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ON THE RESTRICTED JORDAN PLANE IN ODD
CHARACTERISTIC

NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

Abstract. In positive characteristic the Jordan plane covers a finite-
dimensional Nichols algebra that was described by Cibils, Lauve and
Witherspoon and we call the restricted Jordan plane. In this paper
the characteristic is odd. The defining relations of the Drinfeld double
of the restricted Jordan plane are presented and its simple modules
are determined. A Hopf algebra that deserves the name of double of
the Jordan plane is introduced and various quantum Frobenius maps
are described. The finite-dimensional pre-Nichols algebras intermediate
between the Jordan plane and its restricted version are classified. The
defining relations of the graded dual of the Jordan plane are given.
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Introduction

The Jordan plane is a well-known example of a quadratic algebra. It is
also a cornerstone in the study of Nichols algebras over abelian groups with
finite Gelfand-Kirillov dimension [AAH1, AAH2].

Let k be an algebraically closed field of characteristic p > 2 and let Fp be
the field of p elements. Let Γ ' Z/pZ be a cyclic group with a generator g,
written multiplicatively. Let V be a Yetter-Drinfeld module over kΓ with a
basis {x, y}, action ⇀ and coaction δ given by

g ⇀ x = x, g ⇀ y = y + x, δ(x) = g ⊗ x, δ(y) = g ⊗ y.(0.1)

Thus V is a braided vector space with braiding

cV (x⊗ x) = x⊗ x, cV (x⊗ y) = (y + x)⊗ x,
cV (y ⊗ x) = x⊗ y, cV (y ⊗ y) = (y + x)⊗ y.

The work of N. A. and H. P. P. was partially supported by CONICET and Secyt (UNC).
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2 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

By [CLW, Theorem 3.5], the Nichols algebra B(V )–that we shall call the
restricted Jordan plane–is the quotient of T (V ) by the ideal generated by

xp, yp, yx− xy +
1

2
x2.

The family (xiyj)0≤i,j≤p−1 is a basis of B(V ) that has dimension p2. The
liftings of B(V ) have been computed in [CLW] and the simple modules
of these in [ZC]. The restricted Jordan plane is the starting point to the
description of new examples of finite-dimensional Hopf algebras [AAH3]. We
consider in this paper various Hopf algebras related to B(V ).

(1) Let D(H) be the Drinfeld double of the bosonization H = B(V )#kΓ. We
present the defining relations of D(H) and show that it fits into an exact
sequence R ↪→ D(H) � u(sl2(k)) where R is a local commutative Hopf
algebra and u(sl2(k)) is the restricted enveloping algebra. We conclude that
the simple D(H)-modules are the same as those of u(sl2(k)) and we present
them as quotients of Verma modules. See Propositions 1.6, 1.9 and 1.16, and
Theorem 1.11.

(2) The Jordan plane covers B(V ). We define a Hopf algebra D̃ that covers the
Drinfeld double D(H). The definition of D̃ makes sense in any characteristic
6= 2; D̃ can be thought of the Drinfeld double of the Jordan plane and the
map D̃ � D(H) as a quantum Frobenius map. Indeed let us consider the
algebraic groups

G = (Ga ×Ga) oGm, B = ((Ga ×Ga) oGm)×H3

with suitable semidirect products and where H3 is the Heisenberg group of
dimension 3. See Remark 1.10 and (2.6). Then there is a short exact sequence
of Hopf algebra maps O(B) ↪→ D̃ � D(H) that fits into a commutative
diagram

O(G) �
� //

� _

Fr

��

O(B)� _

��

// // O(G3
a)� _

��
(?) O(G) �

� //

����

D̃ // //

����

U(sl2(k))

����
R �
� // D(H) // // u(sl2(k))

(0.2)

where all columns and rows are exact sequences. Notice that the exact se-
quence in the middle row (?) is available also in characteristic 0. See Propo-
sitions 2.3, 2.7 and 2.8. The algebra D̃ is PI and a noetherian domain, see
Proposition 2.9.
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ON THE RESTRICTED JORDAN PLANE 3

(3) We classify the finite-dimensional pre-Nichols algebras intermediate between
the Jordan plane and the restricted Jordan plane. Precisely, any such finite-
dimensional pre-Nichols algebra is isomorphic (as braided Hopf algebra) to

G(k, `) := B̃/(yp
k
, xp

`
)

for unique k, ` ∈ N. See Theorem 3.6. We do not know if any finite-
dimensional pre-Nichols algebra of B(V ) is like this. For instance, it is clear
that

k
〈
x, y|xp, yp, (yx− xy + 1

2x
2)p

n〉

is a pre-Nichols algebra of B(V ) but we do not know whether it has finite
dimension or finite GKdim. We also provide new examples of Hopf algebras
with finite GKdim by bosonization with kΓ. See Corollary 3.8.

(4) We give the generators and defining relations of the graded dual E of the
Jordan plane. See Proposition 4.1. Theorem 3.6 implies that any finite-
dimensional post-Nichols algebra of (V, c−1

V ) contained in E is isomorphic (as
braided Hopf algebra) to G(k, `) = G(k, `)∗ for unique k, ` ∈ N. We also give
the generators and defining relations of G(k, `).

Conventions. If ` < n ∈ N0, then we set I`,n = {`, `+ 1, . . . , n}, In = I1,n.
Let K be a Hopf algebra. The space of primitive elements of K is denoted
by P(K) and the antipode by S or by SK . The category of Yetter-Drinfeld
modules over K is denoted K

KYD.
Let A be an algebra. The set of isomorphism classes of finite-dimensional

simple modules over A is denoted IrrepA. We usually denote indistinctly a
class in IrrepA and one of its representatives. An element x ∈ A is normal
if Ax = xA. If B is a subalgebra of A, then IndAB denotes the induction
functor M 7→ A⊗B M .

The algebra of regular functions on an (affine) algebraic groupG is denoted
O(G). As usual, Ga is the additive algebraic group (k,+) and Gm is the
multiplicative algebraic group (k×, ·).

We recall that the unsigned Stirling numbers
[
n
k

]
are defined as the coef-

ficients of the ‘raising factorial’ polynomial:

[X][n] =
n∏

i=1

(X + i− 1) =
n∑

k=0

[
n

k

]
Xk ∈ Z[X].

1. The double of the restricted Jordan plane

1.1. The double. Here we present by generators and relations the Drinfeld
double D(H) that clearly has dimension p6.
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4 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

1.1.1. The bosonization of the restricted Jordan plane. By [CLW, Corollary
3.14], the bosonization H = B(V )#kΓ is the p3-dimensional pointed Hopf
algebra generated by x, y and g with relations

gp = 1, gx = xg, gy = yg + xg,

xp = 0, yp = 0, yx = xy − 1

2
x2.

