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ABSTRACT

Artificial microswimmers, nano- and microrobots, are essential in many applications from engineering to biology and medicine. We present
a Stokesian dynamics study of the dynamical properties and efficiency of one of the simplest artificial swimmers, the three linked spheres
swimmer (TLS), extensively shown to be an excellent and model example of a deformable micromachine. Results for two different swimming
strokes are compared with an approximate solution based on point force interactions. While this approximation accurately reproduces the
solutions for swimmers with long arms and strokes of small amplitude, it fails when the amplitude of the stroke is such that the spheres
come close together, a condition where indeed the largest efficiencies are obtained. We find that swimmers with a “square stroke cycle” result
more efficient than those with “circular stroke cycle” when the swimmer arms are long compared with the sphere radius, but the differences
between the two strokes are smaller when the arms of the swimmers are short. This extended theoretical research of TLS incorporates a
much precise description of the swimmer hydrodynamics, demonstrating the relevance of considering the finite size of the constitutive
microswimmers spheres. This work expects to trigger future innovative steps contributing to the design of micro- and nanomachines and its
applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0083528

I. INTRODUCTION

Self-propulsion of microorganisms and artificial swimmers is
only possible through the generation of motility strategies that are able
to overcome the absence of inertia. This condition, implied in every
low Reynolds number regime, allows the success of only those swim-
ming strategies that are non-reciprocal, i.e., time-reversed motion is
not the same as the original one.1 In the past two decades, there has
been a growing interest in understanding the dynamics of self-
propelled microorganisms and artificial swimmers. For recent results
and reviews, see Refs. 2–5, and references therein.

Artificial microswimmers, micromachines, and nano-robots are
of great present interest for technical and medical applications,6–9 like
cargo transport,10,11 drug delivery,7,12–14 analytical sensing in biologi-
cal media,15,16 waste-water treatment.17 The propulsion mechanism of
these microdevices may be classified into two generic types: external
and autonomous.18 In the first type, an external field is used to propel
and direct the swimmer, while in the second, the swimmer itself con-
verts energy to achieve self-propulsion. Deformable microswimmers,
which generate propulsion by a non-reciprocal periodic deformation,
belong to the latter type. One of the simplest examples is the three-

linked-spheres (TLS), a swimmer built upon three spheres linked by
two arms that contracts asynchronously, originally proposed by Najafi
and Golestanian.19 The simplicity of this swimmer allows an analytical
(within certain approximations) and numerical study of its dynamics,
making it an excellent choice to test different numerical approaches.
Experimental realizations of the TLS have been also reported.20–23 In
particular, the analytical and numerical studies concerning the dynam-
ics and optimization of the TLS19,24–35 are strictly valid in the limit
where the distances between the spheres are much larger than the
sphere radius, due to the treatment of the hydrodynamic interactions.
The works of Earl et al.,36 more recently Nasouri et al.,37 Pickl and
coworkers,38,39 and Lengler model the hydrodynamic interactions in
more detail by means of lattice Boltzmann simulations,36,38,39 multi-
particle collision dynamics,36 boundary element method,37 and the
method of regularized Stokeslets.40

In this work, we extend the theoretical study of the TLS, incorpo-
rating a much better description of the hydrodynamic interactions
between the spheres composing the swimmer. For this purpose, we
use Stokesian dynamics simulations41,42 to study in detail the forces
acting on each of the swimmer’s components and the power
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consumption during its motion. Stokesian dynamics simulations pro-
vide an accurate method to study the dynamics of the TLS and is com-
putationally less demanding in comparison with mesoscale methods
like lattice Boltzmann and multiparticle collision dynamics, which
consider explicitly the suspending liquid.

We define efficiency as the ratio between power dissipation and
the work needed to produce the same motion by an external force. We
found that the most efficient swimmer is that in which its arms con-
tracts almost to contact of the spheres. Interestingly, under these opti-
mum conditions, the analytical predictions based on the point force
(PF) approximations of the hydrodynamic equations divert signifi-
cantly from those found in our simulations in which near field interac-
tions are taken into account. This highlights the importance of
considering the finite size of the spheres, as it is done by the method
implemented here. We believe that the results shown in this work
might be very useful for the design of artificial swimmers of this kind.

