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Double frustration and magnetoelectroelastic excitations in collinear multiferroic materials
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We discuss a model scenario for multiferroic systems of type II (collinear spins) where the electric dipolar
order competes with a frustrated magnetic order in determining the elastic distortions of the lattice ion positions.
High magnetic frustration due to second-neighbors exchange and small spin easy-axis anisotropy lead to the
appearance of the so-called quantum magnetic plateau states. Increasing the magnetic field above the plateau
border produces composite excitations, where fractionalized spin tertions arise together with spontaneous dipolar
flips (in the form of domain walls) and enhanced localized elastic distortions. This peculiar magnetoelectric
effect may be described by magneto-electric-elastic quasiparticles that could be detected by x-ray and neutron
diffraction techniques. Our results are supported by extensive DMRG computations on the spin sector and self-
consistent equations for the lattice distortions.
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I. INTRODUCTION

Multiferroic materials, in which magnetic and dipolar
order coexist and interact, are currently under intense inves-
tigation. Elastic distortions of ionic positions, in the form of
structural transitions, are deeply connected with the onset of
magnetic and/or ferroelectric order. Some of these materials
do not show signs of spin-orbit correlations, instead they
exhibit collinear spin order and electric polarization below
a common transition temperature; they are called improper
type-II collinear multiferroics [1–3]. Several materials with
such transitions are described in Refs. [4–14].

We have recently proposed a microscopic model in
Ref. [15] describing the interaction between spins and electric
dipoles in a quasi-one-dimensional multiferroic system via
elastic distortions. A key ingredient of this model, shown in
Fig. 1, is the variation of dipolar moments according to the
distance between neighboring spin sites; as dipoles are short-
ened when spin separation is increased, the model reminds
a pantograph mechanism. Thus the dipole-dipole interaction
produces a back reaction of the dipolar degrees of freedom on
the elastic distortions, and consequently in the magnetic sec-
tor. A salient feature is the observation of an ordered dipolar
phase with period three, which shows up in the presence of
an appropriate homogeneous external electric field (see Fig. 3
in Ref. [15]) because of the long-range character of dipolar
interactions (cf. Ref. [16], where only nearest-neighbor (NN)
dipolar interactions are discussed). Some properties of this
dipolar phase, denoted as ⇑⇑⇓ in the following [17], motivate
the present paper.

We investigate here the commensurability interplay of the
P = 1/3 period-three dipolar order ⇑⇑⇓ [see Fig. 2(c) below]
with the period-three magnetic configurations observed in
many frustrated magnetic materials with M = 1/3 magnetiza-
tion plateaus (M expressed as a fraction of saturation). In most
studies, the M = 1/3 plateau state is found to form a collinear
↑↑↓ [see Fig. 2(b)] classical pattern [18], but a quantum
•−• ↑ order [where •−• stands for a spin singlet, see Fig. 2(a)]
has been also predicted for spin S = 1/2 modulated isotropic
Heisenberg chains [19]. The robustness of magnetic plateau
states, given by an energy gap in the magnetization spectrum,
makes them good candidates for technological applications.
Relatedly, the characteristics of the elementary �Sz = 1 ex-
citations at the high field border of the plateaus deserve
detailed analysis.

We find that the dipolar order introduced by the long-range
dipolar interactions indeed competes with the magnetic order
set by the magnetic frustration at the M = 1/3 plateau, opening
a nontrivial scenario which we dub double frustration. Our
analysis predicts unusual effects due to this scenario. For
low anisotropy and high magnetic frustration, favoring quan-
tum fluctuations, the double frustration stabilizes a quantum
structure at the M = 1/3 plateau state. In contrast, either for
higher easy-axis anisotropy or for lower magnetic frustration,
or both, the double frustration competition leads to the spon-
taneous parity symmetry breaking of the classical collinear
M = 1/3 plateau state. We must stress that, in a more general
situation with charge order along the chain, parity breaking
would imply the appearance of longitudinal electric polariza-
tion [2]. These results are clear signals of the role of dipolar
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FIG. 1. Schematic picture for the pantograph mechanism cou-
pling electric dipoles to the lattice. Black dots represent magnetic
sites and blue spheres represent a charge distribution, giving rise to
dipolar moments. Green double arrows represent these dipolar mo-
ments that might point up or down. Displacements of magnetic sites,
indicated by blue arrows, produce lattice bond length distortions δi

that modify the strength of local dipoles.

interactions and may guide the search for materials realizing
strong magnetoelectric effects.

After analyzing the plateau states, we discuss the exci-
tations caused by the increase of the magnetic field. We

FIG. 2. Qualitative picture of magnetoelastic distortions at the
classical ↑↑↓ and the quantum •−• ↑ magnetic configurations dis-
cussed in Ref. [19] [(a) and (b), respectively], and a picture of the
electroelastic distortions at the dipolar ⇑⇑⇓ configuration (c) found
in Ref. [15]. Spins are represented by single arrows in tones of red,
dipoles by double arrows in tones of green. Three color tones (light,
medium, dark) are used to facilitate the recognition of variables
every three sites, in relation to data given below. Ionic and dipole
displacements are indicated by blue arrows (nondistorted positions
indicated with gray faded symbols). The size change of dipoles in
(c) is demonstrative of the pantograph mechanism effect. In (a), the
bond length follows a long-short-short pattern (L-S-S in the figure),
providing a magnetic energy gain by getting closer (farther) antipar-
allel (parallel) spins. In (b), the magnetic energy gain is obtained by
tightening singlet bonds following a short-long-long pattern (S-L-L
in the figure). In (c), a dipolar energy gain stems from getting closer
(farther) antiparallel (parallel) dipoles, with the same S-L-L bond
distortions as in (b). Electroelastic distortions in (c) are compatible
with the quantum magnetoelastic distortions in (b) but not with the
classical ones in (a).

show that the �Sz = 1 magnon on top of the M = 1/3 state
fractionalizes into three Sz = 1/3 spatially separated solitons,
where elastic distortions adapt to the magnetic order. This
change in the distortion pattern induces, in the dipolar sec-
tor, a spontaneous unit polarization change which in turn
fractionalizes into three sharp domain walls. This emergent
magnetoelectric effect, that is, the polarization change in-
duced by a magnetic field mediated by elastic distortions, is
one of the main results in the present paper.

