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Using the one-dimensional potential well with realistic parameters for atomic nuclei, we illustrate the

movement of the poles of the S-matrix and the transmission coefficient when the well supports an

anti-bound state. We calculate the phase shift of the atomic nuclei 5He using the three-dimensional

potential well and compare it with the experimental one. The paper gives an introduction to some of the

properties found in realistic loosely bound and resonant nuclear systems, using mathematics accessible

to undergraduate students. # 2022 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/10.0007045

I. INTRODUCTION

Resonance is important in both classical and quantum
mechanics. In classical mechanics, resonance is associated
with an increase in amplitude when the frequency of an
external force coincides with a natural frequency of the sys-
tem. In quantum mechanics, resonances are often defined as
peaks of the transmission coefficient. They are also defined
as isolated poles of the S-matrix or as rapid variations of the
phase shift. In this article, we explore these definitions of res-
onances using the analytic solutions of the one and three-
dimensional potential well, and we show how this model can
be used to illustrate some of the properties of atomic nuclei.

We begin by reviewing resonances in the familiar damped
harmonic oscillator (Sec. II) and then consider the well-known
bound and scattering solutions of the one-dimensional potential
well in Secs. III A and III B. The less-known solution of the
problem using the S-matrix formalism is developed in Sec.
III C. In order to present resonances in three-dimensional
space, we illustrate the phase shift in Sec. III D using the solu-
tion of the three-dimensional potential well.

In Sec. IV A, we illustrate how the different kinds of poles
of the S-matrix evolve from resonances to bound states for
the one-dimensional potential well. In this section, we also
compare the poles of the S-matrix with the peaks of the
transmission coefficient. In Sec. IV B, we use the one-
dimensional potential well as a toy model to show the char-
acteristic behavior of the loosely bound state wave function
of the deuteron. We also connect some of the poles of
Sec. IV A with the bound and anti-bound states of the deu-
teron. In the second part of Sec. IV B, we illustrate
the characteristic behavior of the resonant phase shift in the
5He nucleus using the three-dimensional potential well.
Finally, in Sec. V, we summarize our results.

II. DAMPED HARMONIC OSCILLATOR

We begin by reviewing the well-known solution to the
classical damped harmonic oscillator so that in Secs. IV A
and IV B, we can point out some commonalities with the
quantum mechanical problem. The equation of motion for a
particle of mass m subject to a driving force F(t) is

d2x

dt2
þ 2c

dx

dt
þ x2

0x ¼ FðtÞ
m
¼ f ðtÞ ; (1)

where x0 and c are the natural frequency and the damping
coefficient of the system, respectively, and both have posi-
tive values.

With an oscillating driving force f ðtÞ ¼ Fxe�ixt, the solu-
tion is

xðtÞ ¼ Xxe�ixt; (2)

with

Xx ¼ �
Fx

x2 þ 2icx� x2
0

¼ FxGðxÞ : (3)

We are interested in the properties of the amplitude GðxÞ
of the response function because in this paper, we will make
connections between it and quantum scattering theory. First,
we write GðxÞ as follows:

GðxÞ ¼ � 1

ðx� x1Þðx� x2Þ
; (4)

with

x1;2 ¼ 6ðx2
0 � c2Þ1=2 � ic: (5)

The complex poles of GðxÞ imprint their signature in the
shape of jGðxÞj and also in Arg½GðxÞ�. For weak damping,
i.e., c� x0; jGðxÞj2 has two resonant peaks with width 2c
centered at x � 6x0, while the function Arg½GðxÞ� changes
by p, centered at p=2 and 3p=2, in a narrow range around
each one of the resonant frequencies. These characteristics
are shown in Fig. 1 for c ¼ 0:1x0. Then we can say that a
classical resonance is characterized by two isolated poles
close to the real axis.

For x � x0, we may write���� GðxÞ
Gðx0Þ

����
2

� c2

ðx� x0Þ2 þ c2
(6)

Arg GðxÞ½ � � arctan
c

x� x0

� �
: (7)

The first expression confirms that the width of the peak in
jGðxÞj2 is 2c, while the second one shows the rapid variation
of Arg½GðxÞ� in the vicinity of x � x0.
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Classical and quantum resonances show some common
characteristics; in particular, this kind of peak also appears
in the experimentally measured resonant scattering cross sec-
tion as a function of the energy in nuclear physics. In this
context, a Lorentzian parametrization like Eq. (6) is called
Breit–Wigner distribution (see, for example, pp. 23–24 of
Ref. 1). This characteristic behavior of Arg½GðxÞ� shown in
Fig. 1 can also be reproduced in a simple quantum mechani-
cal model, such as the one introduced in Sec. III D.

