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Area law for magnetic domain walls in bent cylindrical nanowires1
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The dynamics of several systems in nature occurs under some constraints and symmetries that ensure the8

appearance of constants of motion. In this work, we discuss the dynamics of the magnetic domain wall (DW)9

under the Walker regime (i.e., when its position oscillates as a function of time) in bent cylindrical magnetic10

nanowires (NWs) with constant curvatures. It is shown that the DW position sweeps, in relation to the curvature11

center, the same area for different NW curvatures. This phenomenon appears due to an exchange-driven12

curvature-induced interaction. The translational DW motion is accompanied by its rotation around the NW axis,13

leading to a periodic curvature-independent angular momentum, from which one obtains an area’s law for the14

DW motion.15

DOI: 10.1103/PhysRevB.00.00440016

I. INTRODUCTION17

Magnetic nanowires (NW) are nanostructures mimicking18

one-dimensional systems [1–3]. They have exhibited many19

extremely interesting phenomena [4–6], becoming a funda-20

mental pillar for the next generation of applications at the21

nanoscale [7–14]. Among them, the possibility of tuning do-22

main wall (DW) dynamics is probably the most attractive one23

from a technological perspective and consequently, a great24

deal of effort has been put in this direction [15–17]. During25

this undertaking, various unexpected and intriguing magnetic26

phenomena were reported on noncurved NWs (or nanos-27

tripes). For instance, a current-induced spin wave frequency28

shift was identified as a Doppler effect [18], an analogy of29

the Cherenkov radiation was found in magnetic domain walls30

emitting spin waves while moving sufficiently fast [19], or the31

DW width contraction for velocities close to the spin wave32

group velocity was shown to obey similar laws to that of the33

special relativity [20,21]. These examples evidence the exis-34

tence of a plethora of interesting phenomena to be revealed in35

nanomagnetism.36

Within the aim of tuning DW dynamics, the understand-37

ing of curvature-induced phenomena in magnetic NWs is an38

important topic in current magnetism research [22]. Curva-39

ture induces a drastic change in the role that the exchange40

interaction plays in DW dynamics, leading to the appearance41

of several interesting magnetic effects [23–31]. Among them,42

we can highlight the oscillatory behavior of the DW along43

the NW axis, similar to that corresponding to the Walker44

regime in straight NWs. It appears above a certain threshold45

for the external stimuli and reduces the DW average velocity46

in consonance with the Walker breakdown in faceted straight47

NWs [15]. Nevertheless, in contrast to their noncurved coun-48

terpart [32], this oscillatory behavior appears even for the case49

of circular cross-section NWs [26]. The Walker breakdown50

threshold field results to be proportional to the NW curvature 51

[25,26]. 52

In this work we demonstrate that, for the specific case 53

of bent cylindrical NWs with constant curvature and un- 54

der external magnetic fields within the Walker regime, the 55

previously reported translational and rotational DW motions 56

[26,27] yield a time-periodic curvature-independent angular 57

momentum. This fact implies that the area covered by the DW 58

when “orbiting” around the curvature center of the NW is cur- 59

vature independent but exhibits a periodic time dependence. 60

The problem is presented in Fig. 1 (based on our simulation 61

results to be discussed below), illustrating the area law for the 62

DW dynamics in bent NWs, where the DW sweeps equal areas 63

in equal times, independent of the NW curvature. 64

II. MODEL AND RESULTS 65

To evidence the above statement, we analytically address 66

the problem, corroborating our results by using micromag- 67

netic simulations (using the finite-element software NMAG 68

[33]). Bent NWs with constant curvature are fully described 69

as toroidal sections with a fixed length � = 1μm, major 70

radius R, minor radius a = 15 nm, and opening angle ψ . 71

The relationship among these parameters is � = ψR. The 72

curvature is defined as κ = 1/R. In analytical calculations, 73

R is a free parameter. The set of bent NWs considered in 74