(1.1)

The coproduct is determined by

∆(g) = g ⊗ g, ∆(x) = x⊗ 1 + g ⊗ x, ∆(y) = y ⊗ 1 + g ⊗ y.(1.2)

We shall need the following formulas that hold in H:

gn y` =
∑̀

k=0

(
`

k

)
(−1)k

[−2n][k]

2k
xky`−k gn,

y` xn =
∑̀

k=0

(
`

k

)
(−1)k

[n][k]

2k
xn+k y`−k,

n, ` ∈ N0,(1.3)

where [t][k] denotes the raising factorial [t][k] :=
∏k
i=1(t+ i− 1) for t ∈ k and

k ∈ N0. The first formula appears in [CLW] and the second is folklore.

Remark 1.1. The algebra H is local. The unique maximal ideal is I :=
〈x, y, g − 1〉. Hence the only simple representation of H is the trivial one.
See [ZC] for a study of the representations of H and its liftings.

1.1.2. The Drinfeld double. We start by recalling the definition.

Definition 1.2. Let L be a finite-dimensional Hopf algebra. The Drinfeld
double of L, denoted by D(L), is a Hopf algebra whose underlying coalgebra
is L⊗ L∗ op and with multiplication and antipode defined as follows.

Let h ./ f := h⊗ f in D(L) for all f ∈ L∗ op = L∗ and h ∈ L. Then
(h ./ f)(h′ ./ f ′) =

〈
f(1), h

′
(1)

〉〈
f(3),S(h′(3))

〉
(hh′(2) ./ f

′f(2)),

SD(L)(h ./ f) = (1 ./ S−1(f))(S(h) ./ ε),

where fr = m(f ⊗ r) is the multiplication in L∗ rather than in L∗ op.

Our goal is to present D(H); for this we start with D(kΓ) = kΓ⊗kΓ. We
need to describe kΓ suitably. The polynomial ring k[X] is a Hopf algebra
with X primitive. Let (δk)k∈Fp ⊆ kΓ be the dual basis of (gk)k∈Fp and

ζ =
∑

k∈Fp

kδk.

The following result is well-known; of course it is crucial that char k = p.

Lemma 1.3. The map X 7→ ζ gives an isomorphism of Hopf algebras
k[X]/(Xp −X) ' kΓ; and (ζi)i∈I0,p−1 is a basis of kΓ. �
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ON THE RESTRICTED JORDAN PLANE 5

Lemma 1.4. The algebra D(kΓ) is presented by generators g, ζ and relations

gp = 1, ζp = ζ, gζ = ζg.(1.4)

The Hopf algebra structure is determined by

∆(g) = g ⊗ g, ∆(ζ) = ζ ⊗ 1 + 1⊗ ζ.(1.5)

Proof. Let A be the algebra generated by {g̃, ζ̃} with relations (1.4). Since
ζ and g ∈ D(kΓ) satisfy (1.4), we have an epimorphism A� D(kΓ). But A
is linearly generated by (g̃kζ̃`)`∈I0,p−1

k∈Fp

, so dimA ≤ p2 = dimD(kΓ). �

Next we describe H∗. We have morphisms of Hopf algebras H
π
�
ι
kΓ such

that πι = id; dualizing we get H∗
ι∗

�
π∗

kΓ with ι∗π∗ = id. Hence H∗ ' R#kΓ

where R =
(
H∗
)co ι∗ ' B(W ), see e.g. [B, 2.3]. Here W ∈ kΓ

kΓYD is ' V ∗.
Lemma 1.5. H∗ op is presented by generators u, v and ζ with relations

vp = 0, up = 0, vu = uv − 1

2
u2,

vζ = ζv + v, uζ = ζu+ u, ζp = ζ.
(1.6)

A basis of H∗ op is (ζkuivj)i,j,k∈I0,p−1. The comultiplication is given by

∆(u) = u⊗ 1 + 1⊗ u, ∆(ζ) = ζ ⊗ 1 + 1⊗ ζ,
∆(v) = v ⊗ 1 + 1⊗ v + ζ ⊗ u.(1.7)

Proof. Let (ei,j,k)i,j∈I0,p−1

k∈Fp

be the basis of H∗ op dual to (xiyjgk)i,j∈I0,p−1

k∈Fp

. We

identify kΓ with a subalgebra of H∗, so ζ =
∑

k∈Fp
ke0,0,k. We first claim

that the following elements are primitive in R:
u =

∑

k∈Fp

e0,1,k, v =
∑

k∈Fp

e1,0,k.

Indeed, we compute in H∗:

∆(e1,0,h) =
∑

i∈Fp

e1,0,i ⊗ e0,0,h−i + e0,0,i ⊗ e1,0,h−i + i e0,0,i ⊗ e0,1,h−i,

∆(e0,1,h) =
∑

i∈Fp

e0,1,h−i ⊗ e0,0,i + e0,0,i ⊗ e0,1,h−i.

Hence (1.7) holds by a straightforward calculation. Thus u, v ∈ R; clearly
they are primitive in R and linearly independent. Hence they form a basis
of W . Explicitly its structure as Yetter-Drinfeld module is given by

ζ ⇀ u = u, ζ ⇀ v = v, δ(u) = 1⊗ u, δ(v) = 1⊗ v + ζ ⊗ u,(1.8)

while the braiding cW is determined by

cW (u⊗ u) = u⊗ u, cW (u⊗ v) = v ⊗ u,
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6 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

cW (v ⊗ u) = u⊗ (v + u), cW (v ⊗ v) = v ⊗ (v + u).

Thus we have an isomorphism of braided vector spaces (V, c−1
V ) → (W, cW )

that sends x 7→ −u, y 7→ v. The Nichols algebra B(W ) has the same
relations as B(V ) and is finite-dimensional. The relations (1.6) are satisfied
in H∗ op, but B(V ) is not isomorphic to B(W ) as braided Hopf algebras
because (V, cV ) and (V, c−1

v ) are not isomorphic as braided vector spaces.
Now, let A be the algebra presented by generators U = {u, v, ζ} and

relations (1.6). By the argument above we have A � H∗ op, therefore
dimA ≥ p3. For this to be an isomorphism, it is enough to show that
A is linearly generated by (ζiujvk)i,j,k∈I0,p−1 . We define a total order in U
by declaring ζ < u < v. By the defining relations, any product ab with
a, b ∈ U and b < a can be written as a linear combination of monomials
c1 · · · cs with c1 ≤ c2 ≤ · · · ≤ cs ∈ U . The claim follows from this together
with the relations up = 0, vp = 0, ζp = ζ. Hence A ' H∗ op. �
Proposition 1.6. The algebra D(H) is presented by generators u, v, ζ, g, x, y
and relations (1.1), (1.4), (1.6) and

ζy = yζ + y, ζx = xζ + x, vg = gv + gu,

ug = gu, vx = xv + (1− g) + xu, ux = xu,

uy = yu+ (1− g) vy = yv − gζ + yu.