Both the nature of the plateau-state structure and the
appearance of intertwined magnetic and electric fractional
excitations, mediated by the lattice, are experimentally acces-
sible by neutron scattering for the spin channel and by x-ray
scattering for the lattice distortions. As a material potentially
relevant to our discussion and findings, one should mention
the monoclinic cobaltite α-CoV2O6 which shows a strong
coupling between magnetic and dielectric order parameters
together with a M = 1/3 magnetization plateau [20,21].

The paper is organized as follows: In Sec. II we describe
the microscopic degrees of freedom, the Hamiltonian, and
the parameters that define our model scenario. We also dis-
cuss the computational method. In Sec. III, we describe the
double frustration effect, that is, a competition of the elas-
tic order convenient to magnetic frustration with the elastic
order driven by dipolar interactions, stressing the differences
between classical and quantum regimes. We devote Sec. IV
to describe the effects of increasing the magnetic field, which
leads to fractional magnetic and dipolar excitations as well as
localized elastic domain walls with clearly different behaviors
with respect to the classical or quantum plateau state structure.
Conclusions are presented in Sec. V.

II. THE MODEL SCENARIO

We briefly summarize here the model proposed in Ref.
[15]. It describes spin S = 1/2 magnetic atoms Si in a lin-
ear chain with elastic degrees of freedom δi describing the
variation of the bond length between neighboring magnetic
atoms Si and Si+1, from a regular lattice constant length a to
distorted lengths a + δi. Electric dipolar moments pi, normal
to the chain direction, are located amid magnetic atoms Si and
Si+1; when the magnetic lattice is distorted the distance be-
tween dipoles pi and pi+1 also changes from a to a + ηi, with
ηi = (δi + δi+1)/2. A fixed chain length condition is assumed,
imposing a null constraint on the sum of local distortions.

To describe several materials mentioned in the Intro-
duction, the model includes easy-axis anisotropic antiferro-
magnetic interactions J1 and J2 between nearest (NN) and
next-nearest (NNN) neighbors, respectively, which produce
the magnetic frustration. Electric dipoles interact via long
range Coulomb interactions. Both the magnetic and dipolar
sectors are coupled to the lattice in the most natural way. The
spin sector does it by a standard, spin-Peierls-type, distance
dependence of the NN exchange coupling linearly expanded
as J1(i, i + 1) = J1(1 − αδi ). On the other hand, the dipolar
sector couples to elastic distortions through the 1/r3 dis-
tance dependence of long range dipole-dipole interactions
and by the geometric mechanism mentioned in the Introduc-
tion, affecting the charge distribution in between magnetic
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atoms as they are displaced. This so-called pantograph ef-
fect is modeled by a linear expansion of the dipole moments
pi = p0(1 − βδi )σi where p0 is the undistorted dipole magni-
tude, β measures the pantograph electro-elastic coupling and
σi = ±1 is the Ising variable describing dipole orientations.
The elastic distortions have an energy cost given by a stiffness
constant K , providing an indirect magnetoelectric coupling.
More details on the model can be found in Ref. [15].

The complete Hamiltonian reads

H =
∑

i

[J1(1 − αδi )(Si · Si+1)� + J2(Si · Si+2)�]

+ K

2

∑
i

δ2
i + λdip

∑
i< j

1

r3
i j

pi p j, (1)

where (Si · S j )� stands for the anisotropic spin-spin product, λdip > 0 is the Coulomb coupling constant and ri j is the distance
between dipoles pi and p j , which depends on distortions. With the previous notation, expanding the dipolar 1/r3 dependence up
to linear order in distortions and truncating up to second neighbors (see Ref. [15]), the explicit model Hamiltonian is given by

H =
∑

i

J1

�
(1 − αδi )

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

) +
∑

i

J2

�

(
Sx

i Sx
i+2 + Sy

i Sy
i+2 + �Sz

i Sz
i+2

) + K

2

∑
i

δ2
i

+ Je

∑
i

(
σiσi+1 + 1

8
σiσi+2

)
− Je

∑
i

δi

[(
β+ 3

2a

)
(σi−1σi + σiσi+1) + 1

8

(
β + 3

4a

)
(σi−2σi + σiσi+2) + 3

16a
σi−1σi+1

]
,

(2)

where � � 1 is the easy-axis anisotropy and Je = λdip p2
0/a3 is the effective dipolar interaction coupling, (J1, J2, and Je in energy

units). Magnetic couplings J1 and J2 are divided by � to reach the Ising regime in the highly anisotropic � → ∞ limit.

Following Ref. [15], we are interested on a parameter re-
gion where the magnetic and dipolar couplings are of the same
order of magnitude, so both the spin and dipole configurations
are relevant to determine the ground state of the system. Also
the magnetoelastic coupling α and the electroelastic coupling
β are similar to provide an efficient elastically mediated mag-
netoelectric interaction. We then avoid the multiplicity of
parameters in the Hamiltonian Eq. (2) by taking Ka2 as the
energy unit and fixing J1, Je, α, and β at convenient values
detailed below. Only J2 and � will be varied to explore the
incidence of magnetic frustration and easy-axis anisotropy
(measured as γ = 1/� in Ref. [15]) in the ground-state prop-
erties of the system. Different values of J1, Je, and β can be
studied similarly.