micromagnetic simulations is described as � = 2πRn
n , where 75

n ∈ [2, 10] is an integer number determining Rn, κn = 1/Rn, 76

and ψn = 2π/n. 77

The magnetization inside the NW can be parameterized us- 78

ing the local coordinate basis, m = sin � sin φ r̂ + cos � θ̂ + 79

sin � cos φ ẑ (see Fig. 2), where Ms and m = M/Ms are the 80

saturation and normalized magnetization, respectively. Mag- 81

netic NWs exhibit transverse DWs (Tdw) up to a critical 82

diameter DCR(Ms) [34]. In this work the diameter of the NWs 83
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FIG. 1. Schematic representation of the area (shady regions) covered by a head-to-head transverse DW (Tdw) obtained from simulations
for three concentric bent cylindrical nanowires with different curvatures. The sphere depicts the center of curvature for all wires. White arrows
represent the applied azimuthal magnetic field with the same strength for all the NW. The magnetization is colored following its mX component
which corresponds to the in-plane vertical direction. R2, R3, and R4 represent three different curvature radii.

is below this critical value, therefore we assume the existence84

of transversal domain walls, Tdw. The following ansatz is85

used for describing the Tdw profile: � = 2 arctan{exp[R(θ −86

θ0)]/δ}, where Rθ0 defines the position of the DW center,87

and δ = δW /π is the DW width (δW ) divided by π . For our88

calculations, the Tdw is considered a rigid body, with constant89

shape and size. Our micromagnetic simulations support this90

approach. Thus, the DW dynamics can be described by the91

position of its center and its phase [φ(t )].92

FIG. 2. (a) Domain wall profile, and local and global coordinate
bases used in this work. (b) NW orientation in the Cartesian reference
system and geometric parameters.

The time evolution of the magnetization is given by the 93

Landau-Lifshitz-Gilbert (LLG) equation 94

∂M
∂t

= −γ M × Heff + α

Ms
M × ∂M

∂t
, (1)

where γ is the gyromagnetic ratio, α is the Gilbert damp- 95

ing parameter, and Heff is the effective field coming from 96

the magnetostatic, exchange, Zeeman, and anisotropy interac- 97

tions. The magnetostatic effective field is obtained from the 98

demagnetizing tensors, considering that the DW lies in an 99

ellipsoid inside the NW. In this case, Hd = −4π (NrMr r̂ + 100

Nθ Mθ θ̂ + NzMz ẑ), where Nr , Nθ , and Nz are the demagne- 101

tizing factors along the r̂, θ̂ , and ẑ directions, respectively. 102

The exchange field is Hx = (2A/Ms)∇2m . For simplicity, the 103

external magnetic field has a constant strength of H = 11 mT, 104

and is chosen tangent to the NW, i.e., HZ = H θ̂ (see white 105

arrows in Fig 1). The field strength ensures that the DW 106

dynamics occurs under the Walker regime [26]. An azimuthal 107

magnetic field can be experimentally addressed, for instance, 108

from an electric current flowing perpendicular to the plane the 109

bent NW forms. The magnetic parameters used in this work 110

correspond to that of Permalloy, that is, the exchange stiffness 111

and saturation magnetization are A = 1.3 × 10−11 J m−1 and 112

Ms = 7.95 × 105 A m−1, respectively. Permalloy does not 113

exhibit magnetocrystalline anisotropy. The domain wall width 114

for a cylindrical Permalloy NW with diameter d = 30 nm 115

is δW = 37 nm [34]. Finally, we use the damping parameter 116

α = 0.01. 117

The DW dynamics is determined from the total torque  118

evaluated on the DW center. Specifically, the total torque cor- 119

responds to that produced by the effective field (eff = M × 120

Heff ) in addition to the one coming from the damping term. 121

The torques corresponding to the external magnetic field and 122

the damping are straightforwardly obtained, resulting in �H = 123

MsH (− cos φ r̂ + senφ ẑ) and �α = −(αMs/γ )(�̇ cos φ r̂ + 124

φ̇ θ̂ − �̇ senφ ẑ), respectively. The torque originated from 125

the dipolar effective field in the DW center is evaluated as 126

�d = −2πM2
s �Nsen(2φ) θ̂ , where �N = Nr − Nz [28]. For 127

NWs with a circular cross section one obtains �N = 0 and 128
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therefore, �d = 0. Finally, for bent one-dimensional (1D)129

systems, the most important term in the total torque on the130

DW consists of that produced by the exchange field, given by131

�x = A( 4 cos φ

Rδ
− sin(2φ)

