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Methodology for Fast Calculation of Impedance
Matrix of Power Transformers for High Frequency

Transient Studies
Guillermo A. Diaz, Enrique E. Mombello, Jhon Perez G. and Hans K. Høidalen

Abstract—Power transformers are exposed to a variety of
disturbances that may jeopardize their lifespan and the safe
operation of the power system. The transient behavior of the
transformer can be assessed by means of white-box models. The
main prerequisite for the development of the white-box model is
the frequency-dependent impedance matrix of the transformer.
The main obstacle that restricts the use of white-box models
at industrial level lies in the computation of the impedance
matrix, since this calculation requires magnetic-field numerical
simulations, which demand disproportionate calculation times
when performed with traditional techniques such as the finite
element method (FEM). That is why this paper proposes a
new methodology for the fast calculation of the frequency-
dependent impedance matrix of power transformers, which
produces matrices suitable for the development of accurate
white-box models. The proposed methodology was validated
on a real 50 MVA transformer. Two white-box models were
elaborated, one from the impedance matrix calculated with the
proposed method and other using the matrix obtained with FEM.
Excellent agreement was found between the transient response
measurements and the response obtained with both models,
however the proposed method reported a drastic reduction in
computation time compared to FEM.

Index Terms—Power transformer, electromagnetic transients,
impedance matrix, white-box model, Mesh-Free Method, FEM.

I. INTRODUCTION

The transformer is undoubtedly one of the most important
elements of the power system due to its high replacement
cost and the serious operational problems that arise when a
unit fails. This is why the transformer must be designed to
withstand various disturbances from the network to which
it may be subjected during its operation. Among the most
studied disturbances are overvoltages caused by atmospheric
discharges and those due to switching in the power network.
Although transformers are designed taking into account the
existence of these disturbances and are tested to determine
their withstand to these phenomena, cases of failure have been
reported in transformers that had successfully passed these
tests. That is why a CIGRE working group [1], [2] was created
to determine the possible causes of failure in these situations
and to formulate strategies to prevent or at least mitigate the
damage to the power transformer.
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One of the most important conclusions of the CIGRE
A2/C4.39 working group is that these faults can only be
explained if the phenomenon of resonance produced by the
interaction of the network with the transformer is considered.
As a consequence, there is a need to create new and more
detailed high frequency models of the power transformer in
order to correctly represent this type of transient phenomena.
In response to this need, a state-space white-box model
suitable for accurate modeling of transformer interaction with
the power network under high frequency transient phenomena
has been proposed recently in [3]. The main advantage of
this model is its ability to consider the frequency dependence
of the inductive impedances of the transformer. This is of
primary importance to adequately represent the damping,
making the model suitable to evaluate the severity of transient
phenomena even under resonant conditions. This model has
been developed in the framework of a more recent working
group identified as JWG CIGRE A2/C4.52.

The methodology proposed in [3] to obtain the white
box model of the power transformer can be summarized as
follows: a. Subdivision of the transformer into m branches
and preparation of the geometrical model for magnetic and
electric field calculations. b. Calculation of the impedance
matrix (inductive-resistive) Z(ω) as a function of frequency
at a set of the selected frequencies. The impedance matrix is
a hypermatrix of size m×m×nf where nf is the total number
of frequencies to be considered. c. Robust fitting of the partial
fraction expansion from the matrix Z(ω) using vector fitting
and PSO (Particle Swarm Optimization). d. Calculation of the
capacitance and conductance matrix. e. Synthesis of the state-
space model.

Once the model has been obtained, it is possible to calculate
the transformer response to various transient phenomena using
EMTP software or by means of the numerical solution of the
differential equation system of the state space model. Despite
the high accuracy of the state-space model, there are still some
difficulties to overcome before these models can be adopted
by the industry.

In the methodology to obtain the white box model of the
transformer described above, the most computationally de-
manding step corresponds to the calculation of the impedance
matrix as a function of frequency. This is because a number of
m ·nf magnetic simulations must be performed, and for each
of them the induced voltage in each of the branches has to be
calculated. Due to the complexity of the transformer geometry
this calculation is usually performed using the Finite Element
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Method (FEM) [4].
As a result of the large number of simulations to be

performed and the fact that FEM subdivides the entire problem
domain, the calculation of the impedance matrix may take an
excessive amount of time to complete. Although it is possible
to use a computer cluster to reduce computational time as
reported in [5], not all transformer manufacturers currently
have such computational resources, therefore research on new
methods to speed up these calculations is of great value to the
industry.

This is why a new approximate method is needed to
compute the frequency-dependent impedance matrix with a
more reasonable calculation time and preserving the suitability
of the white-box model to calculate electromagnetic transients.
Because of this, the main purpose of this work is the develop-
ment of a methodology for a faster calculation of the power
transformer impedance matrix taking into account relevant
factors in high frequency modeling such as the effect of the
core on the leakage flux and the frequency dependence of
losses in materials such as in the copper of conductors and in
the iron core.

The calculation of impedance matrix parameters has been
studied for decades in previous works. One of the first works
addressing this subject is the one by Wilcox et al [6]. In
this work an analytical formula is proposed that allows the
determination of the impedances of the transformer windings
considering the frequency dependence of these parameters.
The effect of the iron core was considered, nevertheless the
skin and proximity effect were not taken into account.

Subsequently, De Leon proposes in [7] a methodology
for calculating transformer stray inductances using the image
method without consideration of losses. In a subsequent work
De Leon includes the frequency dependence of the losses [8].

One of the most important advances in this field was made
by Moreau in [9] introducing the analytical formulas for the
calculation of the complex permeabilities needed for equiv-
alent modeling of conductors in 2D static FEM simulations.
This allowed the calculation of the impedance matrix without
the need to perform full-eddy simulations.