External electric and magnetic fields E and B will be ad-
justed to drive the system to the peculiar double frustration
scenario we discuss in the present paper. This is the region
where the electric field polarizes the otherwise antiferroelec-
tric dipolar sector (driven by Je) up to 1/3 of saturation,
provoking the period three ⇑⇑⇓ dipolar pattern (see Fig. 3
in Ref. [15]) and the magnetic field sets the spin degrees
of freedom in the M = 1/3 plateau region (see Fig. 6 in
Ref. [15]). For a magnetoelastic, spin-Peierls, chain (not cou-
pled to electric dipoles), this plateau is known to appear
together with an energetically favorable period-three elastic
distortion [22–24]. On the other hand, for the electroelastic
chain obtained from the Hamiltonian Eq. (2) when the spin
sector is decoupled (α = 0), the ⇑⇑⇓ dipolar pattern also
comes along with period-three elastic distortions (as discussed
in Ref. [15]), bringing closer (farther) antiparallel (parallel)
dipoles. This situation might be reversed, for instance, in
the presence of itinerant electrons, since they may induce
RRKY-like interactions between dipoles leading to ferroelec-
tric effective couplings (see, e.g., Ref. [25]).

The question arises whether the elastic distortions com-
pete or collaborate in lowering the ground-state energy of the

magneto-electro-elastic multiferroic system. We show below
that they do compete, with profound consequences both in the
magnetic plateau configuration and the magnetic excitations
at the high field border of the plateau.

Our results are based on extensive numerical computations
following an iterative self-consistent method [26] where the
spin sector is solved exactly by density matrix renormalization
group (DMRG) techniques [27]. At each iteration, for a given
configuration of dipoles {σi} and a quantum state for the spins
{Si}, the lattice distortions δi are obtained by minimizing the
elastic energy under a fixed chain length condition. Uncon-
strained distortions δfree

i are computed through the local zero
gradient conditions,

Kδfree
i = αJ1/�

〈(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)〉

+ Je

(
β + 3

2a

)
(σi−1σi + σiσi+1)

+ 1

8
Je

(
β + 3

4a

)
(σi−2σi + σiσi+2)

+ Je
3

16a
σi−1σi+1 − βεσi, (3)

where ε = 2p0E is the normalized electric field, while the
constraint is imposed as

δi = δfree
i − δfree, (4)

where the bar stands for average value along the chain.
Dipolar configurations {σi} close to the electroelastic sector
solution are then compared.

Interestingly, the self-consistent conditions in Eqs. (3)
and (4) also allow for a qualitative analysis of the influ-
ence of spin-spin and dipole-dipole correlations on the elastic
distortions.
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III. DOUBLE FRUSTRATION EFFECT

A. Qualitative description

The elastic distortions associated with the M = 1/3 mag-
netic plateau configuration and those associated with the ⇑⇑⇓
dipolar pattern can be qualitatively described considering
the NN interactions in Eqs. (3) and (4). We then provide
the numerical evidence for the outcoming picture in the
following subsection.

M = 1/3 magnetic plateaus come in two flavors, dubbed
classical and quantum [19]. In the so-called classical plateau,
spin components parallel to the magnetic field have a nonva-
nishing 〈Sz

i 〉 expectation value in an ordered pattern with two
positive, one negative terms that we represent by ↑↑↓. These
expectation values are reduced by quantum fluctuations in the
isotropic � = 1 case, but approach ±0.5 in the highly easy-
axis anisotropic case � 
 1. Spin-spin correlations 〈Si · Si+1〉
are positive between ferromagnetic (parallel) neighbors ↑↑
and negative between antiferromagnetic (antiparallel) neigh-
bors ↑↓ and ↓↑, approaching the Ising correlations ±0.25
for � 
 1. From Eq. (3), the correlation 〈Si · Si+1〉 affects
the bond distortion δi; the ↑↑↓ spin configuration favors
distorted long bonds between ferromagnetic neighbors and
short bonds between antiferromagnetic neighbors, that is, a
L-S-S distortion pattern [see Figs. 1 and 2(a)]. Notice that
the antiferromagnetic coupling J1(1 − αδi ) gets stronger for
satisfied antiferromagnetically aligned neighbors and weaker
for frustrated ferromagnetically aligned neighbors.

In contrast, in the so-called quantum plateau two neigh-
boring spins (out of three) tend to form singlets while the
third one points up, in a configuration that we represent by
•−• ↑ [see Fig. 2(b)]. In an ideal case, the spins forming
a quantum singlet would have 〈Sz

i 〉 = 0 and the third one
〈Sz

i 〉 = 0.5, with singlet correlation 〈Si · Si+1〉 = −0.75 and
vanishing correlation between the spin up and its neighbors;
the real situation may be characterized as a quantum plateau
when the spin expectation and spin-spin correlation values
show a tendency to such pattern. Again, from Eq. (3), one
can see that a very negative singletlike correlation strongly
favors a short bond at the expense of long bonds [according to
Eq. (4)] where spin correlations are close to zero, giving rise
to a short-long-long (S-L-L) distortion pattern. Notice that the
singlets are more likely to appear in the isotropic case � = 1,
while the easy-axis anisotropy � > 1 diminishes transverse
correlations and favors the classical configuration.

In turn, the NN dipolar correlations are related to lattice
distortions through the second line of Eq. (3): Bond distortion
δi is influenced by the correlations of the dipole σi located at
bond i with NN dipoles at both sides. The ⇑⇑⇓ configuration
then favors short bonds where the dipole ⇓ is located, at the
expense of generating long bonds where the dipoles point ⇑
to fulfill the constraint in Eq. (4), preferring to induce a S-L-L
distortion pattern [see Fig. 2(c)]. Recalling that dipoles always
remain midway between adjacent magnetic atoms, in terms
of dipole positions these magnetic lattice distortions make
antiparallel dipoles get closer and parallel dipoles get further
away. The NNN dipolar interactions, necessary to introduce
the ⇑⇑⇓ order in the electroelastic phase diagram (as dis-
cussed in Ref. [15]), enter in Eq. (3) with smaller coefficients.
From this qualitative discussion, the electroelastic dipolar

configuration ⇑⇑⇓ found in Ref. [15] is compatible with the
quantum magnetic plateau configuration but competes with
the classical plateau configuration, which is usually the one
observed in homogeneous J1 − J2 magnetically frustrated spin
chains in a wide variety of regimes (isotropic with [22,23] and
without [18] elastic coupling, anisotropic [28]). Then, the cou-
pling to dipolar degrees of freedom through lattice distortions
introduces a second frustration mechanism. Our numerical
analysis below provides clear surprising effects due to this
double frustration scenario. In a regime of low anisotropy
and high magnetic frustration, favoring quantum fluctuations,
this second frustration is responsible for the stabilization of
a quantum M = 1/3 plateau state. In contrast, for higher
easy-axis anisotropy and/or lower magnetic frustration, the
second frustration competition leads to a spontaneous parity
symmetry breaking in the classical M = 1/3 plateau state.