The article is organized as follows: In Sec. II, the TLS model is
presented, summarizing the point force approximation results and
introducing the Stokesian dynamics approach. Section III contains the
results from our systematic study of the dynamics, power consump-
tion, and efficiency of the TLS. Finally, summary and conclusions are
presented in Sec. IV.

II. THE MODEL

The three linked spheres swimmer (TLS) geometry is shown in
Fig. 1. It consists of three equal spheres linked by two virtual arms of
lengths L1 and L2. The length of the arms varies between its contracted
and its stretched states, with lengths lj � d and lj þ d, respectively
(j¼ 1, 2). lj is the arm rest length, and d is the amplitude of the spheres
relative movement. The swimmer stroke may be any closed cycle in
the L1 � L2 phase-space. In this work, we study two particular strokes:
the square cycle (SC) and the circular cycle (CC). For the SC cycle, the
stroke is defined by a square in the L1 � L2 phase-space, that is trav-
eled by the system at a constant speed, while for the CC the stroke is
defined by a circle in the L1 � L2 phase-space that is traveled at a con-
stant angular velocity (see Fig. 1). The most remarkable difference
between these two cycles is that for the SC, the arms stretch/contract
sequentially and at a constant speed, and in the case of the CC, while
one arm stretches, the other contracts, in a harmonic way.

A. Point force approximation

Following the work of Golestanian and Ajdari,26 we write the
relation between the forces fi that each sphere of radius a produces on
the fluid and the spheres velocities vi, assuming that the spheres act
like point forces on the fluid. Under this assumptions, which is a good
approximation if a=ðl � dÞ � 1, we have

pgv1 ¼
f1
6a
þ f2
4L1
þ f3
4ðL1 þ L2Þ

;

pgv2 ¼
f1
4L1
þ f2
6a
þ f3
4L2

;

pgv3 ¼
f1

4ðL1 þ L2Þ
þ f2
4L2
þ f3
6a
:

(1)

Here, g is the fluid viscosity. Using the self-propulsion condition
f1 þ f2 þ f3 ¼ 0 and defining the arms contraction velocities as
_L1 ¼ v2 � v1 and _L2 ¼ v3 � v2, follows:

pg
_L1
_L2

" #
¼

A B

�B C

" #
�

f1

f3

" #
; (2)

where

A ¼ 1
2L1
� 1
3a
;

B ¼ 1
4L1
þ 1
4L2
� 1
4 L1 þ L2ð Þ �

1
6a

C ¼ 1
3a
� 1
2L2

;

; (3)

which, after defining D ¼ AC þ B2, leads to

FIG. 1. Geometry of the three linked spheres swimmer. (a)–(d) represent the con-
figuration changes in the swimmer during a square cycle, SC, starting from a
stretched initial state. Dash dotted line corresponds to x¼ 0, and dashed line corre-
sponds to the evolution of the center of mass of the swimmer, cm, during the cycle.
Two cycles, square and circular, are represented in the L1 � L2 space.
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f1 ¼
pg
D
ðC _L1 � B _L2Þ;

f2 ¼
pg
D
ð�ðBþ CÞ _L1 þ ðB� AÞ _L2Þ;

f3 ¼
pg
D
ðB _L1 þ A _L2Þ:

(4)

Equations (1) and (4) allow to calculate any dynamical quantity of
interest, given that L1, L2, _L1 , and _L2 are known as a function of time,
t, i.e., the particular stroke cycle is determined. For the circular cycle,
the arm deformations are given by

L1ðtÞ ¼ l þ d cos ðwct þ p=4Þ;
L2ðtÞ ¼ l þ d sin ðwct þ p=4Þ;

(5)

with the angular velocity, wc, and a corresponding period,
Tc ¼ 2p=wc. For the square cycle,

L1ðtÞ ¼ l þ d � vst; L2ðtÞ ¼ l þ d; t 2 I1;

L1ðtÞ ¼ l � d; L2ðtÞ ¼ l þ d � vst; t 2 I2;

L1ðtÞ ¼ l � d þ vst; L2ðtÞ ¼ l � d; t 2 I3;

L1ðtÞ ¼ l þ d; L2ðtÞ ¼ l � d þ vst; t 2 I4:

8>>>><
>>>>:

(6)

Here, vs is the contraction velocity of the arms, the period of the motion
is given by Ts ¼ 8d=vs, and Ii is consecutive intervals of duration Ts=4.