(1.9)

The comultiplication and antipode are given by (1.2), (1.5) and (1.7). The
following family is a a PBW-basis of D(H):

{
xn yr gm ζkuivj : i, j, k, n, r ∈ I0,p−1, m ∈ Fp

}

Proof. Let A be an algebra presented by generators U = {u, v, ζ, g, x, y} and
the relations above. These relations hold in D(H), thus A � D(H), and
dimA ≥ p6. We claim that B = (xn yr gm ζkuivj)i,j,k,n,r∈I0,p−1

m∈Fp

generates A.

We define a total order in U by declaring x < y < g < ζ < u < v. By the
defining relations, any product ab with a, b ∈ U and b < a can be written as
a linear combination of monomials c1 · · · cs with c1 ≤ c2 ≤ · · · ≤ cs ∈ U . The
claim follows from this together with the relations xp = 0, yp = 0, up = 0,
vp = 0, gp = 1, ζp = ζ. Hence A ' D(H). �
1.2. An exact sequence. We recall first the definition of short exact se-
quence of Hopf algebras see e. g. [AD, Sch, H].

Definition 1.7. A sequence of morphisms of Hopf algebras

A
ι
↪−→ C

π−→→ B

is exact if the following conditions holds:

(i) ι is injective.
(ii) π is surjective.

(iii) kerπ = Cι(A)+.
(iv) ι(A) = Ccoπ.
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ON THE RESTRICTED JORDAN PLANE 7

Remark 1.8. If A
ι
↪−→ C is faithfully flat and ι(A) is stable by the left adjoint

action of C then (i), (ii) and (iii) imply (iv), see [AD, 1.2.5, 1.2.14], [Sch].

Let {h, e, f} be the Cartan generators of sl2(k).

Proposition 1.9. The subalgebra R of D(H) generated by g, x and u is
a normal local commutative Hopf subalgebra of D(H) of dimension p3 with
defining relations

gp = 1, xp = 0, up = 0.(1.10)

It gives rise to the exact sequence of Hopf algebras

R �
� // D(H) // // u(sl2(k)).

Since R is commutative and u(sl2(k)) is cocommutative, D(H) arises as
an abelian extension.

Proof. By Proposition 1.6 R is a commutative Hopf subalgebra of dimen-
sion p3 and there is a surjective algebra map from the commutative algebra
presented by relations (1.10) to R. By dimension counting this map is an
isomorphism. By inspection g, x and u are normal, hence so is R. Thus
D(H)R+ is a Hopf ideal of D(H) and the quotient D(H)/D(H)R+ is iso-
morphic to u(sl2(k)) via ζ 7→ h, y 7→ 1

2e and v 7→ f . �
Remark 1.10. Let G = (Ga ×Ga) oGm be the semidirect product where
Gm acts on Ga ×Ga by λ·(t1, t2) = (t1, λt2), λ ∈ k×, t1, t2 ∈ k. Then the
algebra of regular functions O(G) is isomorphic to k[X1, X2, T

±1] and there
is a short exact sequence of Hopf algebras

O(G) �
� Fr // O(G)

π // // R ,

with π : O(G) −→ R given by T 7→ g, X1 7→ u, X2 7→ x. In other words
SpecR is the kernel of the Frobenius endomorphism of G.

Theorem 1.11. There are exactly p isomorphism classes of simple D(H)-
modules which have dimensions 1, 2, . . . , p.

Proof. The two-sided ideal D(H)R+, generated by x, u and g − 1 is nilpo-
tent, hence contained in the Jacobson radical of D(H) and IrrepD(H) '
Irrep u(sl2(k)). Then the well-known classification of the latter appplies. �
1.3. Simple modules. Here we describe the simple modules of D(H) as
quotients of Verma modules reproving Theorem 1.11.

First D(H) = ⊕n∈ZD(H)n is Z-graded by

deg x = deg y = −1, deg u = deg v = 1, deg g = deg ζ = 0.

Thanks to the PBW-basis, the multiplication induces a linear isomorphism

B(V )⊗D(kΓ)⊗B(W ) −→ D(H)

called the triangular decomposition of D(H). The subalgebras

B(W ) =: D>0, B(V ) =: D<0 and D(kΓ)

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JAA

J.
 A

lg
eb

ra
 A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
IN

G
`S

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 M

A
U

G
H

A
N

 L
IB

R
A

R
Y

 &
 I

N
FO

R
M

A
T

IO
N

 S
E

R
V

IC
E

S 
C

E
N

T
R

E
 (

IS
C

) 
- 

JO
U

R
N

A
L

 S
E

R
V

IC
E

S 
on

 0
7/

22
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



8 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

are graded and satisfy

(1) D>0 ⊆ ⊕n∈N0D(H)n, D<0 ⊆ ⊕n∈−N0D(H)n and D(kΓ) ⊆ D(H)0.
(2) (D>0)0 = k = (D<0)0.
(3) D≥0 := D(kΓ)D>0 and D≤0 := D<0D(kΓ) are subalgebras of D(H).
In this context the simple modules of D(H) arise inducing from D≥0.

The elements of Λ := IrrepD(kΓ) are called weights. Since D>0 is local, the
(homogeneous) projection D≥0 � D(kΓ) allows to identify Λ ' IrrepD≥0.
The Verma module associated to λ ∈ Λ is

M(λ) = Ind
D(H)

D≥0 λ = D(H)⊗D≥0 λ.

By a standard argument, M(λ) is indecomposable. Let L(λ) be the head of
M(λ). The following result is well-known, see for instance [V, Theorem 2.1].

Lemma 1.12. The map λ 7→ L(λ) gives a bijection Λ ' IrrepD(H). �

The set Λ is easy to compute since D(kΓ) ' kΓ ⊗ kΓ and kΓ is local.
Given k ∈ Fp, let λk = kwk be the one-dimensional vector space with action

g · wk = wk, ζ · wk = kwk.

Lemma 1.13. The map k 7→ λk provides a bijection Fp ' Λ. �.

We fix k ∈ Fp and compute L(λk). Since M(λ) is free as a D<0-module
with basis (wk), (w

(i,j)
k )i,j∈I0,p−1 is a linear basis ofM(λ), with w(i,j)

k = xiyj ·
wk. This makes M(λk) a graded module by degw

(i,j)
k = deg(xiyj) = −i− j,

so M(λk) = ⊕n≤0M(λk)n and M(λk)0 = kwk. Any proper submodule of
M(λk) is necessarily contained in ⊕n≤−1M(λk)n, so the sum of all proper
submodules is proper, and M(λk) has an unique simple quotient L(λk). We
divide M(λk) by proper submodules until we get a simple one.