In this same vein, Bjerkan obtains the parameters of a real
20 MVA transformer from 2D axisymmetric FEM simulations
using the proprietary software called SUMER [10]. In [11] it
is reported that using SUMER the time to obtain a matrix at
a single frequency may take from 20 minutes to a few hours
depending on the complexity of the transformer.

After Moreau’s work [9], the use of FEM for impedance ma-
trix calculation has become virtually standard in the magnetic
modeling of high-frequency power transformers [12], [13].
Despite this, no research has been found that directly addresses
the problem of the efficient calculation of the impedance
matrix, which is the main motivation for the present research
work.

The main contributions of this work are: a. A mesh-free
model is proposed for quasi-stationary magnetic modeling of
the power transformer through the combined use of surface
currents and complex permeabilities. b. From matrices derived
from the magnetic model, a novel and efficient methodology
for the calculation of the impedance matrix is proposed. c. An
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Fig. 1. Proposed equivalent model of conductors.

excellent agreement was found between the results obtained
with the proposed methodology and measurements in a real
50 MVA transformer. d. The calculation time of the proposed
methodology reported a substantial improvement with respect
to the calculation time using FEM.

II. DESCRIPTION OF THE PROPOSED MODEL

In order to obtain the impedance matrix, it is essential to
have a suitable equivalent magnetic model of the transformer.
Some of the difficulties encountered with FEM in meeting this
objective are described and how these issues are overcome
with the proposed model.

A. Equivalent magnetic model of conductors

Fig. 1(a) shows the current distribution of a typical conduc-
tor at a frequency of 100 kHz. This single wire was taken from
a larger arrangement of conductors in a power transformer
winding. The final current density distribution is determined
by the skin effect and the proximity effect. As the frequency
increases the current density exhibits a strong tendency to
increase near the outer boundary of the conductor due to the
skin effect. This means that beyond certain frequencies, the
current distribution in the conductors is similar to that shown
in Fig. 1(a).

As can be seen, this is a non-uniform current distribution on
the conductor cross-section, although it can also be seen that
the current density in the interior of the conductor tends to be
uniform, while the current density near its surface tends to be
non-uniform. This current distribution suggests the possibility
of approximately representing the conductor by superimposing
a non-uniform surface current on its surface, and a uniform
current distribution in its interior as shown in 1(b).

Fig. 2(a) shows the finite element mesh produced by Ansys
Maxwell software at 100 kHz on the same conductor. As can
be seen, there is an increased element density near the surface
of the conductor in order to capture the non-uniformity in the
current distribution. This is a major problem, since a power
transformer can be designed with thousands of conductors,
thus producing a mesh with millions of triangular elements,
which makes the problem almost impossible to solve with
traditional computational resources.
To overcome some of these problems, it is possible to use the

concept of complex permeability in conjunction with FEM,
thus avoiding full eddy simulations with ultra fine meshes
at high frequencies. However, the internal subdivision of
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conductors (in addition to the core and the free space) is
still necessary, persisting the problem of the huge size of the
equations system.

In order to considerably improve computational efficiency
without significantly compromising the accuracy of the solu-
tion, a new equivalent conductor model has been proposed
as shown in Fig. 2(b). This equivalent model consists of a
set of surface elements with linear surface current density
distribution surrounding the outer boundary of the conductor.
Regarding the internal region of the conductor, a uniform vol-
ume current distribution has been placed. Both surface currents
and volume currents are unknown at the beginning of the
solution process, therefore it is necessary to rely on a suitable
representation compatible with the proposed conductor model
to be able to determine the unknown quantities. This suitable
representation will be achieved through the combination of
the complex permeability model with the equivalent model of
magnetic materials using surface currents.

The main idea of the complex permeability model is to
replace an anhysteretic solid conductor with real isotropic
permeabililty µ ≈ µ0 by a hysteretic material with complex
anisotropic permeability µ = diag(µ(r), µ(z)) that leads to the
same active and reactive power as the solid conductor [9].
Since in the complex permeability model the current density
is uniform inside the conductor, this allows the interior of the
conductor to be represented by a uniform volume current as
shown in Fig. 2(b).

Regarding the equivalent model of magnetic materials using
surface currents, the fundamental idea behind this technique is
to replace a solid magnetic material by an equivalent surface
current distribution such that the magnetic field of the new
arrangement (using surface currents) is equivalent to that of
the original one. Assuming initially a magnetic material with
real and isotropic relative permeability µ, its equivalent model
with surface currents must satisfy the following relationship
on the boundary that separates the magnetic material from the
free space [14]

n̂× H⃗ = γ · K⃗ (1)

where H⃗ = Hr r̂ + Hz ẑ is the magnetic field strength in A/m,
K⃗ = kϕ̂ is the surface current in A/m, n̂ = n(r)r̂+n(z)ẑ is the
normal vector to the surface always pointing towards the free
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Fig. 2. (a) Finite element mesh of a typical conductor @ 100 kHz. (b)
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Fig. 3. (a) Group of conductors with the same properties and dimensions.
(b) Winding segment with homogenized complex permeability.

space, γ = (1/2)(1 + µ)/(1 − µ) is a constant that depends
on the relative permeability of the magnetic material and r̂, ẑ
are unit vectors in radial and axial direction respectively. In
general, all underlined quantities represent complex numbers
and axisymmetric geometry will be considered in this paper.
The complete derivation of (1) from the Ampere’s law can be
found in [14]. As can be seen in (1), the material constant
γ is real and isotropic, therefore this expression needs to be
extended for the complex anisotropic case which is achieved
as follows

n̂× H⃗ = 1T
2 ·

{
(Υ · J2) · η◦2} · K⃗ (2)

where Υ = diag(γ(r), γ(z)) is a tensor with the complex
constants of the magnetic material in radial and axial di-
rections, η = [n(r);n(z)] is a column vector with normal
vector components, J2 = [0, 1; 1, 0] is the exchange matrix of
order 2, 12 is the ones vector of size 2× 1, T represents the
transpose operation and ◦2 denotes the 2nd Hadamard power.
The magnetic material constants in each direction are given
by

