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A B S T R A C T

We discuss a method to determine both the group delay and the phase of a given pulse in the Fourier optics
domain. The proposal is based on the measurement of two intensity spectra, before and after a known quadratic
phase modulation. A simple analytical equation is then used to determine the group delay in one step. If
necessary, the spectral phase can be determined by simple spectral integration of the determined group delay.
The proposal is supported by various numerical results and an experimental measurement to prove the concept.
. Introduction

The electric field of an optical pulse can be described in the time
omain or in the frequency domain. In the frequency domain, it may be
f interest to know not only the intensity spectrum, but also the spectral
hase, which contains additional and complementary information. In
he Fourier representation of signals, the spectral magnitude and the
pectral phase play different roles and in some situations many of the
mportant features of a signal are preserved even if only the spectral
hase is retained [1–3]. This was illustrated by the following numerical
xperiment: two different images were Fourier transformed. The phases
f their Fourier transforms were swapped and then they were inverse
ourier transformed. Surprisingly, the images obtained were associated
ith the swapped phases and not with the correct magnitudes. This

imple numerical example shows that the spectral phase contains a con-
iderable amount of information. Moreover, under various conditions,
uch as when a signal is of finite duration, the phase information alone
s sufficient to reconstruct a signal to within a scale factor [4].

However, in a typical optical spectrum analyzer, only the intensity
pectrum is measured, and the spectral phase information is completely
ost. On the contrary, the spectral phase or its first-order derivative,
he group delay, can be obtained by more sophisticated methods such
s frequency-resolved optical gating (FROG) [5] or spectral phase
nterferometry for direct reconstruction of the electric-field (SPIDER)
6]. Although their efficiency is beyond question, both methods are
est suited for short or ultrashort light pulses above a certain power
hreshold. Later, it was proposed TADPOLE (Temporal Analysis, by
ispersing a Pair Of Light E-fields) for characterizing weak ultrashort

aser pulses [7], but still relying in a well-characterized and more
nergetic reference pulse by using a combination of FROG and spectral

∗ Corresponding author at: Instituto de Física Rosario (CONICET-UNR), Blvr. 27 de Febrero 210bis, S2000EZP, Rosario, Argentina.
E-mail address: cuadradolaborde@ifir-conicet.gov.ar (C. Cuadrado-Laborde).

interferometry. Finally, we should mention here also the dispersion
scan technique (d-scan) which also relies in a nonlinear effect, the
second harmonic generation [8].

The task of recovering a signal from its phaseless Fourier transform
amplitude is called Fourier phase recovery and appears in many differ-
ent branches of science [9]. In a few words, it could be expressed as
follows: although there is a clear Fourier transform relation between
the complex signal in the time and spectral domains, no such rela-
tion seems to exist for the intensities [10]. It is concluded that one
cannot expect to uniquely determine the phase in any domain from
the signal modulus in that domain. Various solutions have therefore
been proposed. One particularly successful solution is the Gerchberg–
Saxton algorithm (GSA) [11]. The GSA is an iterative algorithm for
determining the phase of a complex-valued signal from the intensity
waveforms in the time and Fourier domains. The algorithm starts by
proposing a random phase and repeatedly goes back and forth between
the two domains through the Fourier/anti-Fourier transforms, keeping
the phases and replacing the calculated amplitudes with the measured
ones to obtain the final phases in both domains. This iterative process
is of course time consuming and its results are also sensitive in some
cases to finding an educated guess for the initial phase.

In Ref. [12], we proposed a simple and fast procedure to obtain
the temporal phase profile of any light pulse by recovering the in-
stantaneous frequency. The proposal required only the measurement of
the temporal intensity waveforms before and after a given propagation
length with known group velocity dispersion. This proposal was used,
for example, in the first experimental measurement of the instantaneous
frequency profile of a dissipative resonant light pulse (DSR) [13]. Our
work could be considered as the temporal counterpart of the earlier
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work by Dorrer and Kang [14]. In that work, the authors derived an
expression relating the group delay to two intensity spectra, before and
after a known time squared phase modulation, from a small shear along
the frequency axis in the Wigner–Ville distribution [15,16]. However,
although the power of the Wigner–Ville distribution function is beyond
question, it is no less true that not all researchers working in this
area are sufficiently familiar with this formalism. In this article we
present a novel derivation of the group delay measurement method,
first proposed in Ref. [14]. Our derivation is relatively simple and
requires only modest handling of some fundamental properties of the
Fourier transform. Moreover, our experimental setup is specifically
designed for passively modelocked lasers, while in Ref. [14] it was
specifically designed for actively modelocked lasers, where a clock
signal is readily available.