B. Stokesian dynamics

To take into account the full hydrodynamic interactions between
the spheres composing the TLS, one could solve the full three-body
problem. This, however, constitutes a formidable task. For this reason,
and considering that the interactions between two TLS swimmers or
even a suspension of TLS swimmers might be of interest, we study the
dynamic of the swimmer by implementing Stokesian dynamics41 (SD)
simulations. This simulation scheme has been extended to treat self-
propulsion,42 as long as the swimmer can be approximated by a collec-
tion of spheres, which in the particular case of the TLS swimmer is not
even an approximation. Stokesian dynamics is a well-established simu-
lation scheme for the study of the suspensions taking into account the
many-body hydrodynamic interactions. It has been shown that it can
quantitatively reproduce the properties of monodisperse suspensions
at high volume fractions43 and has been successfully applied to study
the dynamics and rheology of colloidal particles.44–48

Here, we have implemented SD simulations adapting the code
provided in the work of Swan and coworkers42 to represent the TLS
swimmer with the two swimming strokes cycles under consideration,
namely, the square cycle and the circular cycle.

For convenience, we use the sphere radius, a, as unit length, the
cycle period, T, as unit of time, and ga2=T as unit of force, where g
represents the fluid viscosity. The time step used in the SD simulations
was dt ¼ T=n0, with n0 typically of the order of 50 000, in the case of
the CC cycle, while for the SC cycle, n0 was 400 000. The SC cycle
needs to be solved with a much smaller time step due to the fact that
the spheres come almost to contact at a constant velocity.

III. RESULTS
A. Swimmer dynamics

Three linked sphere swimmer takes advantage of the differences
in the drag forces on the different intervals of its swimming cycle to

produce its net displacement. If the cycle in Fig. 1 is traveled counter-
clockwise, the swimmer moves to the right, and if the cycle is traveled
clockwise the swimmer moves to the left. In the first part of the SC
cycle, starting with both arms extended and going through the cycle
counterclockwise, the left arm contracts at a constant speed vs from
(a) L1 ¼ l þ d to (b) L1 ¼ l � d. This contraction moves the center of
mass, cm, to the left as it is shown by the gray dashed line. During this
interval, the other arm is extended, resulting in a larger drag opposing
the backward motion of the swimmer. In the next interval, L2 goes
from lþ d to l� d, producing a cm motion to the right. This forward
movement is larger than the previous displacement to the left due to
the lower drag exerted by the left arm that is contracted. Analogously,
analyzing the rest of the cycle, a net displacement (gain) of the swim-
mer to the right is obtained.

The situation, depicted in the last paragraph, is shown quantita-
tively in Fig. 2 for three swimmers that differ in their stretched-arm
sizes, lþ d, and in the amplitude of their arms motion, d. Blue solid
lines are results obtained by Stokesian dynamics, while dashed red
lines correspond to the point force approximations. The first column
shows results for a swimmer, s1, with l¼ 8 and d¼ 4. With these
dimensions, the closest distance between sphere centers, l � d ¼ 4, is
large enough to allow for a fine estimation of the swimmer dynamics
by the point force approximation. The second column corresponds to
s2, a swimmer also with l¼ 8, but with d¼ 5.9. Note that for this
swimmer, the extreme spheres do come almost to contact (actually, at
a surface separation of 0.1) with the central sphere when the respective
arm is fully contracted. Finally, the third column display results for a
smaller swimmer, s3, in which the spheres are almost all the time close
to contact (l¼ 2.6, d¼ 0.5). Figure 3 shows analogous results for the
same swimmers, but following a circular cycle.

For the three swimmers, the backward motion during the first
interval can be seen both in the time evolution of the center of mass
position and in an initially negative center of mass velocity. Looking at
the final displacement after one cycle, it is observed that s2 is the swim-
mer that moves more in one cycle. (This is also true for the circular
cycle as shown in Fig. 3.) The difference between the SD results and
PF approximations is significant for all the variables and grows with
the compression of the arms, as expected, showing even a curvature
inversion for the velocity of swimmers s2 and s3 in the square cycle.
This inversion takes place at the regions where the spheres get in close
proximity, and the need for a complete representation of the hydrody-
namic forces is more relevant.