For the limit c! x0, we find that both poles converge at
x1 ¼ x2 ¼ �i x0. So the pole structure of GðxÞ changes
from two isolated single poles to a second-order pole at
x ¼ �ix0. Figure 2 shows this transition for three values of
c. We can see the two peaks approach and merge into a sin-
gle one. We also observe that the argument of GðxÞ changes
from two jumps to a single smooth jump of 2p.

III. QUANTUM MECHANICAL SCATTERING

In this section, we consider resonances in quantum
mechanics. In Secs. III A and III B, we obtain the negative
and positive-energy solutions of a one-dimensional
Schr€odinger equation for a square potential well. Then in
Sec. III C, we introduce the S-matrix for the one-dimensional
system. Finally, in Sec. III D, we consider resonances within
the phase shift formalism for a 3D model.

A. Bound states

Let us consider two particles of masses m1 and m2 limited
to move in one dimension, subject to an attractive interaction
V ¼ �V0 (V0 > 0) when their separation is less than R. This
problem can be mapped onto a one-dimensional Schr€odinger
equation for a single particle with reduced mass l ¼ m1m2=
ðm1 þ m2Þ,

� �h2

2l
d2u

dx2
þ VðxÞ uðxÞ ¼ euðxÞ ; (8)

with

V xð Þ ¼
�V0 xj j � R;

0 jxj > R:

(

We look for the bound state solutions, i.e., �V0 < e < 0,
with the usual boundary conditions at x ¼ 6R. With the
requirement that u(x) is bounded, we find discrete energies,
en < 0, that are obtained from

qn ¼ Kn tan ðKnRÞ (9)

�qn ¼ KncotðKnRÞ : (10)

Equations (9) and (10) correspond to even and odd solutions,
respectively. The parameters qn and Kn are related to energy
by

qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2l

�h2
en

r
; Kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l

�h2
ðV0 þ enÞ

r
: (11)

B. Scattering states

In this section, we solve the Schr€odinger Eq. (8) for the
eigenvalues e > 0. In this case, the energies are continuous
and the solutions can be expressed as a linear combination of
plane waves,

u xð Þ ¼
Aeikx þ A0e�ikx x � �R;

BeiKx þ Ce�iKx �R < x < R;

D0eikx þ De�ikx x � R;

8>><
>>: (12)

with

k ¼
ffiffiffiffiffiffiffiffi
2l

�h2
e

r
; K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l

�h2
ðV0 þ eÞ

r
: (13)

At this stage, we have to decide whether the particle is
coming from the right or left. Either of these two options
must give the same physical result; the calculated observ-
ables cannot depend on this choice. In the S-matrix approach,
both options will be considered simultaneously, but for this
section, let us assume it comes from the left, so that D¼ 0.
By matching conditions at x ¼ 6R, we obtain the following
expressions for the transmission t ¼ D0=A and reflection
r ¼ A0=A amplitudes:

tðkÞ ¼ e�i2Rk

cos ð2RKÞ � i
k2 þ K2

2kK
sin ð2RKÞ

(14)

rðkÞ ¼
i
2l

�h2

V0

2kK
sin ð2RKÞ e�i2Rk

cos ð2RKÞ � i
k2 þ K2

2kK
sin ð2RKÞ

: (15)

In the rest of this paper, we will consider the k representa-
tion instead of the energy e representation; i.e., we will con-
sider k as the independent variable, so we rewrite

KðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2l

�h2
V0

r
: (16)

The transmission coefficient T ¼ jtj2 is

T ¼ 1þ 2l

�h2

V0

2kK

� �2

sin2ð2RKÞ

" #�1

; (17)

where the maxima T¼ 1 occur for 2RK ¼ p; 2p;…, that is,
when there is an integer number of half-wavelengths of K
inside the potential well. From a time-dependent picture,2,3 a

Fig. 1. Profile of pjGðxÞj2=jGðx0Þj2 and Arg½GðxÞ� as a function of x for

c ¼ 0:1x0.
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wave packet can be formed from plane waves and the max-
ima may be interpreted as the constructive interference
inside the well.