B. Numerical DMRG analysis

We have performed an extensive numerical computation
of the ground state of the model in Eq. (2), in the presence
of magnetic and electric fields driving the system to magne-
tization M = 1/3 and polarization P = 1/3. To evaluate the
role of magnetic frustration and easy-axis anisotropy, we ex-
plored the J2/J1 − � plane, fixing the remaining parameters at
J1 = 0.5Ka2, Je = 0.2Ka2 and α = β = 0.2 with K = a = 1;
correspondingly, the electric field is taken as ε = 0.16 (see
Fig. 3 in Ref. [15]).

The ground state is found through an iterative numerical
analysis based on DMRG to solve the magnetic sector in
the adiabatic Eq. (3), along the lines stated in Ref. [26] and
implemented in a similar context in Refs. [15,16]. At each
point chosen in the J2/J1 − � plane, the ground state of the
system is found as follows: starting from the δi and σi config-
uration that solves the electroelastic part of the Hamiltonian,
the quantum ground state of the spin system is obtained by the
DMRG algorithm. Therefore, we reobtain the set of δi from
Eqs. (3) and (4) and prove different σi to minimize the total
energy, until convergence. We use periodic boundary condi-
tions and we have kept the truncation error less than O(10−12),
during up to more than 100 sweeps in the worst cases. This
assures that errors of the DMRG computation are smaller than
symbol sizes in each figure. The DMRG computations were
implemented using the ITensor software library [29].

We have covered a wide region of the J2/J1 − � plane.
From this exploration, we found distinct regimes that we
describe below. We paid attention to the isotropic case � =
1, mainly for theoretical reasons, and to high values of �

where one expects a classical behavior which may be in
closer relation to real materials. Regarding the frustration
ratio J2/J1, we distinguish moderate and highly frustrated
values (see Fig. 6 in Ref. [15]). Representative selected
points are:

(i) � = 1, J2/J1 = 0.5. Due to the isotropic Heisenberg
interaction and the high magnetic frustration (J2/J1 = 0.5 is
the maximally frustrated point in the case of Ising interac-
tions) quantum fluctuations are enhanced at this point.

(ii) � = 4, J2/J1 = 0.8. Easy-axis anisotropy and low
magnetic frustration inhibit quantum fluctuations, favoring
classical behavior.
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FIG. 3. Schematic phase diagram in the frustration ratio (J2/J1)
and the easy-axis anisotropy (�) plane. The colored regions indicate
the parameter regimes where M = 1/3 plateaus are observed in
magnetization curves. The robust magnetic order giving rise to the
plateau is mostly a collinear ↑↑↓ classical structure (yellow region)
but turns into a quantum •−• ↑ state (orange region) when high
frustration and low anisotropy enhance the quantum fluctuations. The
circles mark the four points detailed in this paper (unnumbered ones
are described in Supplemental Material [30]).

(iii) � = 1, J2/J1 = 0.8. Selected as a point with isotropic
Heisenberg interaction and low frustration.

(iv) � = 4, J2/J1 = 0.5. Selected as a high magnetic frus-
tration poinmagnetic dipole energyt, with weaker transverse
spin interactions softening quantum fluctuations.
We found important qualitative differences between the first
case (case 1 in the following) and the others. For this reason,
we provide details on that and the second one (case 2 in the
following) and defer the others for Supplemental Material
[30]. Our complete analysis leads to the schematic phase
diagram shown in Fig. 3. A characterization of the phase
boundaries is an interesting question but is out of the scope
of the present paper.

We have checked at each of these points that the magneti-
zation curves indeed show plateaus at M = 1/3, with different
widths. For cases 1 and 2, these are shown in Figs. 4(a)
and 4(d).

1. Case 1 (� = 1, J2/J1 = 0.5)

We have found that the double frustration caused by the
dipolar degrees of freedom is able to radically change the oth-
erwise classical magnetic plateau structure to a quantum one.
This is a manifestation of a strong magnetoelectric effect. The
local profile of the relevant variables has been computed in a
chain of Ns = 174 sites, with periodic boundary conditions
and a magnetic field hz = 0.6, setting M = 1/3 (meaning
Sz

total = (Ns × 1
2 )/3).

The local results show a repeated structure every three
sites, as expected; a detail of a portion of the chain is shown in
Fig. 4(b). We have used three color tones (light-medium-dark)
to identify the corresponding period-three sublattices. We
have also drawn vertical lines in these plots to indicate
the magnetic sites, drawing site variables (〈Sz

i 〉) markers
upon these lines and bond variables (δi, pi and spin-spin
correlations) markers between them. One can see in the
sequence of 〈Sz

i 〉 (red circles in the upper plot, with
light-medium-dark tones every three sites) a repetition of
one spin up (〈Sz〉 ≈ 0.4, in medium red) followed by two
spins with almost vanishing expectation value (〈Sz〉 ≈ 0, in
dark and light red). The NN spin correlations (red diamonds

in the lower plot, with corresponding light-medium-dark
tones every three bonds) take a very negative value (below
−0.6) every three bonds, indicating the tendency to form two
sites local quantum singlets just between sites with almost
vanishing 〈Sz〉, with low antiferromagnetic correlations
between them and sites with spin up. The longitudinal
and transverse correlations are shown with up-triangles
and horizontal-triangles for more detail: typical singlet
correlations (in dark red) get equal contributions from each
spin component 〈Sx