To compare SD results with other methods that also include
hydrodynamic interactions, like lattice Boltzmann (LB)49,50 and
Multiparticle Collisions Dynamics (MPC),51 we have calculated the
one cycle net displacement, D, for the SC swimmer with l þ d ¼ 25=3
as a function of the relative spheres displacement amplitude, and com-
pared SD results with those obtained by Earl et al.36 This comparison
in conjunction with analytical results obtained within the point force
approximation is shown in Fig. 4. LB and MPC data have been taken
from the work of Earl et al.,36 where they use both mesoscale methods
to study the TLS and other generalizations of it. For details in the
implementations of LB andMPC and the parameters used, see Ref. 36.
Remarkably, the SD results are in quite good agreement with both
methods, and in particular, with LB, which is more accurate. Note,
however, that the LB implementation in Ref. 36 does not include lubri-
cation corrections,52 for this reason near field interparticle interactions
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might be underestimated when particles come close together. The
great advantage of SD, in comparison with those mesoscale schemes,
is that it treats the fluid as a continuum, allowing the simulation of
larger time-scales as well as larger systems with much less computa-
tional effort. Figure 4 also includes the small deformation limit of the
net displacement within the PF approximation up to second order in
2d=ðl þ dÞ, Eq. (22) from Ref. 36. As expected, in the limit of small
deformation, it converges to the full PF approximation.

The instantaneous dissipated power can be obtained directly
from the expression

PðtÞ ¼ f1v1 þ f2v2 þ f3v3; (7)

¼ �f1 _L1 þ f3 _L2 : (8)

Note that with the adimensionalization, we are using that P(t) is
expressed in units of ga3=T2.

A remarkable increase in the dissipation is found for swimmers
s2 and s3 in the square cycle with respect to s1. This compression
dependent behavior is highly underestimated by the PF approximation
and will have a major influence in the determination of the swimmer
efficiency. The fast growth of the dissipation in the square cycle is
caused by the spheres approximating at an imposed constant speed vs,
overcoming the lubrication forces growing like 1=ðLi � 2Þ. These
sharp peaks are not present for the circular cycle because, in this case,
the contraction velocity of the arms goes to zero when the spheres are
at the shortest separation.

B. Averages quantities

To precisely quantify the differences between the PF approxima-
tion and the SD results, we have computed the mean velocity, hvi, and
the mean dissipated power, hPi, averaged over one period. With the
selected unit of time, the mean velocity and the mean dissipated power
are equivalent to the net displacement, D, and the dissipated power
per cycle, respectively. Figure 5 shows these quantities as a function of
the minimum distance between the sphere centers, l� d. As can be
seen in Fig. 5 for a swimmer with l¼ 8, the PF approximation overesti-
mates the velocity found by SD, both for SC and CC, and underesti-
mates the average power dissipation (inset of Fig. 5). We have also
analyzed the percentage error (difference) between the PF and SD
mean velocities, 100ðhvPFi � hvSDiÞ=hvSDi, in terms of the rest length
of the arms, l, and their highest compression l� d. These results are
summarized in Fig. 6, where the corresponding percentage-error map
is shown. Note that a value of l > 17 is required for a swimmer to
obtain an error smaller than 1% when using the PF approximation.
Even for a swimmer with l¼ 20, an error <1% is obtained for
extremely low compression, which are only possible for amplitudes
larger than d � 5. On the other hand, already for minimum separa-
tion as large as 4, the error may be larger that 20%. Summarizing the
PF approximation is only good for swimmers with large arm lengths, l,
and, simultaneously, large minimum sphere separations, l� d, com-
pared with the sphere radius (roughly, l� d larger than 15 for an error
<1%).