In what follows, we provide a theoretical analysis of the problem
(Section 2). In Section 3, we test this proposal numerically under
several scenarios, including: the interrogation of the spectral phase
profile of a linearly chirped Gaussian pulse with and without noise,
the influence of the quadratic phase modulation factor, and the success
of phase interrogation for nonlinear chirps. In Section 4, we discuss the
results of a proof-of-concept experiment to recover the group delay of a
transform-limited soliton after a certain dispersive propagation. Finally,
in Section 5 we summarize the main conclusions of this work.

2. Theory

Suppose a given light pulse, which in the time domain can be
expressed as a one-dimensional complex signal 𝑓 (𝑡) = |𝑓 (𝑡)| exp [𝑗𝜑 (𝑡)];

hile in the spectral domain it can be expressed via the Fourier
ransform (ℑ) as 𝐹 (𝜔) = |𝐹 (𝜔)| exp [𝑗𝛷 (𝜔)], where 𝜔 is the baseband

angular frequency. In the Fourier domain, we can define the group
delay as the spectral derivative of the phase 𝑑𝛷(𝜔)∕𝑑𝜔 = 𝛷′(𝜔), which
can be written in terms of the signal itself as follows:

𝛷′ (𝜔) = Im
d ln𝐹 (𝜔)

d𝜔
= Im

𝐹 ′ (𝜔)
𝐹 (𝜔)

=
𝑗
2

[

𝐹 ′∗ (𝜔)
𝐹 ∗ (𝜔)

−
𝐹 ′ (𝜔)
𝐹 (𝜔)

]

(1)

where from now on the prime above a function indicates a spectral
derivative, while the asterisk denotes the complex conjugation. Thus
we obtain the following relation:

𝛷′ (𝜔) |𝐹 (𝜔)|2 =
𝑗
2
[

𝐹 ′∗ (𝜔)𝐹 (𝜔) − 𝐹 ∗ (𝜔)𝐹 ′ (𝜔)
]

. (2)

Let us now turn to a quadratic phase modulation, currently known
as the time lens l(t) [17,18], which can be expressed in the time and
frequency domains as follows:

𝑙 (𝑡) = exp
(

𝑗
2
𝜙20𝑡

2
)

ℑ
⟶ 𝐿 (𝜔) ∝ exp

(

−
𝑗
2
𝜔2

𝜙20

)

, (3)

where 𝜙20 is the quadratic phase modulation factor in rad × Hz2.
herefore, a given signal f (t) after a quadratic phase modulation can
e expressed in the time domain as follows:

𝜙20 (𝑡) = 𝑓 (𝑡) exp
(

𝑗
2
𝜙20𝑡

2
)

, (4)

here 𝑓𝜙20 (𝑡) is the quadratic phase modulated signal. In the spectral
omain, Eq. (4) can be expressed as a convolution as follows:

𝜙20 (𝜔) = ∫

∞

−∞
d𝜛𝐹 (𝜛) exp

[

−
𝑗
2
(𝜔 −𝜛)2

𝜙20

]

. (5)

Using Eq. (5) and after some algebraic manipulations, we can show
the following relation, which we will find very useful immediately
following:

𝜕𝐹𝜙20 (𝜔)
𝜕𝜙20

≅ −
𝑗
2
d2𝐹𝜙20 (𝜔)

d𝜔2
. (6)

Now, if you calculate the derivative of the quadratic modulus of the
quadratic phase-modulated spectrum respect to 𝜙20:

𝜕 ||
|

𝐹𝜙20
(𝜔)||

|

2

=
𝜕
[

𝐹 ∗
𝜙20

(𝜔)𝐹𝜙20
(𝜔)

]

=
𝜕𝐹 ∗

𝜙20
(𝜔)

𝐹𝜙 (𝜔) + 𝐹 ∗ (𝜔)
𝜕𝐹𝜙20

(𝜔)
, (7)
𝜕𝜙20 𝜕𝜙20 𝜕𝜙20
20 𝜙20 𝜕𝜙20

s

2

and substituting Eq. (6) in (7), this leads to:

𝜕||
|

𝐹𝜙20 (𝜔)
|

|

|

2

𝜕𝜙20
=

𝑗
2

[

𝐹𝜙20 (𝜔)𝐹
′′∗
𝜙20

(𝜔) − 𝐹 ∗
𝜙20

(𝜔)𝐹 ′′
𝜙20

(𝜔)
]

, (8)

hich can be easily converted to:

𝜕||
|

𝐹𝜙20 (𝜔)
|

|

|

2

𝜕𝜙20
=

𝑗
2

d
d𝜔

[

𝐹𝜙20 (𝜔)𝐹
′∗
𝜙20

(𝜔) − 𝐹 ∗
𝜙20

(𝜔)𝐹 ′
𝜙20

(𝜔)
]

(9)

Although the expressions between the square brackets in Eqs. (2)
nd (9) are different a priori, they can be made equal if 𝜙20→ 0. Since
n that case, the action of the time lens is null, see Eq. (3), therefore
𝐹𝜙20 (𝜔)

|

|

|𝜙20→0
= 𝐹 (𝜔), 𝐹 ′∗

𝜙20
(𝜔)||

|𝜙20→0
= 𝐹 ′∗ (𝜔), 𝐹 ∗

𝜙20
(𝜔)||

|𝜙20→0
= 𝐹 ∗ (𝜔),

nd 𝐹 ′
𝜙20

(𝜔)||
|𝜙20→0

= 𝐹 ′ (𝜔). Therefore:

′∗ (𝜔)𝐹 (𝜔) − 𝐹 ∗ (𝜔)𝐹 ′ (𝜔) =
[

𝐹𝜙20
(𝜔)𝐹 ′∗

𝜙20
(𝜔) − 𝐹 ∗

𝜙20
(𝜔)𝐹 ′

𝜙20
(𝜔)

]

|

|

|

|𝜙20→0
. (10)

Thus, by combining Eqs. (2) and (9) and considering Eq. (10), we
btain:

d
[

𝛷′ (𝜔) |𝐹 (𝜔)|2
]

d𝜔
=

𝜕 ||
|

𝐹𝜙20 (𝜔)
|

|

|

2

𝜕𝜙20

|

|

|

|

|

|

|𝜙20→0

. (11)

This equation links the variations in spectral intensity due to
quadratic modulation to spectral intensity and phase, and could be
considered the spectral counterpart of the well-known transport-of-
intensity equation. Finally, integrating over 𝜔 in Eq. (11), yields:

𝛷′ (𝜔) |𝐹 (𝜔)|2 = ∫

𝜔

−∞

𝜕||
|

𝐹𝜙20 (𝜛)||
|

2

𝜕𝜙20

|

|

|

|

|

|

|𝜙20→0

𝑑𝜛, (12)

hich can be easily transformed into:

′ (𝜔) = 1
|𝐹 (𝜔)|2 ∫

∞

−∞

𝜕||
|

𝐹𝜙20 (𝜛)||
|

2

𝜕𝜙20

|

|

|

|

|

|

|𝜙20→0

𝐻 (𝜔 −𝜛) 𝑑𝜛, (13)

here H(.) is the Heaviside step function. Eq. (13) is the main result of
his work, and states that the group delay of the signal can be obtained
y convolving the derivative of the spectral signal intensity by the
uadratic phase modulation factor 𝜙20 with the Heaviside step function.
q. (13) is essentially the same as the equation first derived by Dorrer
nd Kang, see Eq. (5) in Ref. [14], although in this case was obtained by
simpler route. Moreover, this equation can be viewed as the spectral

ersion of the general formulation first derived by Bastiaans and Wolf
or unitary canonical transformations [19]. Finally, the phase in the
pectral domain can be obtained by simply integrating the angular
requency; i.e.:

(𝜔) = ∫

𝜔

−∞
𝛷′ (𝜛) 𝑑𝜛 (14)

Regarding the derivation of the quadratic phase-modulated intensity
pectrum, see Eq. (13), we propose the following approximation:

𝜕||
|

𝐹𝜙20 (𝜔)
|

|

|

2

𝜕𝜙20

|

|

|

|

|

|

|𝜙20→0

≈
|

|

|

𝐹𝜙20 (𝜔)
|

|

|

2
− |𝐹 (𝜔)|

2

𝜙20

|

|

|

|

|

|

|

|𝜙20→0

, (15)