R2 )θ̂ . Under the above assumptions, the132

total torque can be written as133

�r,θ,z =

⎡
⎢⎢⎣

−Ms cos φ
(

α
γ

d�
dt + H

)
−αMs

γ

dφ

dt + A
( 4 cos φ

Rδ
− sin(2φ)

R2

)
Ms sin φ

(
α
γ

d�
dt + H

)
⎤
⎥⎥⎦. (2)

To simplify our analysis, it is convenient to rewrite the134

total torque in the local system of cylindrical coordinates (see135

Fig. 2) as �ρ,�,φ = R�r,θ,z, where R is the rotation matrix136

that connects the two considered coordinate systems and ρ̂ is137

a unitary radial vector. In this case, we obtain138

�ρ,�,φ =

⎡
⎢⎣

0
αMs
γ

dφ

dt − A
(

4
Rδ

cos φ − 1
R2 sin(2φ)

)
−Ms

(
α
γ

d�
dt + H

)
⎤
⎥⎦. (3)

The substitution of the above expressions for the torques139

reduces the LLG [Eq. (1)] to the following system of equa-140

tions for the two angles describing the DW center [see141

Fig. 2(a)]:142

dφ

dt
= − γ

Ms
φ and

d�

dt
= − γ

Ms
� . (4)

Since we are evaluating the dynamics of the DW center, the143

linear velocity can be defined as v = Rdθ0/dt = −δd�/dt .144

Therefore, after some algebra, it is possible to write the above145

set of equations in terms of the torque components. In this146

context, we obtain a system of coupled equations defining the147

DW velocity and phase as148

v(t ) = γ

1 + α2

[
αδH − A

MsR

(
4 cos φ − δ

R
sin(2φ)

)]
(5)

dφ

dt
= γ

1 + α2

[
H + αA

MsRδ

(
4 cos φ − δ

R
sin(2φ)

)]
. (6)

All the geometries considered in this work fulfill that R �149

δ. Thus, terms proportional to δ/R in the above equations can150

be neglected. Therefore, we obtain151

v(t ) ≈ γ δα

(1 + α2)

(
H − 4A

RMsδα
cos φ

)
(7)

and152

dφ

dt
≈ γ

1 + α2

(
H + 4αA

MsRδ
cos φ

)
. (8)

The initial condition for the integration is φ(0) = π/2153

(schematically displayed in Fig. 2). That initial condition cor-154

responds to the equilibrium state of a head-to-head Tdw in bent155

cylindrical nanowires [23] and matches with that obtained in156

our micromagnetic simulations.157

Importantly, the term 4αA
RMsδ

≈ 0.1 mT is two orders of mag-158

nitude smaller than the external applied field. Therefore, the159

Walker regime is obtained even for smaller external stimuli160

than the one considered here since the condition 4αA
RMSδH � 1 161

holds. In Eq. (7) the damping parameters are in the denomina- 162

tor and thus the first term is relatively small with respect to the 163

second one. Note that even without disregarding the second 164

term, Eq. (8) can be integrated to yield 165

φ(t ) = 2 arctan[η tanh(ωt + arctanh(ξ ))], (9)

where η =
√

HW +H
HW −H , ξ =

√
HW −H
HW +H , ω = γ

2

√
HW

2−H2

1+α2 , and the 166

Walker field is HW = 4αA
RMsδ

. In the limit 4αA
RMsδH � 1 we obtain 167

φ(t ) ≈ γ Ht

1 + α2
+ π

2
.