FIG. 2. Comparing Stokesian dynamics and the point force approximation: square cycle swimmers. The center of mass position, xcm, center of mass velocity, vcm, and the dis-
sipated power, P, as function of time, t, for three different square cycle swimmers. From left to right: column 1, l¼ 8 and d¼ 4. Column 2, l¼ 8 and d¼ 5.9. Column 3 l¼ 2.6
and d¼ 0.5. In all panels, solid blue lines correspond to Stokesian dynamics results and dashed red lines to the point force approximation.
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FIG. 3. Comparing Stokesian dynamics and the point force approximation: circular cycle swimmers. The center of mass position, xcm, center of mass velocity, vcm, and the dis-
sipated power, P, as function of time, t, for three different circular cycle swimmers. From left to right: column 1, l¼ 8 and d¼ 4. Column 2, l¼ 8 and d¼ 5.9. Column 3 l¼ 2.6
and d¼ 0.5. In all panels, solid blue lines correspond to Stokesian dynamics results and dashed red lines to the point force approximation.

FIG. 4. Net displacement in one cycle, D, for the SC swimmer as a function of the
total spheres relative displacement (2d) divide by the maximum arm length (lþ d).
For the PF (dashed red line) and SD (solid blue line) calculations, l þ d ¼ 25=3
was used, for consistency with lattice Boltzman (orange-squares) and MPC (pink-
circles) results taken from Ref. 36. The small deformation limit within the PF
approximation (dash-dotted green line) was obtained from Eq. (22) in Ref. 36.

FIG. 5. Average velocity and power dissipation (inset) for swimmers with l¼ 8 as a
function of the contracted-arm length, l� d. The shaded area represents volume
exclusion due to the finite size of the spheres. Dotted red and dash-dotted yellow
lines correspond to results for the CC swimmer obtained by SD and PF, respec-
tively. Solid blue and dashed green lines correspond to results for the SC swimmer
obtained by SD and PF, respectively.
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C. Efficiency

For studying the efficiency, e, of the swimmer, we use a definition
first introduced by Lighthill,53 which corresponds to the ratio between
the power dissipated when an external force moves the swimmer at a
given velocity and the power dissipated by the swimmer to propel itself
at the same velocity. In the particular case of the TLS, its shape, and
consequently the drag force, varies during a stroke cycle. For this rea-
son, we calculate the efficiency as

e ¼ Cðl; dÞ hvi2=hPi; (9)

where C(l, d) is the friction coefficient of a non-deforming TLS swim-
mer with arms rest length, l, and arm variation length amplitude, d, in
its most contracted state (L1 ¼ L2 ¼ l � d). With this choice, we cal-
culate a lower limit for the efficiency. Other authors54 suggest using an
average friction coefficient, corresponding to the time evolution of the
swimmer shape during the stroke. We prefer to use the less dissipative
configuration (the most contracted) to define the efficiency since the
shape changes are consequence of the swimming stroke. The coeffi-
cient C(l, d) was obtained within the same SD simulation scheme and
takes values between ð0:516 0:01Þ � 18p and 18p in units of ga, cor-
responding to the limits of three spheres in contact (l¼ 2 with d¼ 0)
and infinitely separated, respectively.

As it was shown in Fig. 5 for a swimmer with arm length l¼ 8,
both cycle types present an average velocity, hvi, and an average dissi-
pated power, hPi, that grow when the minimum sphere separation
(contracted arm length), l� d, decreases, reaching a maximum when
the spheres can touch. The corresponding point force approximation
results are also shown for comparison. The PF starts to overestimate
(appreciably) the average velocity and dissipated power for both sys-
tems when the contracted arm length is around 6. The faster growth
of hvi2 in relation to that of hPi produces also an increasing efficiency
for a larger d, as can be seen in Fig. 7 for both cycles. This growth of
the efficiency stops when d is large enough for the outermost spheres
to approximate the central sphere and almost touch it for a SC swim-
mer, and when d ¼ l � 2 for a CC swimmer. In the case of SC

swimmer, the lubrication forces produces a sharp increase in power
dissipation and a corresponding fall of the efficiency. This behavior of
the efficiency cannot be found using the PF approximation, because it
does not account for these forces and for this reason it produces the
most significant overestimation of the efficiency where the swimmers
are more efficient. In the inset of Fig. 7, it is possible to see that the
lubrication forces affect the efficiency of the two cycles in markedly
different ways. For the square cycle, the efficiency reaches a maximum
for swimmers that have a contracted arm length (l� d) around 2.1,
i.e., a gap between spheres approximately 10% of the sphere radius.
For the circular cycle, on the other hand, no maximum is observed,
and the efficiency grows monotonically as the contracted swimmer
size decreases. These different behaviors are produced by the different
relative velocities of the spheres when approaching each other. For the
square cycle, the approximation velocity is constant and equal to vs,
while for the circular cycle, it goes to zero as a sine function.

