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An alternative definition to the main frequency of an ultrashort laser pulse, named principal frequency
(ωP), was recently introduced in E. G. Neyra et al. [Phys. Rev. A 103, 053124 (2021)], resulting in a more
transparent description of the nonlinear dynamics of a system driven by this coherent source. In this paper, we
extend the definition of ωP incorporating the spectral phase of the pulse. This upgraded definition allow us to
deal with superoscillatory pulses as well as to characterize subcycle pulses with a complex spectral content.
Simultaneously, we study the nonlinear interaction between a few-cycle superoscillatory pulse with a gaseous
system, analyzing the spectral characteristics of the fundamental, third, and fifth harmonics. Here, we make
use of an ab initio quantum mechanical approach, supplemented with a wavelet analysis. We show that the
spectral characteristics of the low-order harmonics are very well explained in terms of ωP, as well as the effective
bandwidth of the superoscillatory pulse. Our findings reinforce previous results that showed an increase of the
effective bandwidth in the superoscillatory region and the possibility to generate unique frequencies by a linear
synthesis. We thus open not only perspectives in ultrafast optics, exploring pathways toward the generation of
fully tunable strong and short coherent sources, but also discuss possible extensions of the concepts presented
here to other wave phenomena that can be found in acoustics, signal processing, and quantum mechanics.

DOI: 10.1103/PhysRevResearch.4.033254

I. INTRODUCTION

The possibility to create and manipulate few-cycle ultra-
short laser pulses in the visible, infrared, and XUV spectral
ranges has led to numerous studies in the field of laser-matter
interaction, where this type of pulse finds diverse applications
[1–4]. For instance, the interest in these pulses covers different
topics, including the manipulation of the quantum properties
of physical systems [5–7], the study of the temporal dynamics
of the chemical reactions [8,9], and the laser-matter interac-
tion in the strong-field regime [10].

Since the amplitude of the electric field varies within
an optical cycle, the nonlinear matter interaction processes
driven by few-cycle laser pulses are strongly dependent
on the carrier-envelope phase. This quantity plays an in-
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strumental role in, for example, the high-order harmonic
generation (HHG) phenomenon. This matter has been widely
studied since the early days (see, e.g., Ref. [11] and refer-
ences therein). Beyond this fact, we have recently showed
in Ref. [12] that, in the few-cycle regime, the frequency that
dominates the nonlinear matter interactions undergoes a small
shift to frequencies higher than the carrier frequency of the
pulse, ω0, usually considered the main frequency to describe
every nonlinear phenomena. This shift in the value of the
main frequency is well represented by the so-called principal
frequency, ωP, a concept introduced in our previous work.
According to its definition, ωP corresponds to an increase with
respect to the carrier frequency that depends on the bandwidth
�ω of the given pulse, i.e., ωP = ωP(ω0,�ω).

On the other hand, recently there has been a great deal
of interest in the study of the low-order harmonics genera-
tion (LHG). Here, the so-called near-threshold harmonics can
be considered the most relevant ones. Their significance lies
principally in the possibility to generate coherent light sources
with a high repetition rate and efficiency [13,14]. While HHG
is a well-understood phenomenon, the theoretical descrip-
tion of LHG is rather more complicated and not exempt of
controversies [15,16]. Generally, it can be thought that the
LHG can be explained by invoking the perturbation theory,
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meanwhile the usual HHG can be described by applying semi-
classical arguments, e.g., HHG is well understood employing
the three-step model [17]. When comparing with experimental
measurements, however, one finds that it is difficult to give a
solid theoretical description for the LHG. First, perturbation
theory is unsuitable when the driving laser is sufficiently
intense. Second, due to the important roles played by both
the Coulomb potential and the bound excited states, methods
such as the strong field approximation, which (i) neglects the
Coulomb potential in different parts of the description and (ii)
only takes into account the ground state of the system, cannot
be directly used to describe the LHG. Thus, full quantum
mechanical models, jointly with those where the Coulomb
potential is included, appear to be the most suitable ones to
theoretically describe the underlying physics behind the LHG
[18,19].

In parallel, the phenomenon of superoscillations, math-
ematically described by a band-limited function that can
oscillate, locally, with a frequency higher than the highest
frequency of its Fourier spectrum [20,21], has raised a great
deal of physical and mathematical interesting and intriguing
implications [22–28]. Indeed, in Ref. [29], we have shown
that the superoscillatory (SO) phenomenon is also represented
by laser pulses with a superbandwidth. When applied to a
two-level system, and within the time window where the
superoscillation occurs, these pulses exhibit an effective band-
width broader than the one fixed by the Fourier transform,
which can open unique ways in coherent control [30,31] or
in ultrafast spectroscopy.

In this paper, we start by extending the definition of the
principal frequency, ωP, to take into account the spectral phase
of the pulse, �(ω). We show that this upgraded definition
gives a more appropriate description of the main spectral
contribution of SO pulses. In addition, we show that the
same definition also allows a clearer description of the main
frequency of subcycle pulses, with a very complex spectral
content, like the one synthesized in Refs. [32,33]: The so-
called optical attosecond pulses or field transients. Finally,
we numerically study the bound-electron nonlinear response
of a gaseous system driven by a SO pulse, which can be im-
plemented by means of an interferometric system. The study
is carried out through the one-dimensional time-dependent
Schrödinger equation (1D-TDSE) in an hydrogen atom. In
particular, the spectral characteristics of the fundamental,
third, and fifth harmonics, in the temporal window where
the pulse is SO, were obtained through a wavelet analysis,
from which we can conclude that the spectral features of
these harmonics, i.e., their bandwidth and main frequency, are
very well explained in terms of the superbandwidth of the SO
pulses and the extended definition of the principal frequency.