i Sx
i+1〉 = 〈Sy

i Sy
i+1〉 = 〈Sz

i Sz
i+1〉 ≈ −0.2,

while the other bonds show almost uncorrelated z components
〈Sz

i Sz
i+1〉 ≈ 0. The elastic distortions (blue squares in the upper

plot, also with light-medium-dark tones) are negative in the
dark bonds and positive in the rest, forming a S-L-L bond
distortion pattern. The magnetic ions in the spin quantum
singlets get closer, augmenting the spin exchange J1(1 − αδi )
for better magnetic energy gain at the expense of elastic
energy cost. These together are clear signals of the •−• ↑
quantum plateau structure [see Fig. 2(b), where the same tones
of red are used for spin sites]. The ⇑⇑⇓ dipole amplitudes
(green diamonds in the upper plot) pin the dipoles pointing
down in the short bonds; this makes antiparallel dipoles
get closer and parallel dipoles get farther, in a pattern that
minimizes the electro-elastic energy [see Fig. 2(c), where the
same tones of green are used for dipoles]. The same elastic
distortions thus contribute to the gain of both electric and
magnetic energy. The ground state obtained in case 1 may be
visually summarized in the cartoon description provided in
Fig. 4(c).

Notice that this state breaks the translation invariance of the
Hamiltonian in Eq. (2) but maintains the inversion symmetry
with respect to spin up sites or dipole down bonds (in contrast
to case 2 discussed below). As a consequence, the ground state
is threefold degenerate.

One should recall that a different (classical) magnetic or-
der has been previously observed at the M = 1/3 plateau
of the isotropic, frustrated J1 − J2 antiferromagnetic-elastic
spin S = 1/2 chain [23] in the absence of local dipoles. We
can say that the distortions associated to the dipolar order
dominate and destroy the otherwise collinear ↑↑↓ classical
magnetic plateau order of the isotropic, frustrated J1 − J2

antiferromagnetic-elastic spin chain. Instead they give rise to a
•−• ↑ quantum magnetic plateau order, elastically compatible
with the dipolar order, where the formation of spin quantum
singlets lowers the magnetic energy. This is one of the main
results in this paper.

2. Case 2 (� = 4, J2/J1 = 0.8)

In the anisotropic, less-frustrated case, we have observed
qualitatively different magnetic and electric orders, again
with a period-three structure. Numerical results are shown in
Fig. 4(e) together with the corresponding cartoon picture in
Fig. 4(f).

The spins clearly adopt the ↑↑↓ classical plateau structure.
This is seen in the sequence of 〈Sz

i 〉 with two positive, one
negative values close to 0.5 (red circles in the upper plot)
and mainly in the almost vanishing transverse correlations
〈S+

i S−
i+1〉 (horizontal-triangles in the lower plot); longitudinal

correlations close to 0.25 (−0.25) (up-triangles in the lower
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FIG. 4. (a), (d) Magnetization curves M versus. hz = gμB|B| (g being the gyromagnetic ratio of the electron in the specific material and μB

the Bohr magneton) showing the existence of the M = 1/3 plateau in cases 1(a) and 2(b) discussed in detail in this paper. The widths Wp of the
main magnetization plateaus are computed for several finite chain lengths and extrapolated to infinite size as shown in the insets. The smooth
lines suggest the magnetization curves in the thermodynamic limit. For case 1, the plateau is narrower than case 2, due to the enhancement
of quantum fluctuations favored by isotropic interactions and high magnetic frustration.(b), (c) Local profile of site and bond observables in
the M = 1/3 state for � = 1, J2/J1 = 0.5 (case 1), obtained with the self-consistent numerical computations; a section of six sites (indicated
by vertical lines) is taken from the L = 174 chain with periodic boundary conditions. In the upper plot, different light-medium-dark tones
are used to emphasize the period three structure of the spin expectation values 〈Sz

i 〉 (in units of h̄, in red circles), the bond distortions δi (in
units of the lattice constant a, in blue squares drawn between sites) and dipolar moments pi (divided by 2p0, in green thin-diamonds between
sites). The lower plot shows the nearest-neighbor spin correlations 〈Si · Si+1〉 in red diamonds; a detail of longitudinal 〈Sz

i Sz
i+1〉 and transverse

〈S+
i S−

i+1〉 = 〈Sx
i Sx

i+1〉 + 〈Sy
i Sy

i+1〉 correlations is given in triangles. Data shows the formation of local quantum singlets alternating with partially
decoupled spins up every three sites. The cartoon picture in (c) qualitatively collects these numerical results and shows the compatibility of the
short-long-long (S-L-L) quantum magnetoelastic and electroelastic patterns in Fig. 2. (e), (f) The M = 1/3 ground state for � = 4, J2/J1 = 0.8
(case 2). Symbols and colors follow the conventions in (b). Spin data shows the classical ↑↑↓ plateau features, with 〈Sz

i 〉 not reaching ±0.5
because of small quantum fluctuations. Although the spin structure is classical, the elastic distortions do not fit the classical magneto-elastic
pattern in Fig. 2 but the long-null-short (L-0-S) sequence depicted qualitatively in (f). The interaction between dipoles and spins, mediated by
distortions, frustrates the magnetoelastic order producing the breaking of inversion symmetry.

plot) correspond to collinear parallel (antiparallel) spins. In
this state, the magnetic sector could be well described by
classical Ising spins, neglecting the quantum fluctuations.
However, we find in the next section that the magnetic

excitations above this plateau state show a clear quantum
behavior.

Note that the lattice distortions do not follow the pattern
of the magnetic correlations [compare with Fig. 2(a)]. The
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first-neighbor dipolar terms in the self-consistent Eq. (3), fol-
lowing the ⇑⇑⇓ configuration induced by the external electric
field [see Fig. 2(c)], are not compatible with such magnetic
correlations and force a competition in determining the lattice
distortions. The resulting distortion pattern does neither opti-
mize the magnetic energy nor the dipolar energy separately,
but their sum with the elastic energy. It can be qualitative
described as long-null-short (L-0-S) distortion pattern [fol-
lowing light-medium-dark blue squares in the upper plot of
Fig. 4(e)]. A different, degenerate, ground state is obtained
by inversion with respect to any of the short bonds. Thus the
ground state is sixfold degenerate.