The analytical results for the DW velocity, obtained by 168

the integration of Eqs. (7) and (8), are presented in Fig. 3(a), 169

together with the direct micromagnetic simulations for three 170

different curvatures (κn). The values of the velocity ampli- 171

tude (VAMP) are highlighted with dashed lines and labeled on 172

the right axis. Clearly, the velocity amplitude increases as a 173

function of the NW curvature. An interesting point is that the 174

amplitude of the velocity in Eq. (7) is field independent while 175

its frequency is not. 176

Figure 3(b) presents numerical and analytical results for 177

the DW velocity amplitudes as a function of the NW cur- 178

vature. Our results evidence a linear dependence between 179

velocity and curvature. Importantly, the slope of the lines in 180

Fig. 3(b), obtained either by a linear fit (orange line) to the 181

numerical results (red circles) or by the analytical data (blue 182

line), have physical units of m2 s−1. Therefore, Fig. 3(b) sug- 183

gests the existence of an area covered in a certain amount of 184

time which is independent of the NW curvature. This finding 185

also directly follows from the fact that the oscillatory part of 186

the DW velocity is proportional to 1/R and thus the area, 187

covered by its radius vector, is independent from R for the 188

same time intervals. 189

To explore this finding, we define the z component of the 190

DW “angular momentum” as Lz = μRv, where μ is the DW 191

effective mass. Assuming that the DW behaves as a parti- 192

clelike structure, we can study its dynamical properties from 193

Newton’s second law. Therefore, we define 194

z = dLz

dt
= μR

dv

dt
. (10)

The combination of Eqs. (2) and (7) allows us to define the 195

DW effective mass μ as 196

μ = z

Raθ (t )
= M2

s (1 + α2)

4Aγ 2
, (11)

where the linear acceleration is aθ (t ) = dv(t )
dt = dv

dφ

dφ

dt . Thus, 197

the z component of the angular momentum reads 198

Lz = μRv = αδM2
s RH

4γ A
− Ms

γ
cos φ. (12)

The first term results from the Zeeman interaction and re- 199

flects a small constant drift of the DW along the nanowire. The 200

second term is oscillating and it is produced by the curvature- 201

induced exchange-driven effective field. Note that due to the 202

time dependence of the domain wall phase φ(t ), the angular 203

004400-3



G. H. R. BITTENCOURT et al. PHYSICAL REVIEW B 00, 004400 (2022)

5

10

15

20

25

30

35

40

0.5 1 1.5 2 2.5 3 3.5

(b)

V
A

M
P

(m
/s

)

κ (106 m-1)

NMAG
Analitycal

0

2

4

6

8

10

0 5 10 15 20 25

Analytical
Nmag(c)

A
(1

03
nm

2 )

time (ns)

κ3
κ3

κ6
κ6

κ10
κ10

-30

-20

-10

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20

Analytical
(a) gamN

V
A

M
P

3
V

A
M

P
6

V
A

M
P

10

v
(m

/s
)

time (ns)

3

3

6

6

10

10

FIG. 3. (a) Time dependence of the DW velocity. Symbols and
solid lines represent numerical and analytical results, respectively.
The different colors stand for different NW curvatures: κ3 = 2.094
(brown), κ6 = 1.047 (blue), and κ10 = 0.628 (red) (106 m−1).
Dashed lines and labels VAMP highlight the amplitude of the velocity.
(b) Amplitude of the velocity vs curvature. Red circles and blue line
represent numerical and analytical results, respectively. Orange line
is a linear fit of the numerical results. (c) Time evolution of the area
covered by the DW during its dynamics. Symbols and solid lines
represent numerical and analytical results, respectively. The small
linear displacement of the DW along the NW has been subtracted in
our numerical results.

momentum is not conserved. However, it is a conserved quan-204

tity if one averages over the domain wall oscillating period.205

Since we are interested in the dynamical component and206

the constant drift term in the velocity is relatively small, we207

only focus on the oscillatory behavior, defining the quantity208

L as 209

L = Lz − αδM2
s RH

4γ A
= −Ms

γ
cos

(
γ Ht

1 + α2
+ π

2

)
. (13)