Lemma 1.14. The submodule Nk of M(λk) generated by w(1,0)
k is proper.

Proof. The action of u and v gives

ux · wk = xu · wk = 0, vx · wk = xv · wk + (1− g) · wk + xu · wk = 0.

So D>0 · w(1,0)
k = 0. Then Nk = D≤0 · w(1,0)

k ⊆ ⊕n≤−1M(λk)n is proper. �

Let Vk = M(λk)/Nk and let yj be the class of w(0,j)
k in Vk.

Lemma 1.15. The family (yj)j∈I0,p−1 generates linearly Vk and g, u and x
act trivially on Vk.

Proof. First we claim that the class of w(i,j)
k = 0 in Vk if i 6= 0: it is enough

to show that w(1,j)
k = 0 in Vk what follows by induction on j using (1.1).

Then x acts trivially on Vk and (yj)j∈I0,p−1 generates linearly Vk. Also g and
u act trivially on these generators by induction on j using (1.9). �
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ON THE RESTRICTED JORDAN PLANE 9

The action of D(H) on Vk can be computed inductively:

ζ · yj = (k + j)yj , v · yj =
1

2
j(1− 2k − j)yj−1, y · yj = yj+1,

x · yj = 0, u · yj = 0, g · yj = yj .
(1.11)

Let r ∈ I0,p−1 be the representative of −2k, i.e. r ≡ −2k mod p. Then
Ṽk := D(H)yr+1 is a proper submodule of Vk because D>0 · yr+1 = 0.

Proposition 1.16. The module Lk = Vk/Ṽk is simple of dimension r + 1.

It follows that Lk = L(λk), the head of the Verma module M(λk).

Proof. Let zj be the class of yj in Lk; the action of D(H) on the zj ’s is still
given by (1.11). Then (zj)j∈I0,r is a basis of Lk. To see that Lk is simple, we
show that every 0 6= z ∈ Lk generates Lk. Let z =

∑m
j=0 cj zj with m ≤ r

and cm 6= 0. Then vm · z ∈ k×z0, and D(H) · z = Lk. �

2. The double of the Jordan plane

2.1. Definition and basics. Here we define an infinite-dimensional Hopf
algebra D̃ such that D̃ � D(H). We first consider two Hopf algebras H̃ and
K̃ such that H̃ � H and K̃ � K := (H∗)op. Then D̃ := H̃ ./σ K̃ for a
suitable 2-cocycle σ as in [DT]. The Hopf algebra H̃ was studied in [ABFF]
(assuming char k = 0).

Let Γ̃ = 〈g〉 ' Z. Let k[ζ] be the polynomial algebra, a Hopf algebra with
ζ primitive. We have Hopf algebra maps kΓ̃ � kΓ and k[ζ] � kΓ. By the
same formulas as in (0.1) and (1.8), V ∈ kΓ̃

kΓ̃
YD and W ∈ k[ζ]

k[ζ]YD. Thus we
have the following braided Hopf algebras and their bosonizations

B̃ = T (V )/(yx− xy +
1

2
x2) ∈ kΓ̃

kΓ̃
YD, H̃ = B̃#kΓ̃;

B̃ = T (W )/(vu− uv − 1

2
u2) ∈ k[ζ]

k[ζ]YD, K̃ = (B̃#k[ζ])op.

The algebras B̃ and B̃ are isomorphic to the well-known Jordan plane;
but they are not isomorphic as coalgebras.

Lemma 2.1. The families (xiyjgk)i,j∈N0
k∈Z

and (ζiujvk)i,j,k∈N0 are PBW-bases

of H̃ and K̃ respectively. The algebra H̃ is presented by generators x, y,g±
and relations

gx = xg, gy = yg + xg, yx = xy − 1

2
x2, g±g∓ = 1.(2.1)

The algebra K̃ is presented by generators u, v, ζ and relations

vζ = ζv + v, uζ = ζu+ u, vu = uv − 1

2
u2.(2.2)

The coproducts of H̃ and K̃ are determined by (1.2), respectively (1.7).
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10 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

Proof. It is well-known that (xiyj)i,j∈N0 , (viuj)i,j∈N0 are PBW-bases of B̃

and B̃ respectively. Thus the first claim follows (notice the change of order
in the monomials of K̃). Let A and B be the algebras presented by relations
(2.1) and (2.2) respectively. The relations are valid in H̃ and K̃, thus we have
epimorphisms of Hopf algebras A � H̃ and B � K̃. Clearly (gixjyk)j,k∈N0

i∈Z
and (uivjζk)i,j,k∈N0 are linear generators of A and B respectively. Since their
images by the morphisms are linear independent, the result follows. �

To define D̃, we need a skew-pairing τ between H̃ and K̃ as in [DT] i.e.
a linear map τ : H̃ ⊗ K̃ −→ k satisfying

τ(hh̃⊗ k) = τ(h⊗ k(1))τ(h̃⊗ k(2)), τ(1⊗ k) = ε(k), h, h̃ ∈ H̃
τ(h⊗ k̃k) = τ(h(1) ⊗ k)τ(h(2) ⊗ k̃), τ(h⊗ 1) = ε(h), k, k̃ ∈ K̃.

(2.3)

Then τ is convolution invertible with inverse τ−1(b, c) = τ(S(b), c). By (2.3),
a skew-pairing τ is equivalent to a Hopf algebra homomorphism ϕ from H̃cop

to the Sweedler dual K̃◦ of K̃.

Lemma 2.2. There exists a unique skew-pairing τ : H̃ ⊗ K̃ −→ k such that

τ(x⊗ u) = 0, τ(y ⊗ u) = 1, τ(g±1 ⊗ u) = 0,

τ(x⊗ v) = 1, τ(y ⊗ v) = 0, τ(g±1 ⊗ v) = 0,

τ(x⊗ ζ) = 0, τ(y ⊗ ζ) = 0, τ(g±1 ⊗ ζ) = ±1.

Proof. Left to the reader. �

Let A = H̃ ⊗ K̃ with the structure of tensor product Hopf algebra. The
2-cocycle σ : A⊗A −→ A⊗A associated to τ is given by

σ(a⊗ b, c⊗ d) = ε(a)ε(d)τ(c⊗ b), a, b, c, d ∈ A.

We define D̃ as the Hopf algebra A twisted by σ, i.e D̃ = Aσ = H̃ ./σ K̃.