.e., we replace the computation of the derivative by a finite difference.
f course, the approximation given by Eq. (15) improves when the
hase modulation factor 𝜙20 approaches zero. Experimentally, how-
ver, we have to find a compromise between using a low 𝜙20 value on
he one hand and a good signal to noise ratio in the signal difference
n the other hand, see Eq. (15). For a detailed discussion on the use
f phase modulators as time lenses with practical implications, see the
efs. [20,21]. Finally, we emphasize the ability of this technique to
haracterize low power signals, due to the high sensitivity and dynamic
ange of standard optical spectrum analyzers required to measure both
ignal spectra in Eq. (15) (typically above −75 dBm).
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Fig. 1. (a) Intensity spectrum of the tested pulse (green solid curve), intensity spectrum of the pulse after quadratic phase modulation (blue dashed curve), and the difference
between them (red dotted curve). (b) Phase retrieved with 𝜙20 = 1.24 × 1019 rad ×Hz2, 2×𝜙20, and 1/2×𝜙20, compared to the theoretical phase; the shaded region covers 90% of
he spectral tested pulse.
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. Numerical results

In this section we will focus on the aspects of the technique that
ere not covered in Ref. [14], in particular the recovery of non-square
hase profiles and the robustness of this technique in the presence of
oise. To test the performance of this proposal, we first numerically
imulated the spectral phase retrieval of a linearly chirped hyperbolic
ecant pulse. We chose this waveform, because it occurs naturally in
he context of mode-locked lasers. The optical field associated with this
ulse can be expressed in the time domain as follows:

(𝑡) = sech
(

𝑡
𝑇0

)

exp

(

−
𝑗𝐶𝑡2

2𝑇 2
0

)

, (16)

where 𝑇0 is the half-width at the 1/e value of peak intensity, as-
sociated with 𝑇FWHM, the full-width at half-maximum (FWHM), by
𝑇FWHM ≅1.763𝑇0; and C is a dimensionless chirp parameter. Numerical
calculations were performed in a time window of 20.47 ns with 211

points equally spaced, resulting in a sampling time of 10 ps. Fig. 1(a)
shows the Fourier transform in intensity, i.e. |𝐹 (𝜔)|2, of the pulse given
by Eq. (16) with 𝑇FWHM = 500 ps and 𝐶 = 5. This figure also shows
the spectrum of the pulse after phase modulation, i.e. ||

|

𝐹𝜙20 (𝜔)
|

|

|

2
, with

𝜙20 = 1.24 × 1019 rad × Hz2, and the signal difference between the two,
i.e. ||

|

𝐹𝜙20 (𝜔)
|

|

|

2
− |𝐹 (𝜔)|2, which is important for phase determination,

see Eq. (15). Fig. 1(b) shows the phase recovery in the Fourier domain
by using Eq. (14), with the help of Eqs. (13) and (15). For comparison
purposes, the theoretically calculated phase in the spectral domain
of the input light pulse is also shown, i.e. 𝛷(𝜔). As you can see,
both profiles are in complete agreement within the shaded region that
encompasses 90% of the tested spectral pulse power. Finally, to show
the sensitivity of this technique when the phase modulation factor is
changed, we show in the same figure two other phase profiles obtained
with a different phase modulation factor 𝜙20, i.e. double and half the
value used before. As you can see, there are no significant differences
between them. However, it is clear that a phase modulation factor
high enough should be used to produce a signal difference above the
measurement noise.

We also test the robustness of this technique by simulating additive
and independent white noise before and after the quadratic phase
 r

3

modulation, i.e., in |𝐹 (𝜔)|2 and |

|

|

𝐹𝜙20 (𝜔)
|

|

|

2
. In Fig. 2, we show the

group delay directly recovered using Eq. (13) with the unsmoothed
data for a signal-to-noise ratio (SNR) of 15 dB and 10 dB compared
to the theoretical group delay [the other parameters are the same as
in Fig. 1(a)]. Just as an example, we show also the signal difference at
the SNR of 10 dB, see Fig. 2(b). As you can see, the group delay can
be satisfactorily recovered despite the strong presence of noise. This
synergistic robustness to intensity noise is related to both the inherent
low-pass behavior of the integral and the replacement of the original
derivative by a finite difference [see Eqs. (13) to (15)]. Of course, the
spectral phase can be recovered as usual using Eq. (14). It is important
to emphasize that a temporal mismatch between the pulse peak and
the quadratic phase modulation in the time lens does not have a major
impact [22], since it only causes a spectral shift in both the group
delay and the spectral phase, which can subsequently be corrected
numerically.

