Corrigendum

Classification of abelian complex structures on six-dimensional Lie algebras
 (J. London Math. Soc. 83 (2011) 232-255)

A. Andrada, M. L. Barberis and I. Dotti

It has been pointed to us by E. Rodríguez Valencia that the complex structures J_{t}^{1} and J_{t}^{2} on the Lie algebra \mathfrak{n}_{4}, appearing in Theorem 3.3, are in fact equivalent. These structures are introduced in the proof of Theorem 3.2, which is used later in the paper to determine the moduli spaces of abelian complex structures. However, in that proof, statement $\left(J^{2}\right)$ is in fact impossible, since it implies that the Lie algebra \mathfrak{g} is abelian. Indeed, if $\operatorname{ker}\left(\left.\operatorname{ad}_{x}\right|_{\mathfrak{v}}\right)$ were J-stable for any $x \in \mathfrak{v}$, then we would have $[x, J x]=0$ for any $x \in \mathfrak{g}$. Therefore, for any $x, y \in \mathfrak{g}$,

$$
0=[x+y, J(x+y)]=[x, J y]+[y, J x]=2[x, J y],
$$

and this implies that \mathfrak{g} is abelian, which is a contradiction. So, we are reduced to case $\left(J^{1}\right)$, and as a result, one obtains only one family of abelian complex structures on \mathfrak{n}_{4}, up to equivalence.

Therefore, the correct statement of Theorem 3.3 is as follows, where the complex structure J_{t} in (iv) below stands for J_{t}^{1} of the previous version.

Theorem 0.1. Let \mathfrak{n} be a six-dimensional nilpotent Lie algebra with an abelian complex structure J. Then (\mathfrak{n}, J) is holomorphically isomorphic to one and only one of the following:
(i) $\left(\mathfrak{n}_{1}, J\right)$, with its unique complex structure: $J e_{1}=e_{2}, J e_{3}=e_{4}, J e_{5}=e_{6}$;
(ii) $\left(\mathfrak{n}_{2}, J_{ \pm}\right)$, with $J_{ \pm} e_{1}=e_{2}, J_{ \pm} e_{3}= \pm e_{4}, J_{ \pm} e_{5}=e_{6}$;
(iii) $\left(\mathfrak{n}_{3}, J_{s}\right)$, with $J_{s} e_{1}=e_{2}, J_{s} e_{3}=e_{4}, J_{s} e_{5}=s e_{5}+e_{6}, s \in \mathbb{R}$;
(iv) $\left(\mathfrak{n}_{4}, J_{t}\right)$ with $J_{t} e_{1}=e_{3}, J_{t} e_{2}=e_{4}, J_{t} e_{5}=t e_{6}, t \in(0,1]$;
(v) $\left(\mathfrak{n}_{5}, J\right)$ with $J e_{1}=e_{2}, J e_{3}=-e_{4}, J e_{5}=e_{6}$;
(vi) $\left(\mathfrak{n}_{6}, J\right)$, with $J e_{1}=e_{2}, J e_{3}=-e_{6}, J e_{4}=e_{5}$;
(vii) $\left(\mathfrak{n}_{7}, J_{t}\right)$ with $J_{t} e_{1}=e_{2}, J_{t} e_{3}=-e_{4}, J_{t} e_{5}=t e_{6}, 0<|t| \leqslant 1$.

Accordingly, the moduli space of abelian complex structures on \mathfrak{n}_{4} is connected and given by

$$
\mathcal{C}_{a}\left(\mathfrak{n}_{4}\right) / \operatorname{Aut}\left(\mathfrak{n}_{4}\right) \cong(0,1] .
$$

[^0]A. Andrada, M. L. Barberis and I. Dotti FaMAF-CIEM
Universidad Nacional de Córdoba
Ciudad Universitaria
5000 Córdoba
Argentina
andrada@famaf.unc.edu.ar
barberis@famaf.unc.edu.ar
idotti@famaf.unc.edu.ar

[^0]: Received 19 December 2011; revised 22 March 2012; published online 12 November 2012. 2010 Mathematics Subject Classification 17B30 (primary), 53C15 (secondary).

