
of the canonical dimension and therefore in terms of the
inverse powers of the cutoff.
Through this work, we have first presented, in full detail,

the computation within the HEFT of the amplitude for
this WW → HH scattering and evaluated the departures in
the cross section with respect to the SM prediction as a

function of the process energy
ffiffiffi
s

p
, taking into account all

the coefficients from the NLO EChL. We have explored
all the polarization channels WXWY → HH with XY ¼
LL; TT; LT; TL, and also the total (unpolarized) cross
section. We have concluded that the LL channel fully
dominates the total cross section at the TeVenergy domain,
and we have extracted the most relevant coefficients from
the chiral dimension four HEFT Lagrangian. These two
coefficients, addVV1 and addVV2, have been identified with
the usually called in the related literature, η and δ
parameters, and correspond to the effective operators with
four derivatives acting on the scalar fields. The HEFT
departures with respect to the SM from these two coef-
ficients can be large as summarized in Fig. 9.
Then we have also studied the case of SMEFT and we

have identified which are the most relevant operators for
this WW → HH scattering. The corresponding predictions
for the cross section of the various polarization channels
and for various values of the relevant SMEFT Wilson
coefficients were also provided. The numerical results
show that there are particular scenarios where the dim 8
operators with four derivatives acting on the scalar fields
play an important role in those predictions. We have

identified these important dim 8 operators, Oð1;2;3Þ
ϕ4 , and

have shown that for sizeable Wilson coefficients

að1;2;3Þ
ϕ4 ð1=Λ4Þ ∼Oð1Þ TeV−4 they can provide relevant

departures in the cross section with respect to the SM at
the TeV energy domain. These sizeable coefficient values
may indicate the proximity to a strongly coupled theory.
We have also explored in this work the consequences of

doing thematching among the two EFTs, HEFTand SMEFT,
at the level of the scattering amplitude, which is different
than other approaches doing the matching at the Lagrangian
level. Proceeding with this matching of the two analytical
predictions for the amplitudes AðWW → HHÞHEFT and
AðWW → HHÞSMEFT and solving this matching equation
in terms of the EFTs coefficients, we have arrived at the
interesting relations among the coefficients of the two theories
that are summarized in Eq. (4.3) and in Table I.
In the final part of this work, we have explored the

most relevant consequences of those departures found in
WW → HH, within the EFT approach to the BSM Higgs
physics, for the phenomenology of the planned eþe−
colliders at the TeV energy domain. Concretely, we have
considered the two most energetic eþe− colliders, CLIC
(3 TeV, 5 ab−1) and ILC (1 TeV, 8 ab−1). In particular, we
have explored in detail the di-Higgs production process
eþe− → HHνν̄ which is shown here to proceed in the BSM
case mainly via theWW → HH subprocess, as it also occurs
in the SM case. In particular, we have shown numerically the
dominance of the WLWL → HH subprocess in the total
eþe− cross section and the relevance of the two mentioned
parameters δ and η that provide the largest departures in
σðeþe− → HHνν̄Þ with respect to the SM one. In order, to
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conclude on the sensitivity to those two parameters at ILC
and CLIC, we have studied the BSM rates for the case where
the two final Higgs bosons decay to the most probable
channels, i.e., to bb̄ pairs, leading to enhancements in the
number of events with 4b jets plus missing energy with
respect to the SM expected rates. Studying the ratio of the
BSM versus SM predictions by means of the variable R
defined in Eq. (5.3) we have finally provided in Fig. 16 the
potentially accessible regions in the ðδ; ηÞ plane for both ILC
and CLIC colliders. These studies could improve signifi-
cantly the sensitivity to these parameters and therefore also
the knowledge about the underlying fundamental theory.
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