The features of the ground state in case 2 may be rec-
ognized in the cartoon in Fig. 4(f). The double frustration
effect leads to a compromising distortion pattern that breaks
the inversion symmetry. This lack of inversion symmetry in
the distortion pattern of course modifies the magnetic and
dipolar couplings through the magnetoelastic coupling α and
the pantograph electroelastic coupling β. As a consequence,
the spins (dipoles) pointing up have slightly different values
of 〈Sz〉 (pi), breaking the inversion symmetry observed in the
quantum plateau case 1 and also in the J1 − J2 magnetoelas-
tic spin chain [23]. This spontaneous symmetry breaking is
another important result, a consequence of the present double
frustration effect. Were charge degrees of freedom included,
the induced charge order would result in a longitudinal com-
ponent of electrical polarization [2].

The analysis of the other points indicated in Fig. 3 show a
classical plateau behavior similar to that observed in case 2.
They correspond to isotropic spin interactions and low frus-
tration (� = 1, J2/J1 = 0.8) and to a highly frustrated case
with important easy-axis anisotropy (� = 4, J2/J1 = 0.5). It
appears that both isotropy and high frustration are necessary to
stabilize the quantum plateau. Further numerical exploration
indicates that there is a finite small region around � = 1,
J2/J1 = 0.5 where the M = 1/3 plateau remains open and
the spins order in the quantum •−• ↑ structure, as shown
schematically in Fig. 3.

As a summary of this section, we have provided a qual-
itative description and numerical evidence for a double
frustration effect in a multiferroic model scenario.

IV. COMPOSITE EXCITATIONS INDUCED BY
A MAGNETIC FIELD

The �Sz = 1 spin excitations induced by a magnetic field
on a plateau state are the key to understand the high field
plateau border. It is well-known that the excitation of the
M = 0 plateau in one-dimensional antiferromagnetic spin
chains is not a stable singlet-triplet excitation but decays into
two spinons [26,31–34]. Each spinon carries spin Sz = 1/2
as a topological charge and may be described as a soli-
ton quasiparticle interpolating between different dimerized
vacua; spatially, the soliton profile can be seen as a smooth
domain wall. We have discussed this spin fractionalization
phenomenon in the present multiferroic model in Ref. [15].

The �Sz = 1 spin excitations on top of the M = 1/3 mag-
netization plateau in antiferromagnetic magnetoelastic spin
chains is also known to exhibit spin fractionalization [23].
Remarkably, this goes beyond the spinon description: the

excitation decays into three Sz = 1/3 noninteracting solitonic
excitations (dubbed tertions). For a classical ↑↑↓ plateau, it
has been shown that the tertions have a local singlet core caus-
ing the ↑↑↓ order on one side to be shifted by one site with
respect to the other side. In this way, the tertion interpolates
between two different ↑↑↓ domains.

It has been observed in several systems that the high-field
plateau border is characterized by a sudden finite magnetiza-
tion jump when the magnetic field takes a threshold value.
The magnetization curves in Fig. 4 suggest that this might
also occur in our model. If this is the case, the magnetic
excitation would fractionalize into a periodic lattice of self-
avoiding solitons [33,35]. Such a periodic magnetic structure
could be detected by unusual line shapes in neutron-scattering
data [36], as well as the associated lattice distortions could be
detected by x-ray measurements.

A natural question arises, whether these features are
modified by the double frustration effect in the present
magneto-electro-elastic chain. We have explored the numer-
ical self-consistent solutions of Eqs. (3) and (4) in periodic
chains with Ns sites in the subspace of Sz

total = (Ns · 1
2 )/3 + 1

(that is, one unit of magnetization above M = 1/3). We con-
sidered large chains to allow for a most clear spatial separation
of the three expected tertions. We report results on chains of
Ns = 174 sites,1 where the plateau state has Sz

total = 29 and the
excited state has Sz

total = 30.
In the present multiferroic model scenario, we have con-

firmed that the �Sz = 1 excitation induced by a magnetic field
on top of the M = 1/3 state indeed fractionalizes into three
Sz = 1/3 spatially separated tertions. The trial of different
dipolar configurations has shown that the dipolar sector suf-
fers a spontaneous unit polarization change along the electric
field direction to minimize the energy cost of the distortions
accompanying the magnetic order. This polarization change
induced by a magnetic field is an emergent magnetoelectric
effect mediated by elastic distortions. We discuss below the
numerical data supporting these statements.

A. Case 1

We show in Fig. 5 numerical results for the magneti-
cally excited state in the isotropic frustrated regime (� = 1,
J2/J1 = 0.5). Using the same color codes as in the plateau
state [see Fig. 4(b)], in the upper panel we show the local
〈Sz

i 〉 in red circles, the dipoles pi in green diamonds and the
distortions δi in blue squares; the light-medium-dark tones for
sites 1–3 are repeated every three sites to visually distinguish
the associated sublattices. In the lower panel, we show the
〈Si · Si+1〉 correlations. With the help of the color tones, one
can see a short wavelength oscillation of each observable,
with period three as in the plateau state, but modulated by
a long wavelength oscillation spanning three whole periods
along the chain. The regions around sites ∼26 (marked as I
in the plots), ∼26 + Ns/3 = 84 (marked as II in the plots),
and ∼26 + 2 × Ns/3 = 142 show locally the same features