C. S-matrix

In the S-matrix approach, the scattering process is divided
into three stages. In the first one, the particles move toward
each other, but they are so far apart that one can neglect their
mutual interaction. In the second stage, the particles are
close enough to interact, while in the final stage they are far
away and do not interact any more. The operator that trans-
forms the initial stage into the final stage is called S-matrix
or scattering matrix. In a time-dependent framework, the ini-
tial and final stages correspond to the remote past and future,
respectively. In our time-independent formulation, the S-
matrix connects the wave functions of the two asymptotic
regions: x < �R and x>R. In this section, we calculate the
S-matrix for the one-dimensional potential well.

Let us start by considering the scattering states e > 0 for
jxj � R for particles incident from the left and right:

uLðxÞ ¼
eikx þ re�ikx x � �R

teikx x � R ;

(
(18)

uR xð Þ ¼ t0e�ikx x � �R;
e�ikx þ r0eikx x � R:

�
(19)

The coefficients t and r correspond to the transmission and
reflection amplitudes in the asymptotic regions jxj � R from
Sec. III B, i.e., Eqs. (14) and (15). On the other hand, t0 and
r0 are the corresponding magnitudes for the reverse process,
i.e., a particle coming from the right, with t0 ¼ t and r0 ¼ r.

The general solution is a linear combination of uLðxÞ and
uRðxÞ,

uðxÞ ¼ AuLðxÞ þ A0uRðxÞ (20)

¼
Aeikx þ ~Ae�ikx x � �R;

~A
0
eikx þ A0e�ikx x � R;

(
(21)

where A and A0 are the amplitudes of the wave function as it
approaches to the interaction region, also called incoming
amplitudes, while ~A and ~A

0
are the outgoing amplitudes, as

shown in Fig. 3.
The relationship between the incoming and outgoing

amplitudes defines the S-matrix,

~A
~A
0

� �
¼ S

A0

A

� �
; (22)

and we see from the earlier analysis,

S ¼ t r
r t

� �
: (23)

Using Eqs. (14) and (15) for the transmission t(k) and
reflection r(k) amplitudes, respectively, we can write the S-
matrix as

SðkÞ ¼ e�i2Rk

cos ð2RKÞ � i
k2 þ K2

2kK
sin ð2RKÞ

�
1 i

2l

�h2

V0

2kK
sin ð2RKÞ

i
2l

�h2

V0

2kK
sin ð2RKÞ 1

0
BBB@

1
CCCA :

(24)

Up to now, we have considered the momentum variable k
to be a real number, or, equivalently, we have considered
real energies. However, it is very useful to consider the trans-
mission and reflection amplitudes as functions of the com-
plex wavelength or complex energy. Doing so, we get the
analytic extensions of t(k) and r(k), and then, the analytic
extension of the S-matrix. At the common complex zeros of
the denominator of t and r, each element of the matrix S will
have a pole; we refer to these common poles of the matrix
elements as poles of the S-matrix.

The S-matrix in Eq. (22) connects the amplitudes of the
wave function before and after the interaction, and thus it
contains information about the system. In particular, its poles
give the energies of the bound and unbound states of the sys-
tem. For finite-range potentials (for further details the reader
may consult Refs. 1 and 4), the poles of the S-matrix can be
classified into three categories as shown in Fig. 4: (i) bound
states poles, which are sitting on the positive imaginary axis
on the complex wave number k-plane (filled circle); (ii) anti-
bound states, which lie on the negative imaginary axis (filled
triangle); and (iii) resonant poles, symmetrically placed with
respect to the imaginary axis in the lower half plane (filled

Fig. 2. Profile of pjGðxÞj2=jGðx0Þj2 and Arg½GðxÞ� as a function of x for (left) c ¼ 0:1x0, (center) c ¼ 0:5x0, and (right) c ¼ 0:9x0.