II. PRINCIPAL FREQUENCY

We start by briefly discussing the alternative definition of
the main frequency of an ultrashort laser pulse that we intro-
duced in Ref. [12]. Let us take the time-dependent electric
field E (t ) of such a pulse, and its complex representation
in the frequency domain Ẽ (ω) = F[E (t )] = |Ẽ (ω)|ei�(ω)eiφ ,
given by the Fourier transform F , where |Ẽ (ω)| and �(ω)
are the spectral amplitude and phase, respectively, and φ is a

global phase. That frequency, which we have called the princi-
pal frequency and denoted as ωP, is defined by the expression

ωP =
∫

ω2S(ω)dω∫
ωS(ω)dω

, (1)

where S(ω) = |Ẽ (ω)|2 is the spectral power. Equation (1) can
be seen as the mean of the spectral content of the laser pulse,
weighted with a particular density function, ρP(ω) = ωS(ω).
In our previous work [12], we have shown that ωP is related
with the position of the maxima of E (t ), while the standard

definition of the main frequency ω0 =
∫

ωS(ω)dω∫
S(ω)dω

[34], is re-
lated with its zeros. This means that ωP will offer a better
description of the laser-matter interaction in the nonlinear
regime, where the response of the system is led by some power
of the peak field amplitude, (E0)n. However, a nonzero value
of the difference ωP − ω0 can only be observed in the few-
cycle pulse regime, where the envelope of the field changes
significantly in an optical cycle. Furthermore, this difference
becomes even larger for single-cycle and subcycle pulses (the
latter are also called field transients).

It is evident that the definitions of both ω0 and ωP only
take into account the spectral power S(ω) of the pulse and
neglects its spectral phase �(ω), which may be relevant in
many cases. In particular, in the SO phenomenon, which has
an interferometric origin, the �(ω) becomes instrumental. In
this context, we introduce here an extended version of the
principal frequency ωP, by considering in Eq. (1) the field
Ẽ (ω) itself instead of the spectral power S(ω),

ωP�
≡

∫
ω2|Ẽ (ω)|ei�(ω)dω∫
ω|Ẽ (ω)|ei�(ω)dω

, (2)

where the global phase φ was trivially canceled as it does not
depend on ω. Hence, we can understand the term ρP�

(ω) =
ω|Ẽ (ω)|ei�(ω) in Eq. (2) as a modified density function with
respect to the one originally defined by Eq. (1), which is now
a complex-valued function. Consequently, ωP�

becomes also
a complex quantity.

In the following, we apply this definition of the principal
frequency ωP�

to some examples of SO functions as well as to
describe the main frequency of an optical attosecond pulse.

A. Super-oscillatory functions

As a first example, we analyze one of the best-known SO
functions, exhaustively studied in Refs. [20,21] and experi-
mentally synthesized in an ultrashort laser pulse in Ref. [35].
That SO field is described by the expression

E1(t ) = E0

[
cos(

ω f t

N
) + ia sin(

ω f t

N
)
]N

eiφ, (3)

where N is a positive integer, a is a real value greater than 1,
and ω f is the limit frequency of the Fourier spectrum, i.e., the
frequency of the field when {N, a} → {1, 1}. For simplicity, in
the following we normalize the amplitude of the field, setting
its maximum value at E0 = 1. The SO behavior is given by
the fact that E1(t ) ≈ eiaω f t , when N � 1 and for values of
|ω f t |/

√
N small enough, that is, in the central region, E1(t )

oscillates with a frequency ωSO = aω f > ω f .
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FIG. 1. Comparison between the SO pulse E1(t ) (blue line) and
sine waves of frequencies ωSO (green dashed line) and ωP1�

(red
dashed line) in the SO region (the central part of the pulse). In the
inset plot, we show the real part of E1(t ) over several optical cycles
(2π/ω f ) of the sine waves for setting values a = 20 and N = 15.

In the frequency domain, the expression in Eq. (3) is a sum
of Dirac delta functions:

Ẽ1(ω) = eiφ
N∑

j=0

Cj (N, a) × δ(ω − ω j (N )), (4)

where the discrete frequencies are given by ω j (N ) =
(1 − 2 j

N )ω f , with Fourier coefficients Cj (N, a) =
(N

j )( 1+a
2 )N− j ( 1−a

2 ) j . Then, the frequency ωP�
defined by

Eq. (2) can be written as

ωP1�
(N, a) =

∑N
j=0 ω j (N )2Cj (N, a)∑N
j=0 ω j (N )Cj (N, a)

, (5)

resulting in

ωP1�
(N, a) =

[
1 + a2(N − 1)

aN

]
ω f . (6)

This expression converges to ωSO when N → ∞. Even more,
for finite N values, we can numerically demonstrate that
ωP1�

(N, a) allows us to describe the shape of the field in the
SO region and localize its peak values (maxima and minima)
in a better way than ωSO. This can be observed in Fig. 1, where
we show the real part of the field E1(t ) for φ = π/2, a = 20,
and N = 15, and a zoomed image of the SO region where,
for comparative purposes, we also plotted the harmonic waves
oscillating at the SO frequency ωSO (Re[eiaω f t eiφ]) and at the
frequency ωP1�

(Re[eiωP1�
t eiφ]). It should be noted, however,

that the position of the zeros of E1(t ) are best described by
ωSO. A more complete analysis for different values of param-
eters a and N can be found in the Appendix.