Proposition 2.3. (i) The algebra D̃ is presented by generators u, v, ζ,
g±1, x, y with relations (2.1), (2.2) and

ζy = yζ + y, ζx = xζ + x, vg = gv + gu,

ug = gu, vx = xv + (1− g) + xu, ux = xu,

uy = yu+ (1− g) vy = yv − gζ + yu, ζg = gζ.

(2.4)

The coproduct is determined by (1.2) and (1.7).

(ii) The following family is a PBW-basis of D̃:
{
xn yr gm ζkuivj : i, j, k, n, r ∈ N0, m ∈ Z

}
.(2.5)

(iii) There exists a Hopf algebra epimorphism D̃ � D(H).
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ON THE RESTRICTED JORDAN PLANE 11

Proof. (ii) follows from the definition. (i): Let A be the algebra presented
as above. By construction, the relations are valid in D̃ and thus we have
an epimorphism A � D̃. Using the commutation relations we see that A is
linearly generated by (2.5). By (ii), A ' D̃.

(iii) follows from (i) since the relations are satisfied in D(H). �

Remark 2.4. If we assume that char k = 0, then the definition of D̃ makes
sense and items (i) and (ii) of Proposition 2.3 are also valid.

We next show D̃ is in fact an extension of D(H) by a central Hopf subal-
gebra Z. We shall need the following lemma.

Lemma 2.5. The following commutation relations hold in D̃ for n,m ∈ N:

ζnxm =
n∑

`=0

(
n

`

)
mn−`xmζ`, ζnym =

n∑

`=0

(
n

`

)
mn−`ymζ`,

vmζn =
n∑

`=0

(
n

`

)
mn−`ζ`vm, umζn =

n∑

`=0

(
n

`

)
mn−`ζ`um,

gny` =
∑̀

k=0

(
`

k

)
(−1)k

[−2n][k]

2k
xky`−kgn,

y`xn =
∑̀

k=0

(
`

k

)
(−1)k

[n][k]

2k
xn+ky`−k,

v`un =
∑̀

k=0

(
`

k

)
(−1)k

[n][k]

2k
un+kv`−k,

v`gn =
∑̀

k=0

(
`

k

)
(−1)k

[−2n][k]

2k
gnukv`−k,

vxn = xnv + nxn−1(1− g) + nxnu,

vnx = xvn + nxuvn−1 +
n(n− 1)

4
xu2vn−2 + nvn−1 +

n(n− 1)

2
uvn−2

− ngvn−1 − n(n− 1)guvn−2 − 1

4
n(n− 1)(n− 2)gu2vn−3,

vny = yvn + nyuvn−1 − n(n− 1)

4
yuvn−2 − ngζvn−1 − n(n− 1)gζuvn−2

− 1

4
n(n− 1)(n− 2)gζu2vn−3 − n(n− 1)

2
gvn−1 − n(n− 1)2

2
guvn−2

− 1

8
n(n− 1)2(n− 2)gu2vn−3,

uyn = ynu+ nyn−1 −
n−1∑

k=0

(
n

k + 1

)
(k + 1)!

2k
yn−1−kxkg,
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12 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

vyn = ynv + nynu+
n(n− 1)

2
yn−1 −

n−1∑

k=0

(
n

k + 1

)
(k + 1)!

2k
yn−1−kxkgζ

−
n−1∑

k=0

(
n

k + 1

)
(n− 1)(k + 1)!

2k
yn−1−kxkg,

uny = yun + n(1− g)un−1,

The comultiplication satisfies

∆(xn) =
n∑

k=0

(
n

k

)
xn−kgk ⊗ xk,

∆(yn) =
n∑

k=0

k∑

i=0

(
n

k

)(
k

i

)
(−1)i

[n− k][i]

2i
gn−kxiyk−i ⊗ yn−k.

Proof. Straightforward by induction. �

For our next statement we need to set up the notation. Let

B = ((Ga ×Ga) oGm)×H3(2.6)

be the algebraic group that in the first factor has the semidirect product
where Gm acts on Ga ×Ga by λ·(r1, r2) = (λr1, λr2), λ ∈ k×, r1, r2 ∈ k
while in the second factor appears the Heisenberg group H3 i.e. the group
of upper triangular matrices with ones in the diagonal. (The first factor is
not the same as the group in Remark 1.10).

Proposition 2.6. Let Z be the subalgebra of D̃ generated by the elements
gp, xp, yp, up, vp and ζ(p) :=

∏p
i=1(ζ + i− 1) = ζp − ζ. Then

(i) Z is a central Hopf subalgebra of D̃.

(ii) D̃ is a finitely generated free Z-module.

(iii) Z
ι
↪−→ D̃

π−→→ D(H) is short exact sequence of Hopf algebras.
(iv) Z ' k[T±]⊗k[X1, . . . , X5] as an algebra. In particular Z is a domain.
(v) Z ' O(B) as Hopf algebras.

Proof. (i) By Lemma 2.5 Z is a central subalgebra of D̃; up, ζ(p) ∈ P(D̃) and
gp ∈ G(D̃). Also ∆(xp) = xp ⊗ 1 + gp ⊗ xp and ∆(yp) = yp ⊗ 1 + gp ⊗ yp.
It only remains to show that

∆(vp) = vp ⊗ 1 + 1⊗ vp + ζ(p) ⊗ up.(2.7)

Since v ∈ K̃ = (B̃#k[ζ])op it is enough to know the coaction δ(vp) and the
braided comultiplication of vp in B̃. It can be proved inductively that

∆
B̃

(vn) = vn ⊗ 1 + 1⊗ vn +
n−1∑

k=1

k∑

i=0

(
n

k

)(
k

i

)
[n− k][i]

2i
vn−k ⊗ uivk−i,
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ON THE RESTRICTED JORDAN PLANE 13

δ(vn) = 1⊗ vn + ζn ⊗ un +
n−1∑

k=1

n∑

t=k

(
n

t

)[
t

k

]
1

2t−k
ζk ⊗ utvn−t,

for n ∈ N. Since ζ(p) =
∑p

k=0

[
p
k

]
ζk = ζp − ζ, we have

[
p

k

]
= 0, k = 2, . . . , p− 1,

[
p

p

]
= 1, and

[
p

1

]
= −1.(2.8)

Then δ(vp) = 1⊗ vp + ζ(p)⊗up, ∆
B̃

(vp) = vp⊗ 1 + 1⊗ vp, and (2.7) follows.