We conclude this section by demonstrating the applicability of this
technique to a different phase profile. To this end, we simulated the
recovery of the group delay of a noiseless super-Gaussian pulse defined
by:

𝑓 (𝑡) = exp

(

−
(1 + 𝑗𝐶)

2
𝑡2𝑚

𝑇 2𝑚
0

)

, (17)

where m is the edge sharpness parameter, C is the chirp parameter,
and 𝑇0 is related to the rise time 𝑇𝑟 (which in turn is defined as the
duration during which the intensity increases from 10% to 90%), by
𝑇𝑟 = 𝑇0/m [23]. Fig. 3(a) shows the Fourier transform of the intensity,
i.e., |𝐹 (𝜔)|2, of the pulse given by Eq. (17), with 𝑇FWHM = 500 ps,
𝐶 = 5, and 𝑚 = 3. This figure also shows the spectrum of the pulse after
hase modulation, i.e. ||

|

𝐹𝜙20 (𝜔)
|

|

|

2
, with 𝜙20 = 2.48 × 1019 rad × Hz2,

and the signal difference between the two; i.e. |

|

|

𝐹𝜙20 (𝜔)
|

|

|

2
− |𝐹 (𝜔)|2,

hich is essential for phase recovery, see Eq. (15). Fig. 3(b) shows
he recovered phase using Eq. (14) with the help of Eqs. (13) and
15). For comparison, the theoretically calculated phase in the spectral
omain of the input light pulse is also shown; i.e. 𝛷(𝜔). Even in this
ore complex case of nonlinear chirp, a reasonable degree of similarity

etween the two profiles is observed, especially within the shaded
egion that includes 80% of the tested spectral pulse power.
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Fig. 2. (a) Recovered group delay in the presence of noise for the Gaussian chirped pulse analyzed in Fig. 1(a), when the SNR = 15 dB and 10 dB, compared with the recovered
group delay without noise and the theoretical group delay. (b) Spectral signal difference used to recover the group delay, see Eq. (15), when the SNR is 10 dB.
Fig. 3. (a) Intensity spectrum of the tested noiseless super-Gaussian chirped pulse (green solid curve), intensity spectrum of the pulse after quadratic phase modulation (blue
ashed curve), and the difference between them (red dotted curve). (b) Spectral phase of the super-Gaussian chirped pulse compared to the theoretical phase (blue solid curve
nd solid scatter points, respectively). The shaded region covers 80% of the tested spectral pulse power.
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. Experimental results

In Fig. 4, we show the group delay (and/or the spectral phase)
easurement setup which we used in the following proof-of-concept

xperiment. We have built a fiber-ring laser with nonlinear polarization
otation mode-locking emitting at ∼1560 nm with a frequency of
60 kHz. The details of this laser can be found in Ref. [24]. Next, we
sed an optical spectrum analyzer to measure the intensity spectrum
f the pulse under test, i.e. |𝐹 (𝜔)|2, using a 50/50 fiber optic coupler.
n the other hand, we also measured the intensity spectrum of the
uadratically phase modulated signal |

|

|

𝐹𝜙20 (𝜔)
|

|

|

2
. We used an electro-

ptic phase modulator (EO PM) (LiNbO3, 12 GHz bandwidth) as a
ime lens. This EO PM was driven by an ultra-high-speed electrical
ulse generator able to provide electric pulses at a maximum repetition
ate of 1 MHz, a maximum voltage of 10 V (at 50 Ω), and with a
inimum pulse width of 200 ps. This electrical pulse generator was

n turn triggered by the same output light pulses from the laser under
est via a photodetector. The tandem of ultra-high-speed electrical pulse
enerator/digital delay/pulse generator was necessary to synchronize
he phase modulation with the passage of the light pulse under test
4

hrough the modulator. This time synchronization was possible using
he oscilloscope also shown in the figure, by selecting the time de-
ay until the two signals overlap on the screen. For this reason we
eed the phase modulator with an ultrashort electrical pulse generator
ather than a sinusoidal signal. It is also important to note that the
nergy of both spectra should be equalized before applying Eqs. (13)
o (15), since this type of transformation preserve the signal energy.
ortunately, it is not necessary to experimentally equalize the energy
f the signals, since both operations can be more easily performed
n the numerical stage. In contrast to the time-domain counterpart,
here the time delays between pulse’ profiles may need to be corrected
umerically [12], here a spectral shift should not be present a priori,