γ(r) = (1/2)(1 + µ(r))/(1− µ(r))

γ(z) = (1/2)(1 + µ(z))/(1− µ(z))

where µ(r) and µ(z) are the relative complex permeabilities
in radial and axial direction respectively. According to the
complex permeability model [9], the relative complex perme-
abilities can be calculated using

µ(r) =
µm

µ0h′ ·
sinhh′ + sinh′ − j (sinhh′ − sinh′)

coshh′ + cosh′ (3)

µ(z) =
µm

µ0w′ ·
sinhw′ + sinw′ − j (sinhw′ − sinw′)

coshw′ + cosw′ (4)

where h′ = h/δm, w′ = w/δm, j =
√
−1, h and w

are the conductor’s height and width respectively. δm =
1/
√
fµmσmπ is the skin depth of the material and f is the

frequency of the simulation in Hz. µm and σm are the absolute
permeability and electric conductivity of the actual material.

B. Equivalent magnetic model of winding segments

A power transformer can easily be composed of several
thousand conductors, making the representation of all of them
a rather difficult problem to solve in computational terms.
A common practice to simplify the problem is to group the
conductors into segments that are magnetically equivalent
to the original set of conductors. This grouping is usually
referred to in the literature as homogenization. At the same
time, a group of segments constitutes a branch. The following
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expressions are used to calculate the homogenized relative
complex permeabilities of a winding segment [9], [15]

µ̃(r) =
dr + w

dr +
w(h+dz)
µ(r)h+dz

, µ̃(z) =

h+dz

dr
+ dz

w + h
µ(z)w

w+dr

dr

(
dz

w + h
µ(z)w

) (5)

where dz/2 is the thickness of the insulating paper of the
conductor and dr is the radial spacing between conductors
(metal to metal) as shown in Fig. 3 (a). µ(r) and µ(z) are the
relative complex permeabilities of a single conductor. To group
conductors successfully in a winding segment they must have
the same dimensions, the same material and they must be close
together. When there is a cooling duct between two groups
of conductors, it is advisable to group them in two separate
segments. Fig. 3 shows how a set of conductors is grouped
into a winding segment. Fig. 3(b) shows the approach used to
define the size of the homogenized winding segment from the
dimensions of the conductor arrangement and the correspond-
ing homogenized permeability tensor µ̃ = diag(µ̃(r), µ̃(z)).
Fig. 3(a) and Fig. 3(b) also show the coordinates of the center
of the conductors (ρ1, ρ2, · · · , ρi), which will be used later to
determine the induced voltage in each conductor.

C. Equivalent magnetic model of the core

The core model uses basically the same principles as the
conductor model (complex permeability + surface currents) in
order to represent the frequency dependence of the losses in
the magnetic steel. The difference is that there are no imposed
external currents in the core. Considering this fact, the core can
be represented by means a distribution of equivalent surface
currents provided that the these surface currents satisfy the
boundary equation (2), where in this case µ(r) and µ(z) stand
for the complex permeabilities of the core.

The calculation of the complex permeabilities of the core is
straightforward using the expressions (1) and (2) available in
[16]. Once the complex permeabilities have been calculated,
they are multiplied by stacking factor kfe to obtain the
effective complex permeability of the core. In the proposed
model the core is represented by means of an arrangement of
surface currents as shown in Figure 4.

D. Equivalent magnetic model of the transformer

The transformer is divided into g winding segments, which
represent in an equivalent manner a group of conductors. Each
winding segment is composed of an arrangement of surface
currents and a volume current as shown in Fig. 4. On the
other hand, the transformer core is represented by an array of
surface currents as shown in Fig. 4. The transformer model is
composed of three types of elements: a. Surface currents, b.
volume currents and c. dummy elements.
a. Surface currents represent currents flowing close to the
surface of the conductors. Surface currents are also used to
represent the effect of the transformer core on the magnetic
field. b. The volume currents represent the remaining current
that does not flow near the surface of the conductor. Each
winding segment has an accompanying volume current. c.
Dummy elements are always located at the corners of the
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Fig. 4. General model layout. Segments size and corners have been exagger-
ated for better comprehension.

segments, they do not produce any magnetic field but they
provide a very convenient way to obtain a consistent indexing
of elements and field points. They also allow to avoid in a
straightforward way the singularity that occurs at the corners
of the rectangular segments. A dummy element is placed in
the central axis of the core and also in each of its corners.

In addition to the elements, the transformer model also
includes field points on which the boundary conditions are
evaluated. There is a field point at each of the edges of each
surface element. There is also a field point at the center of
each conductor as shown in Fig. 3, which will be used later
to calculate the induced voltages.

III. MATHEMATICAL FORMULATION OF THE EQUIVALENT
MAGNETIC MODEL OF THE TRANSFORMER

The main objective of this section will be to provide a
mathematical formulation to calculate the magnetic vector
potential in conductors. The magnetic vector potential in each
conductor will be the fundamental piece for the calculation of
each element of the impedance matrix.