Fig. 3. Incoming amplitudes A and A0, and outgoing amplitudes ~A and ~A
0
,

which define the S-matrix.
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stars). Figure 4 also shows the corresponding positions of
these poles in the complex energy plane. Notice that both
bound and anti-bound states have real negative energies,
since they are the square of a purely imaginary number. In
Sec. IV A, we will show examples of all these poles.

To illustrate property (i) for the potential well, let us
search for the zeros of the common denominator of the ele-
ments of the S-matrix of Eq. (24) in the complex k-plane,

cos ð2RKÞ � i
k2 þ K2

2kK
sin ð2RKÞ ¼ 0 : (25)

For the special case of bound states, it is convenient to
replace k ! iq, with q 2 Rþ, then

cos ð2RKÞ � K2 � q2

2qK
sin ð2RKÞ ¼ 0; (26)

with K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l=�h2V0 � q2

q
. Notice that, if we use the disper-

sion relation e ¼ �h2=2lk2, with k ¼ iq, the magnitude K is
the same as the one in Eq. (13) for bound states. By using the
identity 2cotð2uÞ ¼ cotðuÞ � tan ðuÞ, we obtain

cotðRKÞ � tan ðRKÞ ¼ K

q
� q

K
: (27)

The above equation has the structure s� s�1 ¼ f � f�1,
with s ¼ cotðRKÞ and f ¼ K=q, which can be cast into the
form ðs� f Þð1þ sf Þ ¼ 0, with the solutions s� f ¼ 0 and
1þ sf ¼ 0. Using these solutions for Eq. (27), we get

q ¼ K tan ðKRÞ ;
q ¼ �KcotðRKÞ ;

which are the equations we found in Sec. III A for the bound
solutions of the potential well. As a curiosity, notice that
while in Sec. III A we found these relations by searching for
even and odd solutions independently, here we get both of
them from a single condition, Eq. (26).

In Sec. IV A, we will illustrate numerically properties (ii)
and (iii) by searching the zeros of Eq. (26) for anti-bound
states and resonances. Now let us come back to the interpre-
tation of the poles of the S-matrix in the complex energy
plane. Using the dispersion relation, we can map the upper
and lower halves of the wave number k-plane onto two com-
plex energy planes, see Fig. 4. These two energy planes may
be combined to form a single surface with two sheets called
Riemann surface (see, for example, Chap. 2 of Ref. 5). The

bound states sitting on the positive imaginary k axis are
mapped to the negative real axis of the first sheet, called
physical sheet (filled dots). The anti-bound states, found on
the negative imaginary k axis, are also mapped to the nega-
tives real axis, but to the filled triangle on the second energy
sheet, the so-called nonphysical Riemann sheet. Finally, the
symmetrical pair of resonances are mapped from the k-plane
to the first and fourth quadrants, respectively, of the second
Riemann sheet (filled stars). They are located symmetrically
with respect to the real axis.

Let us summarize the physical interpretation of the poles
of the S-matrix. Bound states represent bound quantum sys-
tems, such as a nucleon (proton or neutron) in a nucleus (we
will see an example in the first part of Sec. IV B). Anti-
bound states and resonances represent unbound systems.6

Resonances show up as sharp maxima in the cross section as
a function of the energy or as a rapid variation of the phase
shift (we will see an example in the second part of Sec.
IV B). The physical interpretation of the anti-bound states is
more elusive. We have mentioned that they have negative
energies, like bound states, but they are not normalizable.
We found that they lie in the second Riemann sheet, which
makes clear why this sheet is called nonphysical. An inter-
pretation of an anti-bound or virtual state is that if the inter-
action were a bit stronger, the anti-bound state would
become a bound state.7,8 In Sec. IV A, we will illustrate this
transition for the potential well.

D. Phase shift

The last picture we will use to illustrate resonances is the
phase shift in a three-dimensional spherical potential well.
As for the one-dimensional model, we write the Schr€odinger
equation in terms of the reduced mass and, for simplicity, we
neglect the spin–orbit interaction,

� �h2

2l
r2 þ VðrÞ

" #
WðrÞ ¼ eWðrÞ : (28)

As usual, we write the three-dimensional Laplacian r2 as
the sum of two terms, where L is the angular momentum
operator,

r2 ¼ 1

r2

@

@r
r2 @

@r

� �
� L2=�h2

r2
:

The eigenfunction WðrÞ can be written in terms of the spheri-
cal harmonics Ylm, which are eigenfunctions of L2, with eigen-
values lðlþ 1Þ�h2. By writing WðrÞ ¼ r�1ulðrÞYlmðh;/Þ in Eq.
(28), we obtain the following radial Schr€odinger equation for
ulðrÞ:

� �h2

2l
d2

dr2
þ lðlþ 1Þ�h2

2lr2
þ VðrÞ

" #
ulðrÞ ¼ eulðrÞ ; (29)

where

V rð Þ ¼
�V0 r � R;

0 r > R;

(

with V0 > 0 and R the strength and width, respectively, of
the spherical potential well (r � 0).