since the laser emits at a fixed central wavelength. It should be noted
that Fig. 4 purports that both spectra, |𝐹 (𝜔)|2 and |

|

|

𝐹𝜙20 (𝜔)
|

|

|

2
, could

be measured simultaneously, which is not possible with our setup
because the available optical spectrum analyzers (OSAs) usually have
only one optical input. Therefore, both spectral measurements must be
performed sequentially. In this case, there is a possibility of a small
spectral shift between the spectral measurements (typically on the
order of the OSA wavelength accuracy, i.e., 10 pm). However, if some
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a

Fig. 4. Experimental setup, where OC: 50/50 optical couplers, EO PM: electro-optical phase modulator, solid curves: optical fibers, and dashed lines: electrical connections.
Fig. 5. (a) Measured intensity spectra of the tested pulse before and after quadratic phase modulation and the signal difference between them. (b) Determined spectral group
delay and theoretical group delay according to Eq. (18). (c) Phase recovered by the proposed technique as compared with the theoretically determined. The shaded area focuses
90% of the tested spectral input power.
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spectral shift is required to align the spectra, this can be done in the
numerical step. Finally, as we have shown in the previous section, this
system proved to be robust to the presence of noise, the use of different
phase modulation factors, or a temporal mismatch between the pulse
peak and the quadratic phase modulation in the time lens. Therefore,
we will focus on the main aspect of this proof-of-concept experiment
in the following.

We chose this particular laser configuration because it can generate
a low-repetition-rate of soliton pulses depending on the pump power
and the position of the fiber-paddle polarization control located in the
resonator [24]. It is well known that a soliton is transform limited,
i.e., there is a constant group delay in its optical spectrum, namely
𝛷′(𝜔) = 0. However, if we propagate these pulses along a delay line
with certain length z and a certain dispersion parameter 𝛽20, these light
pulses will acquire a nonzero group delay given by:

𝛷′ (𝜔) = −𝛽20𝑧
(

𝜔 − 𝜔0
)

; (18)

which is given by Fourier transform of Eq. (3.2.9) in Ref. [23], where
(𝜔−𝜔0) is the baseband angular frequency and 𝜔0 is the central optical
frequency of emission. Therefore, we propagate transform-limited soli-
tons with a full-width at half-maximum of 0.92 ps at 960 kHz over a 3.2
km delay line (SMF28 optical fiber) with a group velocity dispersion of
−22.2 ps 2/km at 1564.3 nm. The electric pulses produced by the ultra-
high-speed electrical pulse generator were at the same repetition rate
of the laser under test (960 kHz), with a peak voltage of 6.5 V (at 50
𝛺), and with a pulse width of 230 ps. By fitting the electrical impulse
used to drive the quadratic phase modulator to the time squared phase
response given by Eq. (3), and considering the 𝑉𝜋 of the EO PM, we
estimated a 𝜙20≅5.4×1020 rad × Hz2. Fig. 5(a) shows the measured
spectra before and after the quadratic phase modulation, i.e. |𝐹 (𝜔)|2

nd |𝐹 𝜔 |

2
, respectively, as well as the signal difference |𝐹 𝜔 |

2
−
|

|

𝜙20 ( )|
|

|

|

𝜙20 ( )|
|

5

𝐹 (𝜔)|2. Fig. 5(b) show the recovered group delay compared to the
heoretical group delay given by Eq. (17); while in Fig. 5(c) we show
he recovered spectral phase, obtained by using Eq. (14), as compared
o the theoretical phase. In both cases, there is a reasonable level of
greement between the two profiles when |𝜔−𝜔0|≤3 rad × GHz, which
ocuses 90% of the tested spectral input power.

. Conclusions

We have discussed here a method to determine both the group delay
nd the phase of a given pulse in the Fourier optics domain. We first
ederived a theoretical relationship between the group delay/phase and
he spectral intensities before and after a given quadratic phase mod-
lation, which provides a simpler route based on basic properties of
he Fourier transform. The proposal is supported by several numerical
esults and a proof-of-concept experiment, with particular attention
aid to the robustness of this technique by simulating additive and
ndependent white noise.
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