(ii) To prove this we consider another basis of D̃ using a different basis of
k[ζ]. The family of polynomials

{
(ζ(p))kζj : k ∈ N0, j ∈ I0,p−1

}

is a basis of k[ζ]. Indeed, these polynomials are linearly independent since
they have different degrees. We prove the polynomials ζn can be written as
linear combinations of them by induction on n. The case n = 0 is obvious.
If ζn =

∑n
k=0

∑p−1
j=0 ak,j(ζ

(p))kζj for some constants ak,j then

ζn+1 =
n∑

k=0

p−1∑

j=0

ak,j(ζ
(p))kζj+1 =

=

n∑

k=0

p−1∑

j=1

ak,j−1(ζ(p))kζj +

n∑

k=0

ak,p−1(ζ(p))k+1 +

n∑

k=0

ak,p−1(ζ(p))kζ.

By Proposition 2.3 (ii), the following is a linear basis of D̃:
{
xn yr gm (ζ(p))kζ`uivj : i, j, k, n, r ∈ N0, m ∈ Z, ` ∈ I0,p−1

}

Hence the following is a basis of D̃ as Z-module:
{
xn yr gm ζ`uivj : i, j, `, n, r,m ∈ I0,p−1

}
.

(iii) By Propositions 2.3 and 1.6, kerπ is the ideal generated by

xp, yp, gp − 1, up, vp and ζ(p).

This is clearly equal to D̃ι(Z)+. Then Remark 1.8, (i) and (ii) apply.
(iv) By the proof of (ii), the following is a basis of Z:

{
xpn ypr gpm (ζ(p))kupivpj : i, j, k, n, r ∈ N0, m ∈ Z

}
.

Hence the following assignement

T 7→ gp, X1 7→ xp, X2 7→ yp, X3 7→ ζ(p), X4 7→ up, X5 7→ vp.

provides an algebra isomorphism Z ' k[T±]⊗ k[X1, . . . , X5].
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14 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

(v) By (iv) Z is a commutative Hopf algebra without nilpotent elements.
Then Z ' O(G) for the algebraic group G = Homalg(Z,k) ' k× × k5. The
multiplication of G is induced from the comultiplication of Z and is given
for ω = (λ, r1, r2, t1, t2, t3), ω′ = (λ′, r′1, r

′
2, t
′
1, t
′
2, t
′
3) ∈ k× × k5 by

ω · ω′ = (λλ′, r1 + λr′1, r2 + λr′2, t1 + t′1, t2 + t′2, t3 + t′3 + t1t
′
2).(2.9)

Clearly G = B as claimed. �

2.2. Another exact sequence. In this Subsection we start assuming that
char k 6= 2, i.e. char k = 0 is also allowed. Let {h, e, f} be the Cartan
generators of sl2(k). Let π : D̃ −→ U(sl2(k)) be the Hopf algebra map given
by x 7→ 0, y 7→ 1

2e, u 7→ 0, v 7→ f , g 7→ 1 and ζ 7→ h. Let C be the subalgebra
of D̃ generated by x, u and g; clearly it is a normal Hopf subalgebra. Let G
be the algebraic group defined in Remark 1.10.

Proposition 2.7. (i) C ' O(G) as Hopf algebras.
(ii) There is an exact sequence of Hopf algebras

O(G) ↪→ D̃
π−→ U(sl2(k)).

Proof. (i) follows from the definition using the PBW-basis.
(ii) By the normality of O(G), kerπ = 〈x, u,g − 1〉 = D̃O(G)+. Then

Remark 1.8 applies: O(G) is stable by the adjoint action and D̃ is a free
module over O(G) by the PBW-basis, so the inclusion is faithfully flat. �

We come back to the assumption char k > 2. Recall the commutative
diagram

O(G) �
� //

� _

Fr

��

O(B)� _

��

// // O(G3
a)� _

��
O(G) �

� //

����

D̃ // //

����

U(sl2(k))

����
R �
� // D(H) // // u(sl2(k)).

(0.2)

Proposition 2.8. All columns and rows in (0.2) are exact sequences.

Proof. The middle row is exact by the previous proposition and the bottom
by Proposition 1.9. For the rightmost column we need to prove that the
Hopf subalgebra Z ′ = 〈ep, fp, hp − h〉 of U(sl2(k)) is O(G3

a). Taking the
basis B = {f i(hp − h)jhke` : i, j, ` ∈ N0, k ∈ I0,p−1} of U(sl2(k)) we see
that the assignment X1 7→ fp, X2 7→ hp − h and X3 7→ ep gives an algebra
isomorphism Z ′ ' k[X1, X2, X3] ' O(G3

a). Comparing comultiplications,
the previous isomorphism is of Hopf algebras. O(G3

a) is stable by the adjoint
action of U(sl2(k)) and a free module over O(G3

a) using the basis B, then
Remark 1.8 applies and the column is exact.
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ON THE RESTRICTED JORDAN PLANE 15

We next describe explicitly the top arrow. φ : O(G) → O(B) is given by
x 7→ xp, u 7→ up and g 7→ gp, and ψ : O(B) −→ O(G3

a) is given by

xp 7→ 0, yp 7→ 1

2
ep, up 7→ 0, vp 7→ fp, gp 7→ 1, ζ(p) 7→ hp − h.

It follows φ is a injective since it maps a basis into a linearly independent
set and ψ is surjective since the PBW-basis of O(G3

a) is in its image. Clearly
kerψ ⊇ O(B)φ(O(G))+, the other inclusion follows easily using the basis
for O(B) given by

{
xpn ypr (gp − 1)m (ζ(p))kupivpj : i, j, k, n, r,m ∈ N0

}
∪

{
xpn ypr (g−p − 1)m (ζ(p))kupivpj : i, j, k, n, r ∈ N0, m ∈ N

}
.

The adjoint action of O(B) is trivial, hence φ(O(G)) is invariant. The
PBW-basis for O(B) and O(G) implies φ is faithfully flat. Then Remark
1.8 applies and the row is exact.

The middle column is exact by Proposition 2.6. Only the leftmost col-
umn remains. Let π : O(G) −→ R be as in Remark 1.10, then kerπ =
〈xp, up,gp − 1〉 = O(G) Fr(O(G))+. By Remark 1.8, the result follows. �

2.3. Ring-theoretical properties of D̃.

Proposition 2.9. (i) The algebra D̃ admits an exhaustive ascending fil-
tration (D̃n)n∈N0 such that gr D̃ ' k[T±]⊗ k[X1, . . . , X5].

(ii) D̃ is a noetherian domain.

(iii) D̃ is a PI-algebra.

Proof. (i) Let T be the algebra generated by g±1, ζ, x, y, u, v with relations
g±1 · g∓1 = 1. Consider the grading on T determined by

deg g−1 = −1, deg g = deg ζ = 1, deg u = deg x = 2, deg v = deg y = 3.