Fig. 4. Mapping between the k plane and the two energy sheets based on the

dispersion relation e ¼ �h2k2=2l, Eq. (11).
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The above equation looks very much like the one-
dimensional Schr€odinger equation with an extra term called
centrifugal interaction. This term depends on the orbital
angular momentum l, with l ¼ 0; 1; 2;…. In order to intro-
duce the phase shift, we search for the scattering solutions
ulðrÞ for e > 0, which satisfy ulðr ¼ 0Þ ¼ 0 (this condition
makes WðrÞ be finite at zero), and ul and u0l continuous at
r¼R. Since the interaction does not couple solutions for dif-
ferent orbital angular momentum, we can write for each l

ul rð Þ ¼ Aljl Krð Þ 0 � r � R;

h�l krð Þ � Slh
þ
l krð Þ r > R;

(
(30)

with k and K as defined in Eq. (13) for the one-dimensional
potential well. The scattering wave function is written in
terms of jl and h6

l , i.e., the spherical Bessel and Hankel func-
tions, respectively.9 The coefficients Sl for the partial waves
l correspond to the diagonal elements of the S-matrix. From
Eq. (30), we have jSlj2 ¼ 1; then, we can write

Sl ¼ e2idl ; (31)

with dl called the partial wave phase shift, for a reason that
will be shown shortly. Requiring continuity of the wave
function and its derivative at r¼R allows us to find the phase
shift,4,10

dl ¼ arctan
kj0lðkRÞjlðKRÞ � KjlðkRÞj0lðKRÞ
kg0lðkRÞjlðKRÞ � KglðkRÞj0lðKRÞ

" #
; (32)

with gl the Neumann functions. We will illustrate the behav-
ior of a phase shift as a function of the wave number k in
Sec. IV B.

In order to visualize that dl is associated with a shift in
phase, let us replace the asymptotic expressions of the
Hankel functions,

h6
l ðkr !1Þ ¼ e6iðkr�lp=2Þ ;

in Eq. (30). Then, together with Eq. (31), we get

ulðr !1Þ ¼ �2ieidl sin kr � p
2

lþ dl

� �
; (33)

which justifies the name of phase shift for dl (for more details
about the physical interpretation of the phase shift, see, for
example, Sec. VIII C in Ref. 11).

As a final observation before moving to the applications,
let us connect the properties of the amplitude GðxÞ of Sec. II
with the cross section for a quantum resonance. The partial
wave cross section rl can be expressed in terms of the phase
shift11

rl ¼
4p
k2
ð2lþ 1Þ sin2ðdlÞ : (34)

For dl ¼ p=2, the cross section will be a maximum, and that
maximum will be sharp if the phase shift rapidly changes
around this value. These are the properties shown in Fig. 1
for a resonance in the classical damped harmonic oscillator.
Then, it is possible to write the phase shift as the right side
of Eq. (7) with c! C=2, and x0 ! er, where er and C are
the energy and width, respectively, of the resonance,

dl ¼ arctan
C=2

e� er

� �
: (35)

By replacing this expression of the phase shift in Eq. (34),
we get

rl ¼
4p
k2
ð2lþ 1Þ C2=4

ðe� erÞ2 � C2=4
: (36)

This is the so-called Breit–Wigner formula. Notice that this
parametrization resembles that of the right side of Eq. (6).
The condition C=er � 1 is equivalent to a sharp structure of
the cross section. This ratio is like the one between the
damping coefficient c and the resonant frequency x0 we con-
sidered in Sec. II, where we found that the sharp structure
occurs when c=x0 � 1.