As a second example, we study the SO functions proposed
to obtain subdiffractive Gaussian beams and sub-Fourier ultra-
short Gaussian pulses, which, as shown in Refs. [36,37], can
be obtained by means of simple interferometric techniques. In
the time domain, these SO pulses are the result of the interfer-
ence between an ultrashort Gaussian pulse, characterized by
a central frequency ωC and a bandwidth �ω2, and the same
pulse modified by a quadratic phase or a Gaussian filter [36].

In the first case, a pulse ẼG(ω) = e−( ω−ωC
�ω2

)2

is the input of
a Michelson interferometer, with a dispersive media in one
of its arms, which introduce a quadratic phase (chirp) to the
electric field traveling in that path. After being recombined
into a beam splitter with the pulse that travels without modi-
fication, we can write the resulting SO field, in the frequency
domain, as

Ẽ2(ω) = e−( ω−ωC
�ω2

)2

(1 + α2eiθ (α2,β2 )eiβ(ω−ωC )2
)eiφ. (7)

Here, the value of α2 indicates the relative amplitude between
the pulses in each arm of the interferometer, while β2 is the
quadratic chirp parameter. The condition of purely destructive
interference, necessary to obtain SO pulses, can be achieved
by controlling α2 and β2, and as a consequence, the phase
θ = θ (α2, β2) [36].

For the pulse defined in Eq. (7), the exact analytical expres-
sion of ωP�

is given by

ωP2�
= ωC

(
1 + �ω2

2

2ω2
C

)
�(β2,�ω2) + α2 e−iθ̃ (α2,β2 )

(
1 − i�ω2

2

2ω2
C�(β2,�ω2 )2

)
�(β2,�ω2) + α2 e−iθ̃ (α2,β2 )

, (8)

with θ̃ (α2, β2) = θ (α2, β2) + π
4 and �(β2,�ω2) =√

β2�ω2
2 − i. It is important to note that, when α2 → 0,

Ẽ2(ω) approaches the initial Gaussian pulse ẼG(ω),
and ωP2�

→ ωC[1 + 1
2 ( �ω2

ωC
)2], which coincides with the

expression that is obtained from the original definition of the
principal frequency ωP [Eq. (1)] introduced in Ref. [12], that
does not consider the spectral phase of the field.

Alternatively to the previous interferometric system, a SO
ultrashort pulse in the few-cycle regime can be synthesized
by introducing a filter with a rectangular spectral response
in one of the arms of the interferometer, whose input is a
sinclike pulse, instead of a Gaussian pulse with a Gaussian
filter (see, e.g., Ref. [36]). As a consequence, in the fre-
quency domain, the resulting SO pulse is described by the

expression

Ẽ3(ω) =
[

rect
(ω − ωC

�ω3

)
− α3 rect

(
ω − ωC

β3�ω3

)]
eiφ, (9)

where the initial pulse is represented by a rectangle function
centered at the frequency ωC , with a bandwidth �ω3, i.e.,
ẼS (ω) = rect( ω−ωC

�ω3
). In Eq. (9), α3 represents the relative

amplitude between the pulses that travel through the different
arms of the interferometer, just like in the previous inter-
ferometric scheme, while the parameter β3 (0 < β3 < 1) is
now the filtering parameter. In this case, the purely destruc-
tive interference condition is easily reached introducing a π

phase between the arms of the interferometer. Therefore, by
following the definition in Eq. (2), we can see that ωP�

is now
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FIG. 2. Comparison between the SO pulses (blue solid lines) E2(t ) (a) and E3(t ) (b), and sine waves at the corresponding frequencies ωPi�

(red dashed lines) and ωC (green solid lines), respectively. In the left panels, the real part of these fields (Re[Ei(t )], Re[eiωPi� t ei π
2 ], Re[eiωCt ei π

2 ])
are plotted over several optical cycles (2π/ωC) of the sine waves, while in the right panels a zoom over the SO region is depicted.

given by

ωP3�
= ωC

[
1 + 1

12

(
�ω3

ωC

)2(
α3β

3
3 − 1

α3β3 − 1

)]
. (10)

Also in this case, when α3 → 0 we recover the expression
for ωP, i.e., ωP3�

→ ωP3 = ωC[1 + 1
12 ( �ω3

ωC
)2],when Ẽ3(ω)

approaches ẼS (ω) [12].
The SO behavior of both pulses, Ẽ2(ω) and Ẽ3(ω), be-

comes clear in the time domain. By Fourier transforming back
Eq. (7), we obtain the time-dependent description of Ẽ2(ω),

E2(t ) =
(

e− 1
4 (�ω2t )2 + α2(

1 + β2
2

)1/4 e
− 1

4(1+β2
2 )

(�ω2t )2

ei�(t )

)

× eiωCt eiφ, (11)

with the time-varying phase �(t ) = β2

4(1+β2
2 )

t2 −
1
2 arctan (β2) + θ . Analogously, from Eq. (10), we obtain
the time-dependent description of Ẽ3(ω) as a sum of sinc
functions with different temporal widths and amplitudes:

E3(t ) =
[

sinc

(
�ω3t

2

)
− α3β3 sinc

(
β3�ω3t

2

)]
eiωCt eiφ.

(12)
Thus, E2(t ) and E3(t ) superoscillate around t = 0 when the
difference between the amplitudes of the interfering fields,
i.e., the original pulse that enters the interferometer and the

pulse that is broadening in one of its branches, becomes
small. This implies that α2

(1+β2
2 )1/4 → 1 in the case of E2(t ),

and α3β3 → 1 in the case of E3(t ). In addition, in this central
temporal region, the amplitudes of E2(t ) and E3(t ) decrease
as (1 − α2

(1+β2
2 )1/4 ) and (1 − α3β3), respectively. For example,

in the synthesis of E3(t ), if the filtering parameter is chosen as
β3 = 0.5, the temporal full width at half maximum (FWHM)
of the pulse in the SO region approaches zero when α3 → 2,
while ωP3�

→ ∞. As expected, this will be accompanied by
a significant reduction in the amplitude of the field: In fact,
in that limit, the field amplitude decreases down to zero. A
full theoretical description of this phenomenon was done in
Ref. [36].