The filtration associated to this grading induces a filtration on D̃ via the
(evident) epimorphism T →→ D̃. The relations of D̃ imply that the classes
of the generators commute in gr D̃ and gg−1 = g−1g = 1. We may conclude
that k[T±] ⊗ k[X1, . . . , X5] →→ gr D̃. By dimension counting in each degree
using the PBW-basis, this map is an isomorphism.

(ii) follows from (i) since k[T±]⊗ k[X1, . . . , X5] is a noetherian domain.

(iii) follows from Proposition 2.6 and [MR, Corollary 1.13]. �

The algebra H̃ is also PI by a similar reason. We observe that in charac-
teristic 0, all finite-dimensional simple H̃-modules have dimension 1 and are
classified in [ABFF, §3] using results from [I].
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16 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

3. Pre-Nichols algebras of the restricted Jordan plane

3.1. Finite-dimensional pre-Nichols algebras. Recall that a pre-Nichols
algebra of a braided vector space (V, c) (or of its Nichols algebra) is a graded
connected braided Hopf algebra B = ⊕n∈N0B

n such that B1 ' V (as
braided vector spaces) and this generates B as an algebra. Accordingly a
morphism of pre-Nichols algebras is one of a graded connected braided Hopf
algebras inducing the identity on V. Thus we have by definition morphisms
of pre-Nichols algebras T (V) � B � B(V). If V ∈ K

KYD for some Hopf
algebra K, then B is a pre-Nichols algebra over K if in addition B ∈ K

KYD,
that is the kernel of T (V) � B is a Yetter-Drinfeld submodule of T (V)

For classification issues it is important to determine all finite-dimensional
pre-Nichols algebras of the restricted Jordan plane B(V ). In this section we
classify those that factorize through the Jordan plane B̃.

3.1.1. Pre-Nichols algebras. We shall need the following lemma.

Lemma 3.1. The following formulas are valid in B̃ for every n ∈ N:

g ⇀ yn = yn + nxyn−1 +
1

4
(n2 − n)x2yn−2,(3.1)

∆(xn) = xn ⊗ 1 + 1⊗ xn +
n−1∑

k=1

(
n

k

)
xn−k ⊗ xk,(3.2)

∆(yn) =
n∑

k=0

k∑

i=0

(
n

k

)(
k

i

)
(−1)i

[k − n][i]

2i
xiyk−i ⊗ yn−k.(3.3)

If n = p` with ` ≥ 1, the last formula simplifies to

∆(yp`) = yp` ⊗ 1 + 1⊗ yp` +
`−1∑

t=1

(
`

t

)
ypt ⊗ yp(`−t).(3.4)

Proof. (3.1) is proved by induction on n using (1.3). Since x is primitive
and c(x⊗ x) = x⊗ x (3.2) follows. (3.3) is proved by induction using (3.1)
and that gk ⇀ y = y + kx for every k ∈ N. To prove (3.4), notice that
yp is primitive because

(
p
k

)
= 0 for 1 ≤ k ≤ p − 1 and (3.3). By (3.1)

c(yp ⊗ yp) = yp ⊗ yp, so (3.4) follows. �

Proposition 3.2. Let k, ` ∈ N and a ∈ k. The algebras

K(k, a) := B̃/(yp
k − axpk),

F(`) := B̃/(xp
`
),

G(k, `, a) := B̃/(yp
k − axpk , xp`)
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ON THE RESTRICTED JORDAN PLANE 17

are pre-Nichols algebras of B(V ) over kΓ that factorize by B̃ and have PBW-
bases given by the following table.

Algebra PBW-basis
K(k, a) {xiyj : i ∈ N0, j ∈ I0,pk−1}
F(`) {xiyj : i ∈ I0,p`−1, j ∈ N0}
G(k, `, a) {xiyj : i ∈ I0,p`−1, j ∈ I0,pk−1}

Proof. The elements of the form f = b1x
pt + b2y

pt with b1, b2 ∈ k and t ∈ N
are primitive, g ⇀ f = f and c(f ⊗ f) = f ⊗ f . Thus the algebras K(k, a),
F(`) and G(k, `, a) are indeed pre-Nichols algebras. We prove the existence
of the PBW-bases using the diamond lemma. We declare x < y and we
define a ordering in the monomials with letter x, y in the following way:

• X < Y if the length of X (the number of letters in the product X) is less
than the length of Y .
• If X and Y have the same length, but the number of y’s in Y is greater
than the number of y’s in X, then X < Y .
• If X is a permutation of the letters of Y , but has a lower number of
inverses, then X < Y .

Here, we say that the monomial X = x1 · · ·xs with xt ∈ {x, y}, t ∈ I1,s has
inverse (i, j), 1 ≤ i < j ≤ s if xi > xj . With this order, if all ambiguities can
be solved, then the hypotheses of the diamond lemma are fulfilled. Hence
the sets of irreducible monomials are basis of each algebra respectively, that
is the proposed PBW-bases. Using (1.3) the ambiguity resolutions are:

• ypk−1yyp
k−1 for K(k, a) and G(k, `, a):

(yp
k−1y)yp

k−1 = axp
k
yp

k−1 = ayp
k−1xp

k
= yp

k−1(yyp
k−1).

• ypk−1yx for K(k, a) and G(k, `, a):

(yp
k−1y)x = yp

k
x = axp

k+1.

yp
k−1(yx) = yp

k−1xy − 1

2
yp

k−1x2 =

=

pk−1∑

t=0

(
pk − 1

t

)
(−1)t

2t
x1+typ

k−t−1([1][t]y − 1

2
[2][t]x)

= xyp
k − (pk)!

2pk
xp

k+1 +

pk−1∑

t=1

(
pk

t

)
(−1)t

[1][t]

2t
x1+typ

k−t

= xyp
k

= axp
k+1.

• xp`−1xxp
`−1 for F(`) and G(k, `, a):

(xp
`−1x)xp

`−1 = 0 = xp
`−1(xxp

`−1).
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18 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

• yxxp`−1 for F(`) and G(k, `, a):

(yx)xp
`−1 = xyxp

`−1 − 1

2
xp

`+1 = xp
`
y +

1

2
xp

`
= 0 = y(xxp

`−1).

�

3.1.2. Exhaustion. We show now that the algebras G(k, `, a) are the only
finite-dimensional pre-Nichols algebras of B(V ) that factorize through B̃.
The relations of a pre-Nichols algebra with minimal degree are primitive,
thus we start by computing the primitive elements of the algebras B̃, K(k, a),
F(`) or G(k, `, a). Let us denote by A one of these algebras and by P(A)n

the space of primitives in degree n which is a Yetter-Drinfeld submodule over
Γ of An. Since Γ acts unipotently if P(A)n 6= 0, there exists 0 6= f ∈ P(A)n

invariant. We then first compute the invariant elements of An.
Lemma 3.3. Let n ∈ N.