A. Unknowns of the Model

As shown in Fig. 4, the variables for nodal surface current
densities k1 · · · kp and volume currents i1 · · · im are presented
schematically. For example for an arbitrary surface element
sj the nodal surface current densities at its edges are kj and
kj+1. The surface current density varies linearly from one
edge to the other of each element allowing a smooth variation
of the surface current along the surface of the core and
winding segments [17]. The transformer model is composed
of p surface elements in total. The first surface element is
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s1 which corresponds to a surface current belonging to the
1st winding segment, while the last surface element is sp
which corresponds to a dummy element belonging to the core
as shown in Fig. 4. The numbering of surface elements and
nodal surface current densities is assigned counterclockwise.
An example of numbering in a case of two winding segments
is shown in Fig. 12 of Appendix for better understanding. We
define the vector k which contains the nodal surface current
densities in A/m as follows

k =
[
k1, k2, · · · , kp

]T
k is a vector of size p × 1. The volume currents represent
the fraction of the current that does not flow on the conductor
surface and are stored in the following vector

i =
[
i1, i2, · · · , ig

]T
i is a vector of size g × 1. All the unknowns of the problem
are arranged in the following column vector

x =
[
k; i

]
(6)

B. Known data of the model

Each winding segment is comprised of an arrangement
of surface currents and a volume current. The total current
(surface + volume) of the κ-th segment is denoted as Iκ. The
model is composed of g winding segments. This current is
assumed to be known for all segments. The currents of the
winding segments are stored in the vector I

I =
[
I1, I2, · · · , Ig

]T
(7)

C. Boundary Conditions

In the following sections an equation system will be formu-
lated such that the following boundary conditions are fulfilled:
a. Equation (2) must be satisfied at the boundary of the
winding segments and at the boundary of the core with free
space. b. The total current of a winding segment must satisfy
the current specified in vector (7).

D. Magnetic Effects on Surface Elements

As shown in Fig. 4, each field point has a corresponding
normal vector which can be written in terms of its radial
and axial components, the normal vector related to the i-th
field point is defined as n̂i = n

(r)
i r̂ + n

(z)
i ẑ. The radial and

axial components of normal vectors are stored in nr and nz

respectively as follows

nr =
[
n
(r)
1 , · · · , n(r)

p

]T
,nz =

[
n
(z)
1 , · · · , n(z)

p

]T
(8)

The magnetic field intensity produced by the j-th surface
element on the i-th field point is defined as follows

H⃗
(s)

i,j =
(
ai,jkj + a′i,jkj+1

)
r̂ +

(
bi,jkj + b′

i,jkj+1

)
ẑ

for j = 1 · · · p and i = 1 · · · p (9)

where ai,j , a′
i,j , bi,j and b′i,j are called geometric factors

as they only depend on the dimensions and location of the
element that produces the field and on the coordinates of the

field point. In general, geometric factors are real numbers
and they can be calculated efficiently with mathematical
formulations proposed in prior works [17], [18], [19]. All
geometric factors related to Dummy elements are null be-
cause they do not contribute to the magnetic field, therefore
ai,d = a′i,d = bi,d = b′i,d := 0 for d ∈ D ∀i .

On the other hand, each volume current also produces a
magnetic field on the field points of the surface elements,
therefore we define the magnetic field intensity due to the
j-th volume current on the i-th field point as follows

H⃗
(c)

i,j = ci,j ij r̂ + di,j ij ẑ for j = 1 · · · g and i = 1 · · · p (10)

where ci,j and di,j are geometric factors which can be found
using formulas for the magnetic field produced by a massive
ring of rectangular cross section available in [20] section 3.3.3.

The surface currents are governed by the boundary condition
(2), therefore for the particular case of i-th field point this
expression can be written as follows

n̂i × H⃗i = 1T2 ·
{
(Υi · J2) · η◦2

i

}
· K⃗i for i = 1 · · · p (11)

where Υi = diag(γ(r)
i

, γ(z)
i

), γ(r)
i

= (1/2)(1 + µ(r)
i

)/(1 −
µ(r)
i

), γ(z)
i

= (1/2)(1+µ(z)
i

)/(1−µ(z)
i

) and ηi = [n
(r)
i ;n

(z)
i ].

For the sake of simplicity, we define

γ
i
:= 1T

2 ·
{
(Υi · J2) · η◦2

i

}
(12)

It should be noted that µ(r)
i

:= µ̃(r)
κ

and µ(z)
i

:= µ̃(z)
κ
∀i ∈ Kκ

for κ = 1 · · · g where µ̃(r)
κ

and µ̃(z)
κ

are calculated as indicated
in section II-B. This work will consider that H⃗i and K⃗i are to
be evaluated at the matching point between elements, therefore
the surface current density of i-th element can be expressed
as follows

K⃗i = kiϕ̂ (13)

On the other hand, the total magnetic field on the i-th field
point can be written as follows

H⃗i =

p∑
j=1

H⃗
(s)

i,j +

g∑
j=1

H⃗
(c)

i,j =

p∑
j=1

{ (
ai,jkj + a′

i,jkj+1

)
r̂

+
(
bi,jkj + b′

i,jkj+1

)
ẑ

}

+

g∑
j=1

{
ci,j ij r̂ + di,j ij ẑ

}
for i = 1 · · · p (14)

Combining (11), (13) and (14), performing the vector products
between unit vectors and rearranging, the following expression
is obtained

ϕ̂

p∑
j=1

 kj
(

ai,jn
(z)
i − bi,jn

(r)
i − γ

i
δi,j

)
+kj+1

(
a′i,jn

(z)
i − b′

i,jn
(r)
i

) 
+ ϕ̂

g∑
j=1

{
ij
(
ci,jn

(z)
i − di,jn

(r)
i

)}
= 0 for i = 1 · · · p (15)

where δi,j is the Kronecker delta function. Taking aside the
unknown variables, the first sum in (15) can be written in
matrix form as

F =
[
a ◦

(
nz · 1T

p

)
− b ◦

(
nr · 1T

p

) ∣∣ 0p

]
(16)

+
[
0p

∣∣ a′ ◦
(

nz · 1Tp
)
− b′ ◦

(
nr · 1Tp

)]
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where the matrices a = (ai,j)p×p, a′ = (a′i,j)p×p, b =
(bi,j)p×p, b′ = (b′i,j)p×p store the geometric factors and
F ∈ Rp×p+1. 0p and 1p are zeros and ones column vectors of
dimension p×1 respectively. ◦ denotes the Hadamard product
(element-wise product) while · denotes the normal matrix
product and the vertical bar denotes matrix concatenation.
It should be noted that the material constants γ

i
are still

missing in (16) and will be included later in the equation
system (23). The expression (16) will produce an additional
p + 1-th column in F related to kj+1 when j = p. The last
column (f∗,p+1) of F is discarded and the result is assigned
to the surface interaction matrix Ms. This is denoted as
Ms = F−

∗,p+1. Matrix Ms ∈ Rp×p represents all the magnetic
effects produced by the surface elements between and on
themselves.