In Fig. 2, we show the real part of E2(t ) and E3(t ) for
the set of parameters φ = π/2, �ω2 = 1, α2 = 2.24, β2 =
5, and �ω3 = 4, α3 = 1.95, β3 = 0.5, respectively. In these
cases, we compare each SO pulse with harmonic waves os-
cillating at the corresponding frequency ωPi� (Re[eiωPi� t eiφ])
and at the central frequency ωC (Re[eiωCt eiφ]). In particular,
because ωP2�

results in a complex value, we have plotted
Re[eiRe[ωP2�

]t eiφ] instead of Re[eiωP2�
t eiφ]. Although we have

not yet reached a final conclusion about the physical meaning
of Im[ωP2�

], its value is very small in relation to Re[ωP2�
]

and its effect can be considered, to the first order, negligible.
Thus, in the SO region a perfect description of E2(t ) and E3(t )
is obtained through monochromatic fields with frequencies
Re[ωP2�

] and ωP3�
, respectively.
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FIG. 3. Comparison between the principal period TP ≡ Re[ 2π

ωP�

]

(dashed black lines) and twice the distance between a maximum and
its adjacent minimum in the SO region, Tm (red lines), as a function of
the SO parameters for (a) E1(t ), (b) E2(t ), and (c) E3(t ). The values
are normalized with respect to the period Tf = 2π

ω f
in the first case

and TC = 2π

ωC
in the other cases.

For a deeper analysis of the use of ωP�
in the description

of SO pulses, we numerically compare the principal period,
defined as TP = Re[ 2π

ωP�

], and twice the distance between a

maximum and its adjacent minimum in the SO region, Tm. A
similar analysis was made in Ref. [12], but considering the
original definition of the principal frequency, ωP, and for a
different type of ultrashort pulses in the few-cycle regime,
which do not show a SO behavior. In Figs. 3(a)–3(c), we
plot the values of TP (dashed black line) and Tm (red line) for
E1(t ), E2(t ), and E3(t ) as a function of the SO parameters,
a, α2, and α3, respectively. In the first case, the values of Tm

and TP were normalized to Tf = 2π
ω f

(dashed blue line) with

ω f = 2π , while in the other two cases the normalization is
done to the value TC = 2π

ωC
(dashed blue line), with ωC = 2π .

The excellent agreement between TP and Tm, indicates that
ωP�

is an appropriate value for the frequency that dominates
the SO region for the considered fields.

B. Principal frequency of a chirped pulse

In this subsection, we derive the principal frequency ωP�

for a chirped Gaussian pulse with a quadratic phase, also
known as group delay dispersion. In the frequency domain,
we can write this field as

Ẽβ (ω) = e−( ω−ωC
�ω

)2
eiβ(ω−ωC )2

. (13)

Equation (13) represents a chirped pulse characterized by a
central frequency ωC , a bandwidth �ω, and the chirp pa-
rameter β. Thus, from Eq. (2), we arrive at the following
expression:

ωPβ� = ωC

[
1 + 1

2

(
�ω

ωC

)2( 1

1 + �ω4β2

)]

− i
�ω4β

2ωC (1 + �ω4β2)
. (14)

The pulse Ẽβ (ω) can be seen as the pulse Ẽ2(ω) of Eq. (7),
when the control parameter α2 is � 1. Just like in that case,
ωPβ� has a nonzero imaginary part and it is necessary to take
its real part to characterize the main frequency of the pulse.
Furthermore, when the chirp parameter β → 0 the imaginary
part vanishes and the expression in Eq. (14) converge to the
original definition of the principal frequency, ωP, for a Fourier
limited Gaussian pulse, i.e., ωPβ�

→ ωC[1 + 1
2 ( �ω

ωC
)2].

In Fig. 4, we show an example with ωC = 2π and �ω = 2,
which corresponds to a temporal FWHM ≈1.18 optical cycles
(FWHM = 4

√
log(2)/2
�ω

). Figures 4(a)–4(c) correspond to the
chirped Gaussian field (blue line) and sine monochromatic
fields oscillating at frequency Re[ωPβ�] (red dashed line)
and ωC (green dashed line), respectively. It can be observed
the temporal behavior of a Fourier-limited pulse (β = 0) in
Fig. 4(a), a chirped pulse with β = 0.5 in Fig. 4(b), and a
chirped pulse with β = 1 in Fig. 4(c). Finally, in Fig. 4(d), we
show the dependence of the principal frequency normalized
to ωC , i.e., Re[ωPβ�]/ωC , as a function of the chirp parameter
β (blue line). From this figure, it can be seen that Re[ωPβ�]
decreases monotonically with β, and converges to the central
frequency ωC when �ω4β2 � 1 [see Eq. (14)]. The last ob-
servation agrees with that is expected: For a big enough β,
the chirped pulse becomes wider in the time domain and there
is no longer an appreciable difference between its central fre-
quency and the principal frequency. Thus, ωPβ� → ωC when
ωC � �ω.