Therefore, L is curvature independent. The rate of area 210

that a DW covers during its dynamics is related to the angular 211

momentum by 212

dA

dt
= R2

2

dθ0

dt
= Lz

2μ
≈ L

2μ
, (14)

where we again disregarded the constant drift term. 213

Thus, although both the area and angular momentum are 214

oscillating in time quantities, there is a simple relation be- 215

tween them, very analogous to that in the system with a 216

conserved angular momentum. This fact implies that the rate 217

of the area covered per time by the DW due to the curvature- 218

induced exchange-driven effective interaction is independent 219

of the curvature. This result is central for our article and is 220

illustrated in Fig. 3(c), where analytical results are compared 221

with direct numerical simulations. 222

The Newtonian-like equations of motion for the DW have 223

the following form: 224

μaR = − 4A

(1 + α2)R3
cos2 φ (15)

μaθ = HMs

(1 + α2)R
sin φ. (16)

Equations (15) and (16) represent the centripetal-like force 225

(−μv2/R) and the tangential one (μdv/dt), respectively. The 226

former comes from the exchange interaction, while the latter 227

is due to the external magnetic field. These results suggest 228

some analogy to systems moving in central potential, albeit 229

in our case, the radial part of the potential has dependence 230

1/R2 and is oscillating in time. However, although the ex- 231

change interaction yields a central-like periodic field, one 232

should remark that the potential is not centrosymmetric due 233

to the nontrivial behavior of its tangential part. Low damping 234

values (α � 1) are required for the validity of the different 235

approximations used. For this range of values, α does not play 236

any important role in the system. Additionally, the value of the 237

external magnetic field affects just the tangential acceleration 238

amplitude, which increases linearly with H . 239

It is important to remark that the area covered at any time, 240

as well as the maximum area evaluated at the semiperiod of 241

oscillations, depends on the magnetic field strength 242

A (t ) = 2A

HMs

[
1 − cos

(
γ Ht

1 + α2

)]
, (17)

which is illustrated in Fig. 3(c). Nevertheless, the average in 243

time area covered in a half-period (τ/2), i.e., 〈A 〉 = 2A
τ

= 244

4Aγ

πMs
, is independent of the field strength. Clearly, it is also cur- 245

vature independent. Furthermore, the value of 〈A 〉 matches 246

with the amplitude value of the oscillations for the velocity 247

(VAMP) in Eq. (7) with the exception of the factor π . 248

III. CONCLUSIONS 249

In conclusion, we have reduced the dynamical LLG equa- 250

tion of motion for a transverse DW in bent cylindrical 251
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nanowires with a constant curvature to a Newton equation of252

a point nanoparticle in a centrosymmetric periodic field, pro-253

duced by the exchange interaction. From the analysis of the254

DW angular momentum along the z axis direction, one can255

observe that the term corresponding to exchange interaction is256

curvature independent. This result allows us to obtain the area257

swept by the DW in relation to the center of the NW curvature.258

We have observed that the area covered by the DW due to the259

exchange-driven effective field is the same, independent of the260

NW curvature. This finding is associated with the increase in261

the DW velocity, under the Walker regime, as a function of262

the NW curvature. We highlight that although the swept area263

is independent of the NW curvature, it is oscillating in time264

with a constant period.265

The results discussed in this work could be confused with266

Kepler’s law for a DW “orbiting” in a circular trajectory267

around the curvature center. Nevertheless, the potential of268

interaction between the DW and an imaginary “mass center”269

in the system is not of the kind V ∝ 1/R. This fact, in addition270

to the periodicity in the DW velocity when it displaces under 271

the Walker regime, explain why, if we consider a constant 272

orbit, the DW seeps different areas in the same time interval. 273

At the same time, our results highlight that a plethora of 274

different analogies can exist in nature, providing a rich phe- 275

nomenological description of otherwise complicated physical 276

phenomena. 277
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