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Abstract. In this paper we present a new definition of a local fractional
derivative non-conformable and we obtain the main properties of the same,

equivalent to the classic derivative of integer order.

1. Introduction

The idea of fractional calculus is as old as traditional calculus. The history of
fractional calculus dates back to more than 300 years ago, and the original question

which led to the name fractional calculus was: what does dnf
dxn mean if n = 1

2 .
Since then, several mathematicians contributed to the development of fractional
calculus: Riemann, Liouville, Caputo, Grunwald, Letnikov, etc. (see [4], [6] and
[12]). Until recently, research on fractional calculus was confined to the field of
mathematics but, in the last two decades, many applications of fractional calculus
appeared in various fields of engineering, applied sciences, economy, etc. (cf. [5],
[7], [9] and [16]). As a result, fractional calculus has become an important topic for
researchers in various fields. Further some recent work about fractional derivatives
are [2], [8] and [15]. The paper [5] is devoted to research fractional derivatives and
integrals obtained by iterating conformable integrals. They obtained left- and right-
fractional conformable integrals. With a standard fractional procedure we found
left- and right-fractional conformable derivatives in the sense of Riemann-Liouville
and Caputo.

Among the inconsistencies of the existing fractional derivatives Dα are:
1) Most of the fractional derivatives except Caputo-type, do not satisfy Dα(1) =

0, if α is not a natural number.
2) All fractional derivatives do not satisfy the familiar Product Rule for two

functions Dα(fg) = gDα(f) + fDα(g).
3) All fractional derivatives do not satisfy the familiar Quotient Rule for two

functions Dα( fg ) = gDα(f)−fDα(g)
g2 with g 6= 0.

4) All fractional derivatives do not satisfy the Chain Rule for composite functions
Dα(f ◦ g)(t) = Dα(f(g))Dαg(t).
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5) The fractional derivatives do not have a corresponding ”calculus”.
6) All fractional derivatives do not satisfy the Indices Rule DαDβ(f) = Dα+β(f).
However, in [1] the authors define a new well-behaved simple fractional de-

rivative called the conformable fractional derivative, depending just on the basic
limit definition of the derivative (cf. also [13] and [14]). Namely, for a function
f : (0,+∞) → R the conformable fractional derivative of order 0 < α ≤ 1 of f at
t > 0 was defined by

Tαf(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

f (α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

As a consequence of the above definition, the authors proved that many of the
previous inadequacies are overcome. The adjective conformable may or may not
be appropiate here, since this was initially referred to as a conformable fractional
derivative Dαf(t), when α→ 1 satisfies Dαf(t)→ f ′(t); i.e., when α→ 1, Dαf(t)
preserves the angle of the tangent line to the curve, while in our definition, as we
shall see later, this angle is not conserved.

The purpose of this paper is to generalize the results obtained in this paper and
to introduce a new definition of fractional derivative non-conformable as a natural
extension of the well-known definition of derivative of a function in a point, in
particular show that the inadequacies 1) -4) are overcome. In future works we will
complete the study of this new fractional derivative non-conformable constructing
a theoretical body similar to the traditional calculus.

2. New Fractional Derivative

In this section, we give our new definition of a non-conformable fractional deriv-
ative of a function in a point t and obtain several results that are close resemblance
of those found in classical calculus.

Definition 2.1. Given a function f : [0,+∞)→ R. Then the N-derivative of f of

order α is defined by Nα
1 f(t) = lim

ε→0

f(t+εet
−α

)−f(t)
ε for all t > 0, α ∈ (0, 1). If f is

α−differentiable in some (0, a), and lim
t→0+

N
(α)
1 f(t) exists, then define N

(α)
1 f(0) =

lim
t→0+

N
(α)
1 f(t).

As a consequence of the above definition, we obtain the following result known
in classical calculus.

Theorem 2.2. If a function f : [0,+∞) → R is N-differentiable at t0 > 0, α ∈
(0, 1] then f is continuous at t0.

Proof. Since f(t0 + εet
−α
0 )− f(t0) = f(t0+εet

−α
0 )−f(t0)
ε ε. Then

lim
ε→0

(
f(t0 + εet

−α
0 )− f(t0)

)
= lim
ε→0

f(t+ εet
−α
0 )− f(t)

ε
lim
ε→0

ε

Let k = εet
−α
0 then k → 0 if ε→ 0, so we have
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lim
ε→0

(
f(t0 + εet

−α
0 )− f(t0)

)
= lim
k→0

(f(t0 + k)− f(t0)) = Nα
1 f(t0)lim

ε→0
ε = 0.