On the other hand, the second sum in (15) can be written
in matrix form as follows

Mc = c ◦
(

nz · 1T
g

)
− d ◦

(
nr · 1T

g

)
(17)

where c = (ci,j)p×g and d = (di,j)p×g . Matrix Mc ∈ Rp×g

represents all the magnetic effects of volume currents on
surface elements.

E. Total current in winding segments

Each winding segment must satisfy Ampere’s law, therefore
the following relationship must hold for the κ-th segment∮

Γκ

H⃗ · d⃗l = Iκ for κ = 1 · · · g (18)

These relationships also imply that the total current enclosed
by the amperian contour must be equal to the segment current.
Considering that the surface elements have a linear surface
current distribution, it can be shown that the current of the
j-th surface element can be calculated as follows

i(s)j = lj
kj + kj+1

2
where j ∈ Kκ and κ = 1 · · · g (19)

where lj is the length of j-th surface element, K =
{1, 2, · · · , p} is the set with the indexes of the surface elements
and Kκ (where Kκ ⊂ K) is the subset of surface elements in
segment κ. The total current of the κ-th segment can be written
as follows

Iκ = iκ +
∑
j∈Kκ

i(s)j for κ = 1 · · · g (20)

It should be noticed that K have g+1 valid subsets where the
subset Kg+1 is reserved for the indexes of surface elements
belonging to the core.

Remembering that dummy elements do not contribute to
the magnetic field and their length in practical terms is close
to zero, we define D (where D ⊂ K) as the set of dummy
elements indexes, this leads to ld := 0 ⇒ i(s)d = 0 ∀ d ∈ D.
Introducing (19) in (20) and rearranging∑

j∈Kκ

(
ljkj + ljkj+1

)
+ 2iκ = 2Iκ for κ = 1 · · · g (21)

Writing (21) in matrix form

ℓ · k + 2 · Ig · i = 2 · I (22)

where ℓ is a matrix of dimension g × p which contains the
lengths of all surface elements. The lengths of the elements
belonging to winding segments are arranged consistently with
expression (21). Ig is the identity matrix of size g×g. It should
be noticed that in the context of expression (22) the surface
elements of the core shall not be taken into consideration,
therefore it is defined lj := 0 ∀ j ∈ Kg+1. This means that
the elements of the core must not meet any special condition
with regard to the total current.

F. Equation System Formulation

Assembling equations (16), (17) and (22) the following
linear system of equations is obtained[

Ms − γ Mc

ℓ 2 · Ig

]
·
[

k
i

]
=

[
0p

2 · I

]
(23)

where γ stores the material constants in a diagonal matrix
defined as γ = diag(γ

1
, · · · , γ

p
). Notice that at least one

element of I must be non-zero to obtain a non-trivial solution.
In compact form the system is as follows

Msys · x = bsys (24)

Since the system (24) is to be solved m times for a given
frequency, it is more convenient to obtain its solution as x =
M−1

sys ·bsys. It is true that the calculation of the inverse matrix
has a higher computational cost than solving a linear system of
equations, however the advantage of solving the problem this
way is that the inverse is computed once at a given frequency
and then is reused m times for the different states of vector
bsys. This strategy produces a significant reduction in total
computation time especially when m is large, which is usually
observed in power transformer modeling.

G. Calculation of the magnetic vector potential in conductors

As will be seen in the next section, the magnetic vector
potential in the conductors will be required for the calculation
of the voltage in the conductors. Once the equations system
(23) has been solved, the nodal surface current densities k
and the volume currents of winding segments i are available.
Consider the diagram in Fig. 3 (a). A field point has been
placed at the center point of each conductor denoted as ρi for
i = 1 · · · q where q is the total number of actual conductors.
The total magnetic vector potential in the i-th conductor
A⃗i = Aiϕ̂ is composed by the contributions of the surface
and volume currents. The magnetic vector potential produced
by j-th volume current on the i-th field point can be expressed
as follows

A(c)
i,j = ei,j ij for j = 1 · · · g and i = 1 · · · q (25)

where ei,j is the magnetic vector potential geometric factor
produced by a volume current in a field point and it can be
calculated as described in [20] section 3.3.3. Similarly the
magnetic vector potential produced by the j-th surface element
on the i-th field point

A(s)
i,j = oi,jkj + o′

i,jkj+1 for j = 1 · · · p and i = 1 · · · q (26)
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where oi,j and o′i,j are magnetic vector potential geometric
factors produced by a surface current in a field point and they
can be calculated as described in [17], [18], [19]. Therefore
the magnetic vector potential at the center of the conductor
i-th conductor is

Ai =

p∑
j=1

(
oi,jkj + o′i,jkj+1

)
+

g∑
j=1

(
ei,j ij

)
for i = 1 · · · q

(27)
The matrix O is defined as O =

[
o
∣∣ 0q

]
+

[
0q

∣∣ o′] where
the matrices o = (oi,j)q×p, o′ = (o′i,j)q×p store the geometric
factors between surface currents and field points. The mag-
netic vector potential at the center of each conductor can be
calculated using the following matrix expression

A =
(
O−

∗,p+1

)
· k + e · i (28)

where the matrix e = (ei,j)q×g stores the geometric factors
between volume currents and field points, O−

∗,p+1 is equal to
matrix O but discarding the last column and A is a column
vector of size q× 1 which stores magnetic vector potential at
the center point of each conductor.