1For a periodic pattern with magnetization Sz
total = (Ns · 1

2 )/3 + 1
to be commensurate with the chain length, Ns must be restricted to
integers of the form 9q + 3 [23].
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FIG. 5. (See online version to appreciate details.) Magneto-
electro-elastic excitations (MEE) with �Sz = 1 induced by the
magnetic field on top of the M = 1/3 plateau for J2/J1 = 0.5, � = 1
(case 1). In the top panel, we show numerical results for the local
observables (upper plot) and spin correlations (lower plot). Symbols
and colors follow the conventions in Fig. 4(b). The magnetic sector
shows regions which adopt the •−• ↑ quantum plateau order (two of
them highlighted as I and II), interpolated by soliton structures with
a classical ↓↑↑↓ center. The position of the •−• ↑ pattern is shifted
to a different sublattice across each soliton. Dipolar domain walls
⇓⇑⇑⇑⇓ are formed at the core of the magnetic solitons, shifting the
⇑⇑⇓ order from one to another sublattice to accompany the magnetic
configuration; these dipolar domain walls carry fractionalized spon-
taneous electric excitations. The lattice distortions also accompany
the magnetic configuration but show singular localized excitations
at each dipolar domain wall. Each region between •−• ↑ quantum
plateau orders thus allocates a coupled magneto-electro-elastic exci-
tation (the one between regions I and II is highlighted as MEE in the
plots). A cartoon picture of these results is shown in Fig. 6.

as the plateau state. However, in the first one the spin up is
located on the medium-red sublattice (region I), in the second
one it falls on the dark-red sublattice (region II) and in the
third region it corresponds to the light-red sublattice. Thus,
regarding the spin sector, each of these regions adopts one of
the three degenerate possible quantum plateau configurations,
different because of a relative shift of the spin up and the
spin singlet positions by one site to the right. In the sites
between the plateau regions, one can see a smooth sublattice
interpolation between observables; for instance, the 〈Sz

i 〉 in the

medium-red sublattice evolves from a spin up in region I to a
spin in a singlet in region II . These intermediate sites then
allocate the solitonic excitations interpolating between differ-
ent vacua (in the sense of degenerate plateau states related
by translations); the analysis of local 〈Sz

i 〉 values shows that
they carry a fraction Sz = 1/3 of the magnetic excitation. At
the center of the soliton, the spins take a ↓↑↑↓ configuration,
that may be called a classical core between quantum orders.
One can of course notice that the soliton regions occupy an
important fraction of the chain length. As the spatial width
of the magnetic solitons is usually in inverse relation with
the plateau width (or the spin gap producing it [26]), we
expect that in a larger chain they will maintain their size and
more space will be left for better defined plateau regions. The
analysis of dipolar configurations necessary to minimize the
system energy has shown that the dipolar order ⇑⇑⇓ induced
by the electric field (fixed at the plateau value ε = 0.16) is
altered by the appearance of three dipolar domain walls with
patterns ⇓⇑⇑⇑⇓. Each of them can be seen as the insertion
of an extra ⇑ dipole, namely, a dipolar excitation. As the
three domain walls accumulate one dipole flip with respect
to the homogeneous ⇑⇑⇓ order, we observe a spontaneous
unit dipolar excitation that appears to decay into three domain
walls. A similar behavior is reported in Ref. [28] for mag-
netic excitations above the M = 1/3 plateau in the Ising limit.
These dipolar excitations are localized at the soliton cores, so
the dipolar order observed at the plateau state is shifted by one
site at each domain wall accompanying the shift of magnetic
plateau structures. Notice that magnetic tertions and dipolar
domain walls occur in the same positions, a fact that may be
interpreted as a magnetoelectric coupling between magnetic
and dipolar excitations.

The elastic sector evolves smoothly along the magnetic
solitons, shifting the S-L-L pattern by one site as the spins
and dipoles do, with a noticeably exception at the dipolar
domain walls. A singularly long bond is formed there, while
the others abruptly interchange from null to short. We inter-
pret this feature as a local elastic excitation, coupled to the
magnetoelectric one. Thus a localized magneto-electro-elastic
excitation (indicated as MEE in Fig. 5) shows up between
quantum plateau regions.

A cartoon picture of these features is drawn in Fig. 6.
The spins, dipoles, and distortions are schematically indi-
cated at the quantum plateau regions I and II (as labeled in
Fig. 5), separated by the MEE excitation with a classical mag-
netic ↓↑↑↓ core coinciding with the ⇓⇑⇑⇑⇓ dipolar domain
wall.

FIG. 6. Qualitative picture of the magneto-electro-elastic (MEE) excitation separating the quantum plateau regions I andII in Fig. 5. The
excitation has a classical magnetic ↓↑↑↓ core coinciding with the ⇓⇑⇑⇑⇓ dipolar domain wall and a highly enlarged bond. Local observables
and color codes follow actual data in the upper plot in Fig. 5. The dotted line is a mirror plane showing the parity symmetry of the MEE
excitation. The local order in quantum region II is shifted by one site with respect to the order in quantum region I.
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FIG. 7. (See online version to appreciate details.) Decoupled
electroelastic and magnetic and excitations with �Sz = 1 in-
duced by the magnetic field on top of the M = 1/3 plateau for
J2/J1 = 0.8, � = 4 (case 2). The plot in the upper panel shows
the local observables, that in the lower panel shows spin correla-
tions. Magnetic solitons (one of them labeled as MS in the figure)
having a singlet core interpolate between different classically ↑↑↓
ordered regions related by one-site translations (see, for instance,
regions I and II in the figure). Dipolar excitations in the form of
domain walls ⇓⇑⇑⇑⇓ (DW), accompanied by localized elastic ex-
citations, are spatially decoupled from the magnetic solitons. They
separate different mirror-related classically ↑↑↓ ordered regions
(see, for instance, II and III). All of the six degenerate magneto-
electro-elastic classical plateau configurations show up in different
regions of the system. A cartoon picture of these results is shown
in Fig. 8.

B. Case 2

In Fig. 7, we show the results obtained for the excitations
of the classical plateau state in the anisotropic less frustrated
regime J2/J1 = 0.8, � = 4, which are qualitatively different
from case 1. Here the magnetic sector, in the Sz

total = (Ns · 1
2 )/

3 + 1 excited subspace, presents three regions with each
↑↑↓ classical plateau order, periodically modulated along the
chain. In each classical plateau region, the ↑↑↓ pattern lies
in different sublattices (for instance, regions I andII in the
figure), separated by solitons [one is highlighted as a magnetic
soliton (MS) in the plot]. Again these solitons are tertions,
carrying a fraction Sz = 1/3 of the magnetic excitation. They
interpolate classical plateau regions, having a local quantum
spin singlet core; the same features have been observed in the
excitations of the M = 1/3 classical plateau in magnetoelastic
chains, in the absence of dipolar degrees of freedom [23]. In
addition, the solitons are narrower than in case 1, in accor-
dance with a wider magnetic plateau (see Fig. 4).