From this we have the continuity of f at t0. �

Theorem 2.3. Let f and g be N-differentiable at a point t > 0 and α ∈ (0, 1].
Then

a) Nα
1 (af + bg)(t) = aNα

1 (f)(t) + bNα
1 (g)(t).

b) Nα
1 (tp) = et

−α
ptp−1, p ∈ R.

c) Nα
1 (λ) = 0, λ ∈ R.

d) Nα
1 (fg)(t) = fNα

1 (g)(t) + gNα
1 (f)(t).

e) Nα
1 ( fg )(t) =

gNα1 (f)(t)−fNα1 (g)(t)
g2(t) .

f) If, in addition, f is differentiable then Nα
1 (f) = et

−α
f ′(t).

g) Being f differentiable and α = n integer, we have Nn
1 (f)(t) = et

−n
f ′(t).

Proof. a) Let H(t) = (af + bg)(t) then Nα
1 H(t) = lim

ε→0

H(t+εet
−α

)−H(t)
ε and from

this we have the desired result.

b) It is sufficient to develop in power series
(
t+ εet

−α
)p

, in this way we have

two cases:
I) If p ∈ N we obtain

Nα
1 (tn) = lim

ε→0

(t+ εet
−α

)n − tn

ε
= lim
ε→0

tn + nεtn−1et
−α

+ ...− tn

ε
= ntn−1et

−α
.

II) If p ∈ R we obtain in the same way

Nα
1 (tp) = lim

ε→0

(t+εet
−α

)p−tp
ε = lim

ε→0

tp+pεtp−1et
−α

+
p(p−1)tp−2

(
εet
−α)2

1.2 +...−tp

ε = ptp−1et
−α
.

In both cases we obtain the desired result.
c) Easily follows from definition.
d) From definition we have

Nα
1 (fg)(t) = lim

ε→0

f(t+ εet
−α

)g(t+ εet
−α

)− f(t)g(t)

ε

= lim
ε→0

f(t+ εet
−α

)g(t+ εet
−α

)− f(t)g(t+ εet
−α

) + f(t)g(t+ εet
−α

)− f(t)g(t)

ε

= lim
ε→0

(
f(t+ εet

−α
)− f(t)

)
g(t+ εet

−α
)

ε
+ lim
ε→0

(
g(t+ εet

−α
)− g(t)

)
f(t)

ε
= fNα

1 (g)(t) + gNα
1 (f)(t)

e) In a similar way to the previous one we have

Nα
1 (
f

g
)(t) = lim

ε→0

f(t+εet
−α

)

g(t+εet−α )
− f(t)

g(t)

ε
.
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But

f(t+ εet
−α

)

g(t+ εet−α)
− f(t)

g(t)
=

f(t+ εet
−α

)

g(t+ εet−α)
− f(t)

g(t)

g(t+ εet
−α

)

g(t+ εet−α)
=
f(t+ εet

−α
)g(t)− f(t)g(t+ εet

−α
)

g(t)g(t+ εet−α)

=
f(t+ εet

−α
)g(t)− f(t)g(t+ εet

−α
)− f(t)g(t) + f(t)g(t)

g(t)g(t+ εet−α)

=

(
f(t+ εet

−α
)− f(t)

)
g(t)−

(
g(t+ εet

−α
)− g(t)

)
f(t)

g(t)g(t+ εet−α)
.

From this last expression we obtain the expected result.

f) Nα
1 f(t) = lim

ε→0

f(t+εet
−α

)−f(t)
ε = lim

k→0

f(t+k)−f(t)
k et

−α
with k = εet

−α
so that

Nα
1 f(t) = et

−α
f ′(t).

g) Nn
1 (f)(t) = lim

ε→0

f(t+εet
−n

)−f(t)
ε = lim

ε→0

f(t+k)−f(t)
k et

−n
with k = εet

t−n

and

from here you get the desired result. �

Remark. If Nα
1 f(t) exists for t > 0 then f is differentiable at t and f́(t) =

e−t
−α
Nα

1 f(t).

Theorem 2.4. Let α, β be positive constants such that 0 < α, β < 1 and f be a
function (non-constant) twice differentiable on an interval (0,+∞). Then

Nα+β
1 f(t) 6= Nα

1

(
Nβ

1 f(t)
)

(2.1)

Proof. Follows easily from definition. �

An application of this result and Theorem 2 are the followings.