IV. CALCULATION OF THE IMPEDANCE MATRIX

This section will present the methodology for the calculation
of the impedance matrix from the magnetic solution obtained
in the previous section.

A. Voltage in branches

The induced voltage in a conductor is given by v = j2πrωA,
therefore it can be written in a general form for all the
conductors

v = j4π2f · r ◦ A (29)

where r = [r1, · · · , rq]T is a column vector that stores the
mean radii of all conductors and f is a given frequency.
Let’s define S = {1, 2, · · · , g} as the set with the indexes
of winding segments and Sτ (where Sτ ⊂ S) is the subset
of segments in branch τ for τ = 1, 2, · · · ,m. We also
define W = {1, 2, · · · , q} as the set with the indexes of
the conductors and Wκ (where Wκ ⊂ W) is the subset of
conductors in winding segment κ for κ = 1, 2, · · · g. For the
purpose of impedance matrix calculation, 1 A is injected in one
branch and 0 A in the rest of the branches. It is assumed that all
conductors in a branch have the same current. Therefore, the
voltage of a branch is the sum of the voltages of the conductors
belonging to the segments of that branch.

Vτ =
∑
j∈Sτ

∑
i∈Wj

vi for τ = 1 · · ·m (30)

In matrix form the branch voltages are stored as follows V =
[V1, · · · ,Vm]T . Similarly, the branch currents are stored in the
vector I(b) = [I(b)1 , · · · , I(b)m ]T while N = [N1, · · · ,Nm]T is the
vector containing the number of parallel conductors per turn
of each branch.

B. Methodology for the calculation of the impedance matrix
at a set of frequencies

Considering that the resistive and inductive elements of
the impedance matrix have a relatively smooth variation with
frequency, this allows for a discrete sweep over a specific
set of selected frequencies. We define the frequency set as
f =

{
f1, f2, · · · , fnf

}
. The impedance matrix is then defined

as Z = (Zi,j,k)m×m×nf
. The methodology for the calculation

the impedance matrix is presented in Algorithm 1. It is impor-

Algorithm 1 Proposed methodology for Z calculation
1: Discretize using surface elements and volume currents.
2: Assign indexes to elements. Populate: K,Kκ,D
3: Group conductors into segments. Populate W,Wκ

4: Group winding segments into branches. Populate S,Sτ
5: Populate: nr,nz, ℓ, r
6: Calc. matrices: a, a′,b,b′, c,d, e, o, o′
7: Calc. matrices: ,F,Ms,Mc,O
8: for k ← 1 to nf do
9: f ← fk

10: Calc. complex permeabilities @ f
11: Update matrices: γ,Msys

12: G←M−1
sys ▷ Compute inverse matrix

13: for j ← 1 to m do
14: I(b)∗ ← 0; I(b)j ← 1 ▷ Set branch currents
15: [k; i]←∑

κ∈Sj [2 ·G∗,p+κ · n(Wκ)]
16: Calc. conductor vector pot. A using (28)
17: Calc. conductor voltages v using (29)
18: Calc. branch voltages V using (30)
19: for i← 1 to m do
20: Z← Vi ÷ I(b)j

21: Zi,j,k ← Z÷N2
j

22: end for
23: end for
24: end for

tant to make a remark about the solution of the equation system
for each state of the vector bsys. In general, for each state of
vector bsys one should solve the matrix product M−1

sys · bsys,
however one can take advantage of the strong sparsity of
vector bsys. Instead of performing the product of a dense
matrix by a sparse vector, it can be shown that the solution of
the equation system for the j-th state of the vector bsys can
be computed as

∑
κ∈Sj [2 ·G∗,p+κ · n(Wκ)] where n(Wκ)

denotes the cardinality of the subset Wκ . This can be seen in
line 15 of Algorithm 1. Once the impedance matrix has been
obtained, the self-resistance and self-inductance components
(Rs and Ls) are to be added to the diagonal elements as
described in [9].

V. RESULTS AND VALIDATION

A. Description of the case study

The case study is a 50 MVA single-phase transformer
with rated voltages 230/

√
3, 69/

√
3, 13.8 kV at 60 Hz

manufactured by WEG in Mexico. The winding arrangement
is composed of three main windings (LV, TV and HV) plus a
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Fig. 5. Single phase transformer connection diagram. The positions of selector
k and tap for H0 are indicative and may change according to the connection
configuration.

regulating winding (RW) as shown in Fig. 5. Detailed informa-
tion on this transformer can be found in [21]. This transformer
has been the subject of a extensive measurement campaign
by the CIGRE JWG A2/C4.52 with the aim of evaluating the
accuracy of various high-frequency models. The most relevant
information regarding the tests and measurements performed
in the case study is available in [22]. The detailed design
information and data of transient measurements are available
at [21].

B. Calculation of the impedance matrix for the case study

For the calculation of the impedance matrix, the transformer
conductors were grouped into 213 branches. The discretiza-
tion of the top winding assembly using surface elements is
presented in Fig. 6(a). As can be seen, the proposed method

Fig. 6. Discretization of the top winding assembly of the case study by means
of the proposed methodology [left panel] (a) and FEM [right panel] (b).

is a mesh-free model which means that neither the air nor
the interior of the winding segments need to be subdivided
with elements. Inside the winding segments the center of each
conductor is marked by an ‘x’ as shown in Fig. 3. It is at these
points where the magnetic vector potential is calculated.

With regard to frequency, a logarithmic sweep of 4 frequen-
cies per decade was considered, obtaining the following set of
frequencies f = { 0.05, 0.1, 0.18, 0.32, 0.56, 1, 1.8, 3.2, 5.6,
10, 18, 32, 56, 100, 180, 320, 560, 1000 } × 103 Hz for a
total of 18 frequencies. The impedance matrix was computed
using Algorithm 1 which led to a complex matrix (Zprop) of
size 213× 213× 18.