C. Optical attosecond pulse

In this subsection, we use the definition of ωP�
to ana-

lyze an ultrashort pulse covering several octaves in frequency,
which has been experimentally synthesized in Refs. [32,33].
Here, the authors were able to synthesize a subcycle pulse
in the visible spectrum, called an optical attosecond pulse,
through a sophisticated experimental setup. A spectral ampli-
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FIG. 4. (a)–(c) Comparison between a Gaussian chirped pulse Eβ (t ) (blue line) and sine waves of frequencies Re[ωPβ�] (red dashed line)
and ωC (green dashed line). The values of the chirp parameter β are 0 (a), 0.25 (b), and 1 (c). (d) Evolution of the ratio Re[ωPβ�]/ωC as a
function of β (blue line). The value of ωC was normalized to the unity (red dashed line).

tude |Ẽ4(ω)|, similar to that of such a pulse, can be seen in
Fig. 5(a). For this case, the spectral phase �(ω) is constant,
so we have numerically obtained the value of the principal
frequency directly from |Ẽ4(ω)|. This was done through a
polynomial interpolation of the spectrum |Ẽ4(ω)| to subse-
quently calculate the integrals in Eq. (2). In arbitrary units, we
have obtained that ωP4�

= 4.23 (black line), while the value
of its carrier frequency, obtained similarly from its definition
[34], is ω0 = 3.2 in arbitrary units (orange line).

The optical attosecond pulse in the time domain E4(t ) is
shown in Fig. 5(b) for both a sinelike global phase (blue line,
φ = π/2) and a cosinelike global phase (red line, φ = 0).
We also show a monochromatic field oscillating at frequency
ωP4�

, with a cosinelike global phase (dashed green line) and
with a sinelike global phase (dashed black line). In the central
region, it can be seen that ωP4�

allows us to describe the
position of the peak values of the field in both cases as well as
the general shape of the pulse with φ = π/2 before the first
zero crossing.

As mentioned in Sec. II, one of the main motivations for
extending the original definition of the principal frequency ωP

[Eq. (1)] was to include the spectral phase �(ω) of the field,
which is relevant to describe, for example, SO pulses. For the
attosecond optical pulse, however, since �(ω) is constant, it
does not play any role in the expression of ωP�

[Eq. (2)]. Even
so, ωP4�

differs from the value of the principal frequency ωP.
In fact, in arbitrary units, we have obtained a value ωP = 3.63,
which represents a shift of ≈17%, toward lower frequencies
with respect to ωP4�

. This difference arises from the fact that
this extended definition of the principal frequency is weighted

by the field Ẽ (ω) = |Ẽ (ω)|ei�(ω) instead of the spectral power
S(ω), which allows us to represent, in a much better way,
the main frequency of ultrashort pulses with complex spectral
content, with and without a particular spectral phase. Only
when the spectral content of the pulse is symmetric (and �(ω)
is constant), as is the case for Gaussian or sinc pulses, the
values of ωP and ωP�

are equal.

III. PRINCIPAL FREQUENCY, SUPER-BANDWIDTH,
AND LHG

In this section, we analyze the nonlinear interaction be-
tween an atomic system and a SO pulse like the one given by
Eq. (12). For that purpose, after computing the LHG spectrum,
we appeal to both the definition of ωP�

and the effective
superbandwidth of the pulse to characterize the generated
harmonics.

As a first step, we calculate the dipole acceleration a(t )
quantum mechanically. a(t ) was obtained through the numer-
ical integration of the 1D-TDSE in a hydrogen atom (for
more details see, e.g., Ref. [38]). After that, a time-frequency
(wavelet) analysis has been performed to extract temporal
information from the LHG spectrum. Here, we employ the
Gabor transform to obtain aG(
, t ), defined as

aG(
, t ) =
∫

dt ′a(t ′)
exp[−(t − t ′)2/2σ 2]

σ
√

2π
exp(i
t ′), (15)

where the integration is usually taken over the pulse duration,
and σ is chosen in such a way that a suitable balance between
the time and frequency resolutions is achieved. In our case,
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FIG. 5. (a) Spectral amplitude |Ẽ4(ω)| of the optical attosecond
pulse. (b) Temporal profile E4(t ), with a cosinelike global phase (red
line) and a sinelike global phase (blue line). Monochromatic fields
oscillating at the frequency ωP4�

are plotted for a cosinelike (dashed
green line) and a sinelike (dashed black line) phase.

we have used σ = 4/ωC for an appropriate resolution of the
LHG spectrum.

Numerical results

To perform our simulations, we consider, as a driving
field, the SO pulse E3(t ) defined in Sec. II A, with a cen-
tral wavelength of λC = 1200 nm and a peak intensity I0 =
5 × 1013 W/cm2 in the SO region. The bandwidth, in units of
ωC = 2π , is set to �ω3 = 4, and the values of the synthesis
parameters are chosen to be β3 = 0.5, while α3 is varied (α3 =
0, 0.6, 1). It should be noted that for α3 = 0 we have a sinclike
pulse [Eq. (12)], thus the temporal FWHM is ≈5.564/�ω3

(see Ref. [12]), which in the present example corresponds
to 1.4 optical cycles. For α3 = 0.6 and α3 = 1, the value of
FWHM in the SO region is reduced to 1.2 and 1 optical cycles,
respectively.

In Fig. 6, we show plots of |aG(
, t )|2 (in log scale) for
the different studied cases. The dependence on t is expressed
in opt. cycles (optical cycles), while the dependence on the
frequency 
 is derived from the order of the harmonic. The
corresponding driving field E3(t ) is overlapped to show the
evolution of the radiation emission with the pulse duration.
We observe that the third and fifth harmonics are emitted in
the temporal region corresponding to the central region of the
pulse (the SO region), with an efficiency that decreases with
the harmonic order. The fundamental harmonic, which lies

in the saturated region in the lower part of the plots, has an
intensity that is seven orders of magnitude greater than those
of the third and fifth harmonics. For α3 = 0.6 and α3 = 1,
the radiation is emitted as harmonics in the temporal regions
corresponding to the side lobes of the pulse as well, which
is typical of the SO phenomenon. Indeed, the interference
fringes can be understood as a consequence of the coherent
superposition between the harmonic radiation generated by
the SO region and that generated by the respective side lobes.