The efficiencies as a function of the amplitude, d, for different
values of the arm length, l, are shown in Fig. 8 as thin gray lines. Note
that for a given value of l, d can take values between 0 and l� 2 and
that we have plotted here only the region where the efficiency grows
with d, truncating the (gray) lines when they reach the respective max-
imum efficiency. Connecting the highest efficiency points for each l, it
is possible to build a curve of the maximum efficiency of the swimmer
as a function of d (for each d there is a system with l � d þ 2 that has
the maximum possible efficiency). This curve is interesting because it
allows to visualize how the swimmer size does affect its ability to
swim. In Fig. 9(a) comparison of this function for both SC and CC
cycle swimmers is presented. Notably, the two cycles studied present
markedly different behaviors. In the case of the circular cycle, the effi-
ciency of the best swimmer with a given l grows almost linearly for
small swimmers, then has its maximum at d¼ 8, and finally decays
monotonically for larger swimmers. The square cycle, on the other
hand, does not show an optimum size and has an efficiency, �, that
monotonically grows and tends asymptotically to a value slightly over

FIG. 6. Percentage error (difference) map of hvi obtained by PF with respect to
SD, for a CC swimmer. The triangular domain is defined by l � d � 2 required by
volume exclusion and d � 0.

FIG. 7. Efficiencies of a swimmer with l¼ 8 as a function of the amplitude, d. Solid
blue line and dotted red line correspond to SC and CC, respectively, calculated
using SD. Dashed green line and dot-dashed yellow line show the overestimation
of the efficiency for the square and circular cycles, respectively, calculated using
PF approximation. The shaded area represents volume exclusion. Inset: different
behavior of the SC and CC for spheres close to contact.
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0.0021. Due to these two distinct behaviors of the most efficient
swimmers, it would be preferable to build large swimmers using a
square cycle rather than a circular cycle, but in the case of small
swimmers, the specific shape of the cycle seems to be less important.

IV. CONCLUSIONS

We have systematically studied by implementing SD simulations,
the dynamics of the TLS swimmer for a wide range of parameters, and
two different swimming cycles and compared the results with the ana-
lytic point force approximation. Furthermore, the efficiency of the
swimmer was analyzed and the optimum parameters were identified.
The point force approximation describes reasonably well the dynam-
ics, as long as the spheres do not come into close contact, where the
strong lubrication forces start to play a dominant role. This has been
quantitatively analyzed, and the results presented in a figure show the

percentage difference in the mean velocity between point force
approximation and the SD solution, as a function of the size of the
arms and the minimum separation of the spheres.

Our study has shown that the velocity and the dissipated power
grow for a given size of the arms, l, when the minimum separation,
l� d, decreases. Furthermore, the mean velocity and the mean dissi-
pated power in one cycle are larger for the SC cycle, for any value of d.
This result alone is not sufficient to decide which cycle is most efficient
since a larger velocity has a larger energetic cost.

Considering the most efficient swimmer for a given amplitude, d,
we have shown that the two studied swimming cycles have nearly the
same efficiency as long as d � 8 and that for larger separations (i.e.,
also larger swimmers), the SC cycle results more efficient than the CC.

By summarizing, we have shown that the SD simulation scheme
is an appropriate tool to study the dynamics and efficiency of artificial
swimmers, in particular those constituted by spherical particles. The
precise description of the hydrodynamic interactions can be of rele-
vance for boosting the study and design of more complex and efficient
micro-swimmers or micro-machines with individual constitutive parts
of finite size, that can come very close, positioning indeed Stokesian
Dynamics as a valuable tool for these purposes. Visualizing its promis-
ing applications as natural ongoing steps, we are studying interaction
between two or more TLS swimmers and more complex micro-
swimmer models composed of hundreds of spheres.
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