In summary, at the resonant energy, the phase shift takes
the value p=2 and it rapidly changes in a small interval of k
or energy, while the cross section shows a sharp maximum
around the resonant energy as a function of the energy. In
Sec. IV, we will see some examples of phase shift in the
atomic nucleus.

IV. APPLICATIONS

In this section, we are going to illustrate the concepts
developed in the previous one using some realistic parame-
trization for the potential well. In Sec. IV A, we study the
movement of the poles of the S-matrix and the behavior of
the transmission coefficient for the one-dimensional potential
well.12–14 In Sec. IV B, we use the three-dimensional poten-
tial well to illustrate the characteristic of the loosely bound
state of the deuteron and the resonant phase shift of the
nucleus 5He.

A. Moving poles in the one-dimensional potential well

The goal of this section is to illustrate the three categories
of poles of the S-matrix presented in Sec. III C. We also
show the transitions between bound, anti-bound and resonant
states. We will calculate the poles of the S-matrix Eq. (24) as
a function of the potential strength V0 with R¼ 2.1 fm and
2 l=�h2 ¼ 0:024 MeV�1 fm�2. The reason for these parameter
choices will become clear in Sec. IV B.

We start by calculating the first four bound states using
Eqs. (9) and (10), which are shown in Fig. 5 as a function of
V0. We see that for any value of the strength there is always
a bound state with even parity; as the strength increases this
state becomes more bound. A new bound state, with odd par-
ity, appears for V0 	 23:3 MeV. As the strength increases,
more states appear with interleaved parity.

Next, we study the locations of the first three states of
Fig. 5 in the complex k-plane by finding the zeros of Eq. (25)
for different values of V0. The left panel of Fig. 6 shows the
movement of the first even state (x’s) and first odd state
(circles), while the right panel shows the evolution of the
second even state (triangles). The first even bound state starts
with k¼ 0 and moves along the positive imaginary axis as V0

increases, implying a state that becomes increasingly more
bound as the well gets deeper. The first odd state, however,
starts at a large negative value along the imaginary axis. It
moves upward along the negative imaginary axis as V0
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increases, reaching the origin and becoming a bound state at
V0 ¼ 23:29 MeV, consistent with Fig. 5.

The second even state is missing as a bound state in Fig. 5
for small values of the potential strength. In order to find its
evolution, we search for complex zeros of Eq. (25) with a
non-zero real part for V0 small; i.e., we search for resonan-
ces. The right panel of Fig. 6 shows the evolution of a pair of
symmetric poles (n¼ 3 of Ref. 12), which moves upward in
the third and fourth quadrant of the k-plane. This pair of
poles merges on the negative imaginary axis at k ’ �0:5i
fm�1 (V0 ’ 83 MeV) into a second-order pole. Afterward,
one of the poles moves up and the other moves down, both
along the imaginary axis. Eventually, as the strength V0

keeps growing, one pole moves to positive imaginary values
of k and becomes the second even bound state (right triangle)
that appears in Fig. 5 for V0 � 83 MeV.

In summary, we have shown in Fig. 6 how the different
kinds of poles of the S-matrix evolve as a function of the
strength. Let us remark on a detail which will be relevant to
Sec. IV B: for a one-dimensional potential well, there always
exists at least one bound state for any value of V0; this is not
the case for a three-dimensional well.

Let us now study the behavior of the transmission coeffi-
cient T, Eq. (17), as a function of the real wave number k, for
two values of the strength, V0 ¼ 33:84 and 21.76 MeV (these
figures correspond to the bound and anti-bound strengths for
the deuteron of Sec. IV B). The left and right panels of Fig. 7
show T for V0 ¼ 33:84 and 21.76 MeV, respectively, with
the scale on the right. Both curves show the characteristic
behavior of T, with some resonant peaks for which T¼ 1;
these peaks widen as k increases. Notice that the right figure
has a very narrow peak close to k¼ 0.

In Fig. 7, we also show the poles of the S-matrix as func-
tions of the complex k as filled squares, with the scale on the
left side. For a better visualization of the position of the poles
with respect to the peaks of T, the scale of the left axis is
inverted. We observe that the real part of the poles is close to
the position of the peaks, and that the agreement deteriorates
as the imaginary part of the pole increases. We also observe
that as the peaks widens, the imaginary part of the poles
increase. The broadening of the peaks with the increment of
the imaginary part of the poles is reminiscent of the one we
found for jGj2 in Fig. 2 as the damping coefficient increases.
The pole on the positive imaginary axis in the left figure cor-
responds to a bound state, while the pole on the negative
imaginary axis on the right figure corresponds to an anti-
bound state.