Theorem 2.5. Let f : [0,+∞) → R be twice differentiable on (0,+∞) and 0 <

α, β ≤ 1 such that 0 < α+β ≤ 2. Then Nα
1

(
Nβ

1 f(t)
)

=
[
Nα+β

1 f́(t)− βt1−βNα+β
1 f(t)

]
et
α+tβ−t−(α+β)

.

Proof. From the definition we have

Nα
1

(
et
−β
f́(t)

)
= et

−α
(
et
−β
f́(t)

)
´= et

−α
(
et
−β
f́́(t) + f́(t)(−β)t−β−1et

−β
)

=

et
−α+t−β

(
f́́(t)− βt−β−1f́(t)

)
= et

−α+t−βe−t
−(α+β)

(
et
−(α+β)

f́́(t)− βt−β−1f́(t)et
−(α+β)

)
=

=
[
Nα+β

1 f́(t)− βt1−βNα+β
1 f(t)

]
et
α+tβ−t−(α+β)

.

�
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Remark. Although Nα
1 f(t)Nβ

1 f(t) 6= Nα+β
1 f(t); i.e., this deviates from the be-

haviour of α an integer derivatives, non-conmutativity offers a richness that is
interesting to explore. If f is a derivable function we have the following differential
equations (λ ∈ R):

I) Nα
1 y(t) + λy(t) = 0, with solution y(t) = e

λ
∫ t ds

es
−α .

II) Nβ
1 (Nα

1 y(t)) = 0, from this we have y(t) = C1

∫ t ds

es−α
+ C2. This solution

is independent from β; i.e., the order of the last derivation does not influence the
general solution.

III) Nα
1 y(t)+p(t)y(t) = q(t), from where y(t) = e

−
∫ t p(s)ds

es
−α

[∫ t q(s)

es−α
e
∫ t p(s)ds

es
−α ds+ C

]
.

While there are very similar cases to the case where α and β they are integers,
the second gives us a significant difference with the known theory.

Theorem 2.6. Let f, h : [0,+∞)→ R be functions such that Nα
1 exists for t > 0,

if f is differentiable on (0,+∞) and Nα
1 f(t) = et

−α
h(t). Then h(t) = f́(t) for all

t > 0.

Remark. Failure to comply with the Semigroup Law may seem deceptive, but it is
one of the essential characteristics of fractional derivatives (see [17] and [18]).

2.1. N-fractional derivative of certain functions. Directly from property (f)
of the previous theorem we have the following result.

Theorem 2.7. We have
a) Nα

1 (1) = 0.

b) Nα
1 (ect) = cect.et

−α
.

c) Nα
1 (sin bt) = bet

−α
cos bt.

d) Nα
1 (cos bt) = −bet−α sin bt.

Remark. It is clear that this theorem can be extended for any differentiable func-
tion.

3. The Chain Rule

Now we will present the equivalent result, for Nα
1 , of the well-known chain rule of

classic calculus and that is basic in the Second Method of Liapunov, for the study
of stability and thus we overcome the deficiency 4) indicated at the beginning of
the work.

Theorem 3.1. Let α ∈ (0, 1], g N-differentiable at t > 0 and f differentiable at
g(t) then Nα

1 (f ◦ g)(t) = f ′(g(t))Nα
1 g(t).

Proof. We prove the result following a standard limit-approach. Firts case, if the
function g is constant in a neighborhood of a > 0 then Nα

1 f ◦g)(t) = 0. If g is not a
constant in a neighborhood of a > 0 we can find an t0 > 0 such that g(x1) 6= g(x2)
for any x1, x2 ∈ (a − t0, a + t0). Now, since g is continuous at a, for ε sufficiently
small, we have
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Nα
1 (f ◦ g)(a) = lim

ε→0

f(g(t+ εea
−α

))− f(g(a))

ε

= lim
ε→0

f(g(a+ εea
−α

))− f(g(a))

g(a+ εea−α)− g(a)

g(a+ εea
−α

)− g(a)

ε

= lim
ε→0

f(g(a+ εea
−α

))− f(g(a))

g(a+ εea−α)− g(a)
lim
ε→0

g(a+ εea
−α

)− g(a)

ε

= lim
k→0

f(g(a+ εea
−α

))− f(g(a))

g(a+ εea−α)− g(a)
lim
ε→0

g(a+ εea
−α

)− g(a)

ε
.