For a better visualization of the evolution of the fundamen-
tal, third, and fifth harmonics as a function of the synthesis
parameter α3, we show in Fig. 7, a cross section of the contour
plots in the SO region (corresponding to the dashed white line
in Fig. 6). We present both the sinelike (continue lines) and
cosinelike (dashed lines) phases. Two relevant phenomena can
be extracted from this figure.

(i) There is a broadening of the harmonics bandwidth as α3

increases. For the fundamental harmonic, this result is equiva-
lent to the one observed in Ref. [29]. This spectral broadening
is quantified by the horizontal arrows in Fig. 7, indicating
the FWHM of the harmonics. For the fundamental harmonic
the FWHM is approximately 1.12 and 1.39 for α3 = 0.6 and
α3 = 1, respectively (here a FWHM equal to 1 corresponds
to the FWHM of the driving field, i.e., when α3 = 0). In the
case of the third harmonic, we have a broadening of 1.11 (for
α3 = 0.6) and 1.2 (for α3 = 1), and for the fifth harmonic this
broadening is 1.09 (for α3 = 0.6) and 1.19 (for α3 = 1).

(ii) A blueshift can be seen in the peak positions of the
third and fifth harmonics, for all values of α3. Furthermore,
this shift increases with α3. For the fundamental harmonic,
however, this phenomenon is not observed. To quantify this
shift, we compute the principal frequency ωP3�

for each set of
values of the synthesis parameters {�ω3 = 4, β3 = 0.5, α3 =
0, 0.6, 1}, and calculated the third and fifth harmonics as
3

ωP3�

ωC
and 5

ωP3�

ωC
, respectively. We have obtained that 3

ωP3�

ωC
≈

3.10, 3.14, 3.18, while 5
ωP3�

ωC
≈ 5.17, 5.22, 5.30, in order of

increasing α3. These values are represented by the vertical
colored lines in Fig. 7, and it is clearly seen that they coincide
with the central frequency of the respective harmonic order.

Finally, it should be noted that the spectral characteris-
tics of the LHG for different global phases φ (sinelike and
cosinelike) of the driving pulse show that only noticeable
changes are observed in the fifth harmonic. For α3 = 0 and
α3 = 0.6, a slight broadening can be seen in the spectrum
for the cosinelike (dashed line) phase, in relation with the
sinelike one, while for α3 = 1 the spectrum broadens toward a
continuum (dashed green line). These results are in agreement
with the nonlinear response of bound electrons studied with
subcycle pulses [33].

IV. DISCUSSION

Here we discuss the physical implications and the con-
sequences of the results presented in Sec. III. We also put
forward some questions that naturally remain open, since they
need a deeper analysis beyond the possible practical applica-
tions and the scope of the present paper.

First, the introduction of the principal frequency ωP turns
out to be instrumental to identify the frequency that domi-
nates the interaction between an ultrashort pulse and matter,
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FIG. 6. Contour plot of |aG(
, t )|2 (in log scale) as a function of time and harmonic order for different values of the synthesis parameter
α3, related to the SO behavior of the driving field E3(t ). From plots (a)–(c), we set the global phase of E3(t ) to be φ = 0 while from plots
(d)–(f) it is φ = π/2. The values of α3 are indicated between the top and bottom panels. The corresponding synthesized pulse E3(t ), used as
driving field for the simulations, is included in each panel (red line), expressed in arbitrary units.

in the nonlinear regime, as well as being the key parameter
in describing the main frequency of SO pulses. Previously,
in Ref. [12], we studied the HHG in atoms. In that work,
we showed that the more energetic photon that is generated
(cutoff) is better predicted by ωP instead of ω0. In addition, the
extended version of ωP introduced in the present paper, and
which we refer to as ωP�

, allows, on the one side, a very good
description of the main frequency of ultrashort pulses with
complex spectral content like the optical attosecond pulse. On
the other side, since this extended definition incorporates the
spectral phase �(ω), a good description of the SO frequency

is obtained. In this regard, we have shown that a monochro-
matic field with frequency ωP� satisfactorily describes the
respective time-dependent SO field and we have presented a
mathematical expression to quantify the SO frequency.

In relation to the blueshift of the central peak of the LHG
observed in the present paper, we can introduce the following
analysis: In perturbation theory, the nonlinear polarization
PNL(t ), for an instantaneous response and a centrosymmet-
ric medium, relates to the driving field E (t ) = A(t )eiωCt as
PNL(t ) = χ3E (t )3 + χ5E (t )5, where the parameters χ3 and
χ5 are the electrical nonlinear susceptibilities (we consider

FIG. 7. Spectrum of the fundamental (a), third (b), and fifth (c) harmonic obtained from a vertical cut, in the SO region, of the contour plots
of Fig. 6 (see there the white dashed lines). Each color indicates a different value of the synthesis parameter α3. Continuous lines (dashed lines)
correspond to a driving field E3(t ) with a global phase φ = π

2 (φ = 0). Vertical color lines indicate the central frequency of the harmonics as

quantified by the principal frequency ωP3�
(α3) as 3

ωP3�
(α3 )

ωC
and 5

ωP3�
(α3 )