B. Loosely bound and resonant states in real nuclei

In this section, we will connect the bound and anti-bound
states found in Fig. 7 with the corresponding states of the
deuteron. We also will show the behavior of the phase shift
for the nucleus 5He.

Fig. 5. Evolution of the first two even and two odd bound states in the one-

dimensional square well R¼ 2.1 fm and 2l=�h2 ¼ 0:024 MeV�1 fm�2, for

0 < V0 < 250 MeV.

Fig. 6. Moving of the first few poles of the S-matrix Eq. (24) parameterized

in V0 for the one-dimensional potential well, with R¼ 2.1 fm and 2l=�h2

¼ 0:024 MeV�1 fm�2. The arrows indicate the direction of increasing V0.

The numbers next to the arrows are values of V0 in MeV. (Left) Trajectories

of the first even and odd states. (Right) Trajectories of the first pair of poles.

Fig. 7. Transmission coefficient (continuum curve) and complex poles (filled

squares) of the transmission coefficient Eq. (17) for V0 ¼ 33:84 MeV (left)

and V0 ¼ 21:76 MeV (right). The inset shows the position of the anti-bound

state.
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First, let us consider the one-dimensional potential well as an
approximation for the interaction in the deuteron, the nucleus
of the heavy hydrogen atom, 2H. It can be solved by reducing
the two-body proton-neutron system to a one-body problem
with reduced mass l, with 2l=�h2 ¼ 0:024 MeV�1 fm�2. The
strength V0 measures the interaction between the proton and the
neutron. For the parameter R of the well, we take the experi-
mental radius of the deuteron R¼ 2.1 fm (p. 40 in Ref. 15).
Notice that these are the parameters used in Sec. IV A to study
the positions of the poles of the S-matrix. The experimental
binding energy of the deuteron is e ¼ �2:225 MeV.16

In our one-dimensional potential well, the first bound state is
an even state; then, in order to describe the deuteron, we have
to consider the second bound state of the one-dimensional
potential well, i.e., the first odd state. Using the value
V0 ¼ 33:84 MeV, we reproduce the ground state energy
�2.225 MeV of the deuteron. It appears as a bound state pole
in the left panel of Fig. 7, at the value k ¼ þi 0:231 fm�1. The
deuteron has an unbound state at e ¼ �0:066 MeV,1 which is
found, in our one-dimensional potential well for V0 ¼ 21:76
MeV. This state appears as an anti-bound pole on the right
panel in Fig. 7, at the value k ¼ �i 0:040 fm�1. Different val-
ues of V0 were needed to describe the bound and anti-bound
states of the deuteron because of our oversimplified model. A
more realistic description of the deuteron would require a more
complex interaction.

The deuteron is an example of a loosely bound nucleus. The
characteristic of loosely bound nuclei is that the wave function
extends well beyond the radius R. In order to gain intuition
about this property, we artificially increase the strength to
V0 ¼ 46 MeV; the energy of this state is e ¼ �8:1 MeV.
Figure 8 shows the wave function of this state with that of the
deuteron. We observe that the wave function of the state with
energy e ¼ �8:1 MeV decays much faster than that of the deu-
teron, with energy e ¼ �2:225 MeV.

As a final example of real nucleus, let us consider the 5He
isotope. Experimentally, it is found that the separation