Making

ε1 = g(a+ εea
−α

)− g(a)

in the first factor we have

lim
ε→0

f(g(a+ εea
−α

))− f(g(a))

g(a+ εea−α)− g(a)
= lim

ε1→0

f(g(a) + ε1)− f(g(a))

ε1

from here

Nα
1 (f ◦ g)(a) = lim

ε1→0

f(g(a) + ε1)− f(g(a))

ε1
lim
ε→0

g(a+ εea
−α

)− g(a)

ε

= f ′(g(a))Nα
1 g(a).

�

Finally, in this section we present some examples of the above Chain Rule.

Example 3.2. Let h(t) = sin2 t.
Let′s calculate the derivative by two paths:

i) By the Chain Rule

Nα
1

[
sin2 t

]
=

(
sin2 t

)′
Nα

1 (sin t)

= 2et
−α

sin t cos t.

ii) From Theorem 2

h(t) = sin2 t =
(
eit−e−it

2i

)2

= e2it+e−2it

−4
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Nα
1

[
sin2 t

]
= Nα

1

[
e2it + e−2it − 2

−4

]
= −1

4

[
Nα

1

(
e2it
)

+Nα
1

(
e−2it

)
− 2Nα

1 (1)
]

=
iet
−α

2

[
e−2it − e2it

]
= et

−α e2it − e−2it

2i

= et
−α

sin 2t

= 2et
−α

sin t cos t.

Analogously, we have

Nα
1

[
cos2 t

]
=

(
cos2 t

)′
Nα

1 (cos t)

= −2et
−α

sin t cos t.

Example 3.3. Let h(t) = sinn t.

i) By the Chain Rule

Nα
1 [sinn t] = n sinn−1 t cos tet

−α

= net
−α

sinn−1 t cos t.

ii) By Theorem 2

Nα
1 [sinn t] = sin tNα

1

[
sinn−1 t

]
+ et

−α
sinn−1 t cos t

sin tNα
1

[
sinn−1 t

]
= sin2 tNα

1

[
sinn−2 t

]
+ et

−α
sinn−1 t cos t

sin2 tNα
1

[
sinn−2 t

]
= sin3 tNα

1

[
sinn−3 t

]
+ et

−α
sinn−1 t cos t

...
...

...

sinn−1 tNα
1 [sin t] = sinn tNα

1

[
sinn−n t

]
+ et

−α
sinn−1 t cos t

Nα
1 [sinn t] = net

−α
sinn−1 t cos t.

Example 3.4. Let r(t) = sin t2, this is a differentiable function. So, from Theorem

2 f) we have Nα
1 [r(t)] = et

−α
r′ (t) = et

−α
2t cos t2.

By the Chain Rule we obtain:
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Nα
1 [r ◦ g] (t) = r′ [g (t)]Nα

1 g (t)

=
(
sin t2

)′
Nα

1

(
t2
)

= et
−α

2t cos t2.

4. Final Remarks

It is natural to ask what relation has Nα
1 f(t) to the derivative defined by Ab-

dejjawad in [1]. In the case that f is a derivable function, Tαf(0) = 0 while
Nα

1 f(t)→∞, on the other hand, if t→∞ we obtain that in general Tαf(t)→∞
while Nα

1 f(t) → f́(t), i.e., our derivative returns the classical derivative when
t → ∞ which ensures that if f is derivable, the asymptotic properties of f are
inherited, which is of vital importance in the Qualitative Theory of Differential
Equations.

In [3] the authors present the following definition of local fractional derivative
using kernels.

Definition 2.1. Let k : [a, b] → R be a continuous nonnegative map such that
k(t) 6= 0, whenever t > a. Given a function f : [a, b]→ R and α ∈ (0, 1) a real, we
say that f is α-differentiable at t > a, with respect to kernel k, if the limit

f (α)(t) := lim
ε→0

f(t+ εk(t)1−α)− f(t)

ε
(4.1)

exists. The α-derivative at t = a is defined by

f (α)(a) := lim
t→a+

f (α)(t)

if the limit exists.
Then, they state and do not demonstrate, because they affirm that it is trivial,

Theorem 2.2 where they obtain that

f (α)(t) = k(t)1−αf ′(t), t > a (4.2)

if f is differentiable for t > a.
In the Conclusion the authors state that ”some of the existent notions about

local fractional derivative are very close related to the usual derivative function. In
fact, the α-derivative of a function is equal to the first-order derivative, multiplied
by a continuous function. Also, using formula (3), most of the results concerning
α-differentiation can be deduced trivially from the ordinary ones. In the authors’
opinion, local fractional calculus is an interesting idea and deserves further research,
but definitions like (2) are not the best ones and a different path should be followed”.