ωC
, for the third and fifth harmonics, respectively. For comparison, black

vertical lines indicate the central frequency of the third and fifth harmonics as quantified by 3ωC and 5ωC , respectively, being ωC the central
frequency of the driving field. Horizontal arrows indicate the temporal FWHM of the corresponding harmonic.
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here up to fifth order). This implies that the harmonic
fields E3(t ) and E5(t ) can be written as E3(t ) = A3(t )eiωC3t

and E5(t ) = A5(t )eiωC5t , with A3(t ) and A5(t ) the fields en-
velopes, and central frequency ωC3 = 3ωC and ωC5 = 5ωC ,
respectively. However, our results show that the central fre-
quencies of the harmonics are ωC3 = 3ωP�

(�ω,ωC ) and
ωC5 = 5ωP�

(�ω,ωC ), i.e., they are not only dependent on
the central frequency of the driving field ωC but also on its
bandwidth �ω. These results are equivalent to those presented
in Ref. [39], where the blueshift is originated by a photon
acceleration phenomenon, which could be related with the
properties of the nonlinear medium. In our case, on the con-
trary, the blueshift is given by the principal frequency that
is a characteristic of the laser pulse itself and is, therefore,
independent of the medium. This fact would allow us to apply
the principal frequency concept in other nonlinear processes,
for instance, the above-threshold ionization in atoms [40] or
HHG in solids [41], just to name a few.

The original idea behind the introduction of the prin-
cipal frequency was to give a higher weight to the more
energetic frequencies (or photons) in the density distribution
ρP(ω) = ωS(ω). The extended version of the density distri-
bution ρP�

(ω) = ω|Ẽ (ω)|ei�(ω) is a complex-valued function
that also gives a higher weight to the more energetic photons,
but now it takes into account the spectral phase of the field.
A question that arises is, What is the real physical meaning
of the complex-valued principal frequency? In the temporal
domain, the distribution ρP�

(ω) is the derivative of the field
dE (t )

dt that can be obtained using Fourier transform properties.
Therefore, is there a relation between PNL(t ) and dE (t )

dt ?
Second, beyond the concept of the principal frequency, the

most relevant result presented in this paper is the possibility to
generate new frequencies or photons in a laser pulse through
a linear synthesis, lacking the need of a material medium.
Although the concept of superbandwidth in laser pulses was
presented in Ref. [29] through the analysis of the stationary
points in a two-level system, the study done in the present
paper is much more powerful and universal. This is because
we have used ab initio tools, the solution of the 1D-TDSE, and
the analysis of the emitted radiation by a wavelet transform.
Moreover, the superbandwidth appears here as a broadening
of the bandwidth of the studied harmonics and is in excellent
agreement with the value extracted from the dependence of
the principal frequency ωP�

with the bandwidth.
One of the questions that can be gleaned from the previous

paragraph is, Which is the limit for the new frequencies or
photons that can be generated by this interferometric method?
A similar question—How can an infrared photon behave as
a gamma ray?—was analyzed in Ref. [42]. Theoretically,
it seems that there is not such a limit but, experimentally,
an extremely precise control of the phase between the in-
terferometer arms is necessary to maintain the condition of
destructive interference. In addition, for a fixed value of the
filtering parameter β3, it is necessary, as well, to have precise
control of the relative field amplitudes between the interfer-
ometer arms, α3.

Finally, what happens with the global phase φ, in the SO
region, when ωP � ωC (i.e., the temporal FWHM → 0)? In
the SO region, are there changes in the spectral properties of
the pulse when φ varies in that limit?

V. CONCLUSIONS

In this paper, we have extended the definition of the princi-
pal frequency by changing the weight function in the spectral
power S(ω) of a field Ẽ (ω), now including its spectral phase
�(ω). We show that, for the SO pulses presented as exam-
ples, this redefinition gives a frequency value that allows a
good description of the main frequency in the SO region. In
addition, we have demonstrated that the principal frequency
describes the main frequency of an optical attosecond pulse,
with a very complex spectral content. We can conclude that
the concept of principal frequency can be more suitable in
the characterization of the main frequency of pulses emerging
from complex synthesis techniques instead of the conven-
tional central frequency (wavelength), which is the standard
experimental parameter used for that purpose (see, for exam-
ple, Refs. [32,33,43–45]).

Simultaneously, we have analyzed the nonlinear interaction
properties of SO pulses, in the few-cycle regime, with a hydro-
gen atomic system, by solving the 1D-TDSE. Particularly, we
studied the fundamental, third, and fifth harmonics through a
wavelet analysis, and showed that their spectral characteristics
are well described by resorting to the principal frequency and
the effective superbandwidth of the pump pulse. Finally, we
made a discussion of the physical implications of our results,
while some questions remain open.

The possibility to manipulate the spectral and temporal
characteristics of a pulse in the SO region could be of great
interest for a wide variety of applications, ranging from co-
herent control to femto/attosecond spectroscopy. On the other
hand, the broadening of the fundamental harmonic as a su-
perbandwidth clearly shows that pulses in the SO region
interact, in the weak field regime, as if they would have new
frequencies or photon energies, i.e., new frequencies are being
generated through a linear synthesis. In the same way that
the SO phenomenon is a wave phenomenon, this analysis can
be extended to all kind of signals as, e.g., acoustic waves,
coherent sources, matter waves, etc.

The case of a chirped pulse analyzed in Sec. II B could
indeed have practical applications. As shown, the extended
definition of the principal frequency depends on the chirp pa-
rameter β. As a consequence, we can envision the possibility
to experimentally characterize Fourier-limited pulses in the
few-cycle, single-cycle, and subcycle regimes. In fact, when
the value of the chirp parameter approaches zero, the principal
frequency reaches a maximum. Therefore, by looking for the
central position of the third or fifth harmonics, it should be
possible to determine if the pulse has a spectral phase (chirp),
i.e., if the blueshift of the harmonics is maximum when the
pulse is Fourier limited.