Furthermore, the impedance matrix was also calculated with
FEM (Zfem) using FEMM software [23] by applying 1 A to

1 2 3 4 5 6 7 8

105

-12

-10

-8

-6

-4

-2

0

2

4

Fig. 7. Relative error of the impedance matrix calculated with the proposed
methodology compared to the finite element calculation.

each branch at a time and then the voltage in all branches
was determined. This process required a total of 3834 FEMM
program runs. The model implemented in FEM is exactly the
same as the one used in [3] and [5] with the aim of replicating
the same impedance matrix and the same results of those
transient studies. The only difference in the FEM calculations
performed here with respect to [3] and [5] is that in this work
the calculations were performed on a single 4 Ghz Core i7 -
32 GB RAM computer.

The FEM discretization of the top winding assembly is
presented in Fig. 6(b). In the FEM model the air, the core
and the interior of the conductors are to be discretized with
triangular elements. This mesh was kept fixed at all simulated
frequencies.

C. Direct comparison of impedance matrices

Once the impedance matrices have been calculated the
relative error was calculated between them as Err =
(Zprop − Zfem)⊘Zfem where ⊘ is the symbol of Hadamard’s
division. Considering that the impedance matrix is complex
and three-dimensional, the vectorized form of Err has been
used to visualize the global behavior of the relative error
between Zprop and Zfem. Fig. 7 shows the relative error
between proposed method and finite element method for the
real and imaginary part of the impedance matrix. The linear
index of each position of the impedance matrix has been
placed on the horizontal axis which starts at 1 and ends at
816642 (213 · 213 · 18).

As can be seen, the real part of the impedance is the one
with the highest relative error variations. It is interesting to
note that the relative error of the real part is higher at low fre-
quency (about -10 % up to 1800 Hz), and starts to decrease as
the frequency increases. It can also be observed that although
the error decreases as the frequency increases, its dispersion
becomes larger with respect to the FEM calculations.

D. Calculation of transient responses in the time domain

In order to evaluate the ability of the proposed methodology
to produce impedance matrices suitable for the calculation of
high frequency transients, two equivalent state-space models
of the case study have been created, one using the impedance
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matrix calculated with FEM and the other using the impedance
matrix calculated with the proposed method. The methodology
used to obtain the state space models of the case study was
exactly the same as proposed in [3] which was summarized
in steps a through e in the introduction of this paper. In this
work the transients were calculated using the ODE45 solver
of Matlab which implements the Runge-Kutta method for the
solution of the system of differential equations. Alternatively,
any EMTP software that supports the usage of state-space
models such as EMTP-RV or PSCAD can also be used.

The case study transformer has been intensively analyzed
in the time domain within the framework of the JWG CIGRE
A2/C4.52 group. As a result of this measurement campaign,
time domain measurements of 64 different connection config-
urations are available. The input voltage in all cases was a
standard lightning impulse of 1.2/50 µs at one of the trans-
former terminals. Details on the measurements are available
in [22]. In this work, configurations number 6, 26, 42 and 54
were considered. The connections of each configuration are
described below:
Configuration 6: X0, H0 grounded; Y1, Y2, X1 open; impulse
applied to H1. Selector k in positive position. H0 connected to
tap 11. Configuration 26: X0, H1 grounded; Y1, Y2, X1 open;
impulse applied to H0. Selector k in negative position. H0
connected to tap 1. Configuration 42: X0, H0 grounded; Y1,
Y2, H1 open; impulse applied to X1. Selector k in negative
position. H0 connected to tap 1. Configuration 54: X1, H0
grounded; Y1, Y2, H1 open; impulse applied to X0. Selector
k in positive position. H0 connected to tap 11.
Figs. 8, 9, 10 and 11 show the measured and calculated volt-
ages using the impedance matrix obtained with FEM and with
the proposed methodology for various configurations. A good
agreement was found between measurements and calculations,
and it can be seen an excellent agreement between the results
obtained with FEM and with the proposed methodology.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 8. Transient voltages at terminal X1, input on H1 for case 6.

VI. DISCUSSION

Table I provides a summary of the computation time used
by the proposed method in various tasks related to the compu-
tation of the impedance matrix. As can be seen, the proposed
method uses a significant amount of time (about 15%) in
the calculation of the geometric factors and in the assembly
of various matrices necessary for subsequent calculations.
Once these matrices have been obtained, they are available to
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Fig. 9. Transient voltages at terminal X1, input on H0 for case 26.
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Fig. 10. Transient voltages at terminal H1, input on X1 for case 42.
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Fig. 11. Transient voltages at terminal H1, input on X0 for case 54.

update the system matrix and to calculate the magnetic vector
potential in the conductors at each of the selected frequencies.
The remaining computation time (about 85%) is spent on the
solution of the equation system by means of the inverse matrix
calculation. On the other hand, in Table II the FEM times for
the calculation of the impedance matrix are also reported. In
this case it can be seen that about 93% of the calculation
time is used in the solution of the equation system. Table
III presents the overall performance summary of FEM and
the proposed method, noting that FEM has required a slightly
more than one million elements to discretize the geometry of
the problem, which produces an equation system of about half
a million degrees of freedom. Although the equation system
produced by FEM is sparse, it is a large system that is to be
solved multiple times. This explains why most of the FEM
computation time is spent solving the equation system.