This is exactly what we have done.
By the other hand, the fractional derivative present here is local by nature, hence

any comparison with classical fractional derivatives is erroneous, because we are
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considering mathematical objects of different kinds. This local and the derivatives
of Caputo, Riemann-Liouville, etc. are global (see [9] for a comparison of this type).

On the other hand, consider the derivative c) in Theorem 5, in the classical sense
we have Dα(sin bt) = bα sin(bt + π

4 ) but what’s up if α = 1
2n , n ∈ N, and b = −1?

However using our definition, we have no problem N
1
2

1 (sin(−t)) = −et
− 1

2 cos t with

n = 1. In addition, there are functions like f(t) = e−t
−α

whose fractional derivative
in the classical sense is very difficult to calculate, if not impossible, while using our

definition is very easy, so we have Nα
1 (e−t

−α
) = αt−α−1.

Consider the very simple differential equation Dαy + 3x−
3
2 y = x−

3
2 . If one has

to solve it using Dα as the Caputo or Riemann-Liouville definition, then must use
either the Laplace transform or the fractional power series technique. By other

hand, if Dα is our definition, easily we obtain that y = − 1
3

(
1− e−6e

− 1√
x

)
is a

particular solution with α = 1
2 .

We would like to add an additional application of our fractional derivative to
solve ordinary differential equations. Thus, consider the following linear first-order
differential equation:

ý + αt−α−1y = et
−α
βtβ−1. (4.3)

It is clear that this equation can be written this way:

(Nα
1 y) e−t

−α
+
(
Nα

1 e
−t−α

)
y = Nα

1

[
tβ
]
,

from where:

Nα
1

[
y(t)e−t

−α
]

= Nα
1

[
tβ
]
.

According to Corollary 4 of [10], we easily obtain that:

y(t)e−t
−α

= tβ + C,

where we get the general solution of (4):

y(t) =
(
tβ + C

)
et
−α
. (4.4)

The general solution of equation (4) is known as:

y(t) = Cet
−α

+ βet
−α
∫
tβ−1et

−α+t−βdt. (4.5)

It is easy to check the advantages of (5) over (6), apart from the fact that the
latter’s integral does not seem very easy to calculate, even for simple values of α
and β.

In the Second Lyapunov Method, the Chain Rule is vital to calculate the total
derivative of the Lyapunov Function. Using classical fractional derivatives, this is
a problem that is not solved (see [11]), however, using our Theorem 7 it is easy to
verify that difficulty is overcome, in a future work we will present concrete results
in this direction. Nevertheless, we want to advance something in this direction, be
it the Generalized Liénard System:
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Nα
1 x(t) = y(t)− F (x(t)),

(4.6)

Nα
1 y(t) = −g(x(t)),

as a natural generalization of the classical Liénard system, with F (x) =
x∫
0

f(r)dr,

and f and g are continuous functions such that f : R → R+, and g : R → R with
xg(x) > 0 for x 6= 0. The system (4) is equivalent to the equation N2α

1 x(t) +

Nα
1 [F (x(t))] + g(x(t)). We consider the following Lyapunov Function

V (x, y) = G(x) +
y2

2
. (4.7)

With G(x) =
x∫
0

g(s)ds. We calculate the fractional derivative of (8) along the

system (7):

Nα
1 V (x(t), y(t)) = Nα

1 [G(x(t))] +Nα
1

[
y2(t)

2

]
.

Nα
1 V (x(t), y(t)) = g(x(t))Nα

1 x(t) + y(t)Nα
1 y(t).

From this we have

Nα
1 V (x(t), y(t)) = −g(x(t))F (x(t)).

Under conditions previously imposed on f and g, we have that V is a positive
definite function and its derivative throughout the system (7) is non-positive, from
this we have the stability according to Lyapunov of the trivial solution of the system
(7).

Finally, we would like to point out that a limitation of our definition is that it
assumes that the variable t > 0. Thus, the following open problem arises naturally:
if this condition can be overcome for some kinds of functions and if so, what are
these functions?

Acknowledgments. The authors would like to express their gratitude to the ref-
erees and editors who, with their observations and remarks, allowed us to improve
this work and bring it to its present form.
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