Another attractive arena where the extended definition of
the principal frequency might be relevant is the interaction of
strong laser pulses with solid materials. Here, it was demon-
strated that coherent radiation in the extreme XUV range can
be generated by driven bulk samples with subcycle pulses
[32]. A correct characterization of this generated radiation
could indeed be performed using the extended definition of the
principal frequency. Another area of research would be to use
SO pulses to drive solid samples. For this case, for instance,
we expect the role of the intra- and interband dynamics to
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FIG. 8. Comparison between zero crossing points and minima of the real part of the SO function E1(t ) (red solid lines) and sine waves at
the frequencies ωP1�

(dashed black lines) and ωSO = aω f (solid blue lines). The superoscillatory degree, accounted for by the parameter a,
is held at 4 for all curves, while N varies from 5 to 10. It can be seen that the difference between Re[E1(t )] and Re[eiaω f t ei π

2 ] = sin(aω f t ) is
larger than that with respect to Re[eiωP1�

t ei π
2 ] = sin(ωP1�

t ).

be different compared with the case of conventional laser
pulses. The extended definition of the principal frequency
could shed light about the underlying physics of these strong
field processes. Finally, we envision the introduction of the
principal frequency could generate great interest in strong
field processes driven by field transients [46] and asymmetric
single-cycle pulses [7].
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APPENDIX: PRINCIPAL FREQUENCY AND DEGREE OF
FITTING WITH SO FUNCTIONS

We present here a numerical analysis of the SO frequency
for the field E1(t ) [Eq. (3)], at a fixed value of the SO pa-
rameter a (also called degree of superoscillation [21]), while
varying the value of N . For each pair of values {N, a}, we
compare the degree of fitting in the description of the peaks’
values (maxima and minima) and zero crossing points of the
field E1(t ), when the principal frequency, ωP1�

, or the conven-

033254-10



PRINCIPAL FREQUENCY, SUPERBANDWIDTH, AND … PHYSICAL REVIEW RESEARCH 4, 033254 (2022)

FIG. 9. Difference between the minima (brown dashed-dot lines)
and zeros (orange dashed lines) of Re[E1(t )] and those extracted
from Re[eiωP1�

t ei π
2 ] = sin(ωP1�

t ). These differences correspond to
the curves shown in Fig. 8, where a = 4 for all values of N .

tional SO frequency, ωSO = aω f , are used. For that purpose,
the real part of the field E1(t ), with a global phase φ = π/2,
is compared against sinusoidal signals with frequencies ωP1�

and ωSO.
Figure 8 depicts the curves of interest, Re[E1(t )],

Re[eiωP1�
t eiφ], and Re[eiaω f t eiφ], when a = 4, and N ranges

from N = 5 to N = 10. The time axis is displayed in units of
optical cycles, normalized to 2π/ω f , in a range that allows
summarizing the main features of the fields in the SO region
(it is the range where the first extreme values of the curves
are localized). The analysis is done on the positions of zeros
and minima of the different curves (color circles), but the
same conclusions could be obtained by analyzing the maxima,
since maxima and minima, as well as the zero crossings, are
localized symmetrically to t = 0 (the minima in the interval
[−0.10,−0.05], the maxima in the interval [0.05,0.10]). From
these plots, it can be observed that the agreement between
Re[E1(t )] (solid red lines) and Re[eiωP1�

t eiφ] (black dashed
lines) is better than that with Re[eiaω f t eiφ] (solid blue lines),
considering the interval between the minimum and its adja-
cent maximum. We note, however, the latter field represents
better the zero crossing points of Re[E1(t )]. Besides, the
fitting using both aω f and ωP1�

improves as N increases.
Although we show here the analysis for a single value of the
parameter a, this behavior is universal.

FIG. 10. Difference between the minima (brown dashed-dot
lines) and zeros (orange dashed lines) of Re[E1(t )] and those
of Re[eiaω f t ei π

2 ] = sin(aω f t ). These differences correspond to the
curves shown in Fig. 8, where a = 4 for all values of N .

From the results of Fig. 8, we plot, in Fig. 9, the difference
between the zeros (orange dashed lines) and minima (brown
dot-dashed lines) of E1(t ) and those of Re[eiωP1�

t eiφ], when N
varies. Additionally, and for comparison purposes, we show in
Fig. 10 the curves corresponding to the difference between the
zeros (orange dashed lines) and minima (brown dot-dashed
lines) between E1(t ) and Re[eiaω f t eiφ] as a function of N . In
the first case (Fig. 9), the difference between the zeros re-
mains around 7% (orange dashed line) for all N , while for the
minima we observe a decrease from 5 to 1 % (brown dashed
line) as N increases. These differences, for both the zeros and
minima, are considerably smaller than those between E1(t )
and a sine wave at the SO frequency aω f , Re[eiaω f t eiφ] (see
Fig. 10). In the last case, the difference between zeros ranges
from 15% to 3%, while for the minima it is ranges from 23%
to 10%.

Finally, it must be mentioned that an analytical demonstra-
tion can be followed to show the convergence of ωSO to aω f ,
when N → ∞ [20]. Moreover, we have shown in Sec. II A
that ωP1�

= aω f in such a limit (N → ∞). Beyond these
analytical results, we show here that, for N > 1 but finite, and
for the first extreme values of the SO function E1(t ), a sine
wave at ωP1�

is a better fit than a sine wave at aω f . This can
be particularly recognized in Fig. 8, especially for the smallest
values of N .
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