Table III also shows a significant reduction in the total
calculation time using the proposed method compared to FEM.
The proposed method has taken about 11 hours to complete
the impedance matrix calculation, while FEM has taken a
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slightly more than 3 weeks. It is important to give a proper
interpretation to these results because in the case of FEM
the calculation time can be influenced by the software used
and in turn by the possibility of using advanced features
such as adaptive meshing, mesh reusing or direct access to
the equation system. To obtain the impedance matrix with
FEM, the classical methodology described in [4] in section
13.10.3 has been implemented using the FEMM software. A
special effort has been made to make the FEMM execution
as efficient as possible within the possibilities offered by the
Matlab-FEMM communication interface and some strategies
have been applied to speed up the program execution such as
the reuse of the problem geometry and the efficient assignment
of currents and material properties. As a consequence of these
optimizations, it can be seen in Table II that less than 2 %
of the total computation time is spent on these tasks. Most of
the computation time spent by FEM is spent on the solution
of the equation system.

On the other hand, the proposed methodology has a series
of features that together make it possible to calculate the
impedance matrix in a considerably shorter calculation time
compared to FEM. Among these attributes we can mention
the following:
a. This is a mesh-free method. This avoids the discretiza-
tion of air, core interior and conductors. As a consequence,
the proposed method produces an equation system about 19
times smaller than the one obtained with FEM. Although the
equation system produced by the proposed method is strongly
dense because the mathematical formulation is of integral type,
this equation system can be handled without inconveniences
by means of the use of virtual memory if necessary.
b. The most important strength that gives the proposed
methodology an important advantage over FEM is the reuse
of calculations. This reuse is performed at two levels. In
the first level, the geometric factors a, a′,b,b′, c,d, e, o, o′ are
calculated. With these geometric factors the matrices Ms, Mc

and O are built. These three matrices are kept fixed and are
reused at each of the simulation frequencies. At a second
level, the inverse of the system matrix at a given frequency
is calculated. The columns of this matrix are used to directly
obtain the solution of the volume and surface currents for the
m states of the vector bsys.

This means that for the case study transformer analysis, a
single Msys matrix inversion would be equivalent to solving
213 equation systems in FEM. As a result, the proposed
method solves a total of 18 system matrix inversions, while
FEM must solve 3834 systems of equations.

In addition, the memory consumption of both methods is
also presented in Table III. The most memory-demanding step
of the proposed method is the assembly of matrix F since
all the matrices in (16) are dense and cannot be stored as
sparse matrices. In case of memory limitations matrix F can
be assembled in a sequence of steps to avoid having all the
matrices in memory at the same time or one can also resort to
the use of virtual memory stored in a solid state disk (SSD).

Another aspect that is important to highlight is the excellent
agreement of the time domain transient responses presented in
Figs 8, 9, 10 and 11 between the results calculated using the

TABLE I
CALCULATION TIMES OF THE PROPOSED METHOD.

HARDWARE: 4 GHZ CORE I7 - 32 GB RAM COMPUTER

Type of computation Time (s) % of TST
Geometric factors a, b, a′, b′ 4558.8 12.34
Geometric factors c, d 435.4 1.18
Geometric factors o, o′, e 293.3 0.79
Matrix assembly Ms, Mc, O 206.6 0.56
Solution of the eq. system (Mat. Inv.) 31107.6 84.18
A, V, Z calculation 351.8 0.95
Total simulation time (TST) 36953.5 100

TABLE II
CALCULATION TIMES OF FEM.

HARDWARE: 4 GHZ CORE I7 - 32 GB RAM COMPUTER

Type of computation Time (s) % of TST
Set mat. prop. & curr. Meshing 24125.8 1.02
Solution of the eq. system 2211067.1 93.28
Calculation of induced voltages 135107.4 5.70
Total simulation time (TST) 2370300.3 100

TABLE III
PERFORMANCE COMPARISON BETWEEN FEM AND PROPOSED METHOD

No. of No. of No. of Eq. Sim. Mem.
Elements Unknowns Sys. Solved Time Max.

FEM 1105715 553217 3834 658.4 h 572.4 MB
Proposed 29134 29134 18 10.3 h 31.8 GB

FEM impedance matrix and that obtained with the proposed
method.

A direct comparison of the impedance matrices calculated
with FEM and with the proposed method shows that the most
significant errors occur at relatively low frequencies. On the
other hand Fig. 7 also shows that the relative error between
the impedance matrices tends to reduce from 18 kHz onwards.
This trend is convenient since the behavior of the model
at medium and high frequency is the one that determines
to a greater extent the transient response to high frequency
disturbances such as atmospheric discharges and switching in
the power system.

Although good agreement was found between the proposed
method and FEM, there are still some discrepancies between
simulations and transient measurements that may be attributed
to following factors: a. Frequency dependence of capacitances.
b. Magnetic effects related to the three-dimensionality of the
core. Considering the magnitude and complexity of these
topics, they may be the subject of future research projects.

VII. CONCLUSIONS

In this work a new methodology has been proposed
for the fast calculation of the impedance matrix of power
transformers. The main outcome of this work is that the
proposed methodology makes available to the industry
the possibility of creating models for the calculation of
electromagnetic transients (including resonant transients) in
a calculation time compatible with the internal processes
of power transformer manufacturers. This will allow
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the strengthening of cooperative relationships between
manufacturers and purchasers to assess the performance of
the transformer under disturbances that may occur in the
power network even before the unit is manufactured, allowing
timely measures to be adopted, either in the design or in
the operating protocols to aim for a safer operation of the
transformer and consequently of the power network.

The proposed model incorporates the frequency dependence
of the impedances representing the core and coils which
allows an adequate modeling of the losses and consequently
of the damping in the resulting white-box model of the power
transformer. The proposed methodology has been successfully
validated on a real 50 MVA transformer by calculating the
transient response for different connection configurations.
These results have shown that the proposed methodology is
appropriate to produce impedance matrices suitable for high
frequency transient calculations in power transformers.

VIII. APPENDIX
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Fig. 12. Example of numbering in a simple case, s42 is a dummy element.
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