energy of this nucleus is negative,16 meaning that it is
unbound. From the nuclear shell model, the 5He nucleus is
modeled as a two-body system, a 4He core plus a neutron
with intrinsic spin s¼ 1/2. The spin s couples to the orbital
angular momentum l to give the total angular momentum
j ¼ l þ s. In this picture, the valence neutron may be in the
p3=2 or p1=2 (with p indicating the orbital angular momentum
l¼ 1 and j¼ 3/2 or j¼ 1/2). The reduced mass of the 4He
plus neutron system yields 2l=�h2 ¼ 0:0385 MeV�1 fm�2,
while the value for the parameter R was set equal to 2.15 fm.
Since we are not considering the spin–orbit interaction, the
states p3=2 and p1=2 are degenerate in a single p state.
The strength of the potential well V0 ¼ 53:18 MeV was cho-
sen to have dp ¼ p=2 at the experimental16 resonant energy
e3=2� ¼ 0:735 MeV. Using Eq. (32), we calculate the phase
shift dp shown by a solid line in Fig. 9. The profile of the cal-
culated phase shift dp is reminiscent of the function Arg(G)
of the damped harmonic oscillator of Fig. 1. From the experi-
mentally measured cross section as a function of the energy,
one may extract the phase shift for the different quantum
numbers. In Fig. 9, we show the experimental phase shift for
p3=2 and p1=2 (data from Ref. 17). We observe that the calcu-
lated phase shift dp in our simplified model follows closer
the shape of the experimental phase shift dp3=2

, i.e., the reso-
nant behavior of the 5He nucleus. Better agreement with the
experimental data would require the inclusion of the spin–or-
bit interaction.

The condition C=er � 1 is usually used to characterize an
observable resonance,1,7 with er the energy of the resonance
and C its width. From Fig. 9, we can calculate the width,18

C ¼ 2
dd
de

� ��1

er

¼ 0:373 MeV:

Then, by taking the ratio between the width C and the experi-
mental resonant energy er ¼ 0:735 MeV (Ref. 16) for the
5He, we get C=er ¼ 0:51 MeV. Since this ratio is not as

Fig. 8. Comparison of the wave function of the deuteron (solid line) with

that of a typical bound state (dashed line). The vertical dashed lines delimit

the radius R¼ 2.1 fm.

Fig. 9. Calculated phase shift dp for 5He in the three-dimensional potential well

and the corresponding experimental phase shifts dp3=2
and dp1=2

(Ref 17). The

vertical dotted line shows the experimental resonant energy e3=2� ¼ 0:735 MeV.
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small as for the harmonic oscillator, the jump in Fig. 9 is
somewhat less pronounced that in Fig. 1.

V. SUMMARY

We started by reviewing the behavior of the amplitude
and phase of the classical damped harmonic oscillator near
resonance. Then we applied the usual matching procedure to
find the bound and scattering solutions of the one-
dimensional well potential. After that, we defined the S-
matrix for the one-dimensional potential well and introduced
the its analytic extension to the complex wave number plane.
We classified the poles of the scattering matrix and made the
connection between its poles in the complex wave number
and energy planes. Finally, we introduced the phase shift in
the three-dimensional spherical potential well.

In the applications, we showed the movement of the first
few poles of scattering matrix for the one-dimensional poten-
tial well in the complex wave number plane as a function of
the strength of the potential. We showed how the first state is
always present for any value of the strength and how the sec-
ond state becomes a bound state starting as an anti-bound
state. The movement of these two states in the energy plane
is as follows: the first state moves always on the physical
(first) Riemann sheet along the negative real axis from zero
toward negative infinity as the strength increases, while the
second state also moves along the negative real axis but it
starts on the nonphysical (second) Riemann sheet and then
continues along the negative real axis on the physical
Riemann sheet. The third bound state has an anti-bound part-
ner; both these states started as resonances from small values
of the strength and they merged on the negative imaginary
axis, as it was found for the classical harmonic oscillator.
Also, for the one-dimensional potential well, we illustrated
the relation between the isolated poles of the scattering
matrix and the maxima of the transmission coefficient. We
found that the agreement departed as the imaginary part of
the poles widens. We showed that the anti-bound state
showed up as a narrow peak in the transmission coefficient
very close to the origin.

By using the one-dimensional potential well, we compared
the loosely bound state wave function of the deuteron with a
more tightly bound state and showed how the former extends
much more in the space than the latter. As an example of an
experimentally observable resonance in nuclear physics, we
used the three-dimensional potential well as an approximate
model to illustrated the unbound 5He nucleus. We found the
usual rapid variation of the phase shift that characterizes a
resonance.

The use of the potential well in one and three dimensions
allowed us to build toy models of real nuclei which were
analytically solved. The concepts and equations presented in
this article will allow advanced students and instructors to
understand resonant properties in real nuclei by themselves,
varying the parameters that define the Schr€odinger equation.
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