The dipolar sector again presents a unit spontaneous exci-
tation (dipole flip) fractionalized into three domain walls (one
of them is highlighted as DW in the plot). But in this case, the
domain walls appear to decouple from the magnetic solitons.
Instead, they occur inside a ↑↑↓ plateau region signaling a
parity change of the accompanying lattice distortions (see, for
instance, the regions highlighted as II and III in the plot, with
mirror symmetry with respect to the domain wall between
them). Singular elastic excitations (very long bonds) show
up together with the dipolar domain walls. One can thus ob-
serve electroelastic excitations well decoupled from magnetic
Sz = 1/3 excitations.

As the dipolar domain walls separate the two parity-related
degenerate elastic configurations compatible with the same

FIG. 8. Qualitative picture of the magnetoelastic and electroelastic excitations in Fig. 7. The cartoon in the upper panel describes the
magnetoelastic solitonic excitation MS with a quantum singlet core interpolating the classical orders highlighted as I and II in Fig. 5; in
passing the soliton, the L-0-S distortion pattern changes to S-0-L and the ↑↑↓ magnetic pattern is shifted by one site while the dipolar ⇑⇑⇓
pattern remains unaltered. In the lower panel, the electroelastic domain wall DWseparates the classical orders highlighted as II and III; the
S-0-L distortion pattern changes again to L-0-S and the dipolar ⇑⇑⇓ pattern is shifted by one site but the magnetic ↑↑↓ order remains the
same at both sides of the domain wall. Dotted lines are added to make apparent the mirror symmetry of the excitation configurations.
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magnetic order, all of the six possible (degenerate) magneto-
electro-elastic classical plateau configurations are realized
along the system length.

We have drawn a schematic description of these results
in Fig. 8: the transition between the classical ↑↑↓ plateau
regions marked as I and II is given by a magnetic soliton
MS passing through a spin singlet, while that between the
classical plateau regions II and III is given by an electroelastic
excitation without disruption of the ↑↑↓ magnetic order.

It is interesting to recall an argument based on the
bosonized description of the M = 1/3 plateau in spin S = 1/2
chains, discussed in Ref. [23]. Along this argument, the oc-
currence of the classical or quantum plateau are related to
the vacuum expectation value of a compactified bosonic field.
This explains why a soliton interpolating classical configu-
rations must pass over a quantum ordered region as found
in that reference and also here in case 2. Conversely, the
same argument suggests that a soliton interpolating quantum
configurations must pass over a classical order.

In comparing the location of dipolar domain walls ⇓⇑⇑⇑⇓
with respect to the magnetic order, one can extract as a thumb
rule that they fit better in the elastic distortions of a classical
↓↑↑↓ magnetic environment (see cartoons in Figs. 6 and 8,
second line). Thus, when exciting a classical plateau state
the dipolar domain walls are located in the classical plateau
regions, away from magnetic excitations. Instead, when ex-
citing a quantum plateau state, the dipolar domain walls are
located in the classical core of the magnetic solitons, forming
a composite MEE quasiparticle.

V. SUMMARY AND CONCLUSIONS

We have explored the interplay between frustrated mag-
netic and dipolar orders in a one-dimensional model for
collinear, type-II multiferroic materials, where electric and
magnetic degrees of freedom are indirectly coupled by the
lattice distortions. More precisely, we have investigated the
commensurability of the P = 1/3 period-three dipolar order
⇑⇑⇓ with the period-three magnetic configurations observed
in many frustrated magnetic materials within M = 1/3 mag-
netization plateaus.

Both from qualitative arguments and extensive DMRG
computations, we have found that the dipolar order introduced
by frustrating dipolar interactions competes with the magnetic
order set, in turn, by the magnetic frustration at the M=1/3
plateau. This opens a nontrivial scenario which we dub double

frustration. Our analysis provides clear and surprising effects
due to this double frustration. In a regime of low anisotropy
and high magnetic frustration, favoring quantum fluctuations,
the double frustration is responsible for the stabilization of
a quantum M = 1/3 plateau state. In contrast, in all other
cases (either introducing higher easy-axis anisotropy and/or
reducing magnetic frustration), the second frustration compe-
tition leads to the spontaneous parity symmetry breaking in
the order of the classical M = 1/3 plateau state. From this
parity breaking mechanism, and in the presence of charge
order along the chain, a longitudinal component of the po-
larization should appear [2]. Detection of different directions
of the polarization could be the clue to identify the underlying
magnetoelectric effects operating in a given material.

We have also discussed the excitations caused by the in-
crease of the magnetic field. We have found that the �Sz = 1
magnon on top of the M = 1/3 state fractionalizes into three
Sz = 1/3 spatially separated solitons, encompassing elastic
distortions adapted to the magnetic order. This change in the
distortion pattern induces, in the dipolar sector, a spontaneous
unit polarization change which, in turn, fractionalizes into
three sharp domain walls. Moreover, on top of the quantum
plateau state these fractional excitations form a composite
magneto-electro-elastic quasiparticle. This emergent magne-
toelectric effect, that is, the polarization change induced by a
magnetic field mediated by elastic distortions, is an important
result in the present paper.

The nature of the plateau-state structure and the appearance
of intertwined magnetic and electric fractional excitations,
mediated by the lattice, may be experimentally accessible by
neutron scattering for the spin channel and by x-ray scat-
tering for the lattice distortions. A candidate material to be
explored might be the cobaltite α-CoV2O6, where a M = 1/3
magnetization plateau together with strong coupling between
magnetic and dielectric order parameters has been reported
[20,21]. The striking differences between the present results
and those for pure magnetoelastic chains are clear signals of
the role of dipolar interactions in multiferroic systems and
may guide the search for materials realizing strong magne-
toelectric effects.
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