(i) If A is either B̃, K(k, a) or G(k, `, a) with k ≤ `, then the submodule
In ⊆ An of invariant elements of degree n is generated by the set

{
xn−p`yp` : 0 ≤ ` ≤ bn

p
c
}
.

(ii) If A is F(`) or G(k, `, a) with k > `, then the submodule In ⊆ An of
invariant elements of degree n is generated by the set
{
xp

`−1yn+1−p`
}
∪
{
xn−p`yp` : 0 ≤ ` ≤ bn

p
c
}
, If n ≥ p` − 1,

{
xn−p`yp` : 0 ≤ ` ≤ bn

p
c
}
, If n < p` − 1.

Proof. (i) We just consider the case A = B̃, as all other algebras have similar
PBW-bases. By (3.1), xn−p`yp` ∈ In for all ` as above.

Let f =
∑n

i=0 bix
iyn−i ∈ In. By (3.1) we get

0 = g ⇀ f − f =

b0nxy
n−1 +

n−1∑

i=1

[
bi(n− i) +

bi−1

4
((n− i+ 1)2 − (n− i+ 1))

]
xi+1yn−i−1.

And thus b0 = 0 if p - n and

0 = bi(n− i) +
bi−1

4

(
(n− i+ 1)2 − (n− i+ 1)

)
∀i ∈ In−1.(3.5)

Set ri := n − i in Fp for i ∈ In−1. If ri = 0, then (3.5) gives no restriction.
If ri 6= 0, then (3.5) says that bi = −1

4bi−1(ri + 1). Therefore
• If ri = −1, then bi = 0.
• If ri 6= −1, 0 and bi−1 = 0, then bi = 0.
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ON THE RESTRICTED JORDAN PLANE 19

Assume that p - n. Then b0 = 0. Then r1 6= −1; thus either r1 6= 0 hence
b1 = 0, or else r1 = 0 in which case r2 = −1 and b2 = 0. Arguing recursively
bi = 0 for any i until ri = 0. i.e. n − i = p` for some `. For this i we have
ri+1 = −1, hence bi+1 = 0 and so on. That is, f is sum of monomials as
desired. Finally, if p | n, r1 = −1, hence b1 = 0 and we continue analogously.

(ii) If n < p`−1, the same recursive argument as in (i) applies. If n ≥ p`−1,
by (3.1) the element xp`−1yn+1−p` is invariant. Then taking f ∈ In as a
linear combination of the remaining PBW-basis elements leads to a similar
recursive argument as in (i). �

Proposition 3.4. Let A be any of the algebras B̃, K(k, a), F(`) or G(k, `, a).
Let n ∈ N. Then

P(A)n =

{
0 if n is not a power of p.
kxpt + kypt if n = pt for some t ∈ N0.

Proof. We proceed in steps. First we show that if h ∈ P(A)n ∩In, then h is
in the linear span of

{
xn−p`yp` : 0 ≤ ` ≤ bnp c

}
regardless of A. If A is F(`)

or G(k, `, a) with k > `, and n ≥ p` − 1, then h is of the form

h = bxp
`−1yn+1−p` +

bn
p
c∑

`=0

b`x
n−p`yp`, b, b` ∈ k, ` ∈ I0,bn

p
c.

Since ∆(h)−h⊗ 1− 1⊗h = 0, then bxp`−1⊗ yn+1−p` + Θ = 0, where Θ is a
linear combination of tensors linearly independent to xp`−1⊗ yn+1−p` . Then
b = 0 and h is as desired.

Now, we show that if we have an non zero element r = axn+byn, a, b ∈ k,
then r is primitive if and only if n = pt for some t ∈ N0. By Lucas theorem(
n
k

)
= 0 for all k ∈ In−1 if and only if n = pt for some t ∈ N0. Thus the claim

for xn is valid and we can assume b 6= 0. In this case r is never primitive if
p - n and n 6= 1, because ∆(yn) has as a summand ny ⊗ yn−1. If n = p`, r
is primitive if and only if

(
`
k

)
= 0 for all k ∈ I`−1, and that happens if and

only if ` is a power of p.
Now we classify all the primitives. As in the previous proof we just deal

with A = B̃, the other algebras have similar arguments. Since the action
of g on P(A)n is unipotent, if P(A)n 6= 0, then there exists 0 6= f ∈ P(A)n

such that g ⇀ f = f . By Lemma 3.3 f is of the form

f =

bn
p
c∑

`=0

c`x
n−p`yp` c` ∈ k∀`.

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JAA

J.
 A

lg
eb

ra
 A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
IN

G
`S

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 M

A
U

G
H

A
N

 L
IB

R
A

R
Y

 &
 I

N
FO

R
M

A
T

IO
N

 S
E

R
V

IC
E

S 
C

E
N

T
R

E
 (

IS
C

) 
- 

JO
U

R
N

A
L

 S
E

R
V

IC
E

S 
on

 0
7/

22
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



20 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

Since ∆(f)− f ⊗ 1− 1⊗ f = 0, there exists is a linear combination Ξ1 of
tensors linearly independent to xn−p` ⊗ yp` and yp` ⊗ xn−p` such that

0 = Ξ1 +
∑

1≤`≤bn
p
c

p` 6=n

c`(x
n−p` ⊗ yp` + yp` ⊗ xn−p`).

Then c` = 0 for 1 ≤ ` ≤ bnp c and p` 6= n. If p - n, f = c0x
n, but this is

primitive only if n is a power of p, so P(A)n = 0. If n = pj for j ∈ N, then
f = c0x

pj + cjy
pj . This is primitive if and only if j is a power of p. We

then have P(A)n = 0 if n is not a power of p. If n = pt with t ∈ N0, then
kxn + kyn are exactly the invariant primitives. We want to see that these
are the only primitives in A. Fix n = pt for t ∈ N0. If kxp

t
+kypt ( P(A)p

t ,
the canonical Jordan form of g in P(A)p

t implies the existence of a non-

invariant primitive f such that g ⇀ f
(?)
= f + h with h = a0x

pt + a1y
pt 6= 0

an invariant primitive. We can assume then f is a solution of the equation
(?). If f =

∑pt

i=0 b̃ix
iyn−i , then we have by (3.1)

pt−1∑

i=1

[
−ĩbi +

b̃i−1

4
((−i+ 1)2 − (−i+ 1))

]
xi+1yp

t−i−1 = a0x
pt + a1y

pt .

The same argument as at the end of the proof of Lemma 3.3 shows that
b̃i = 0 for p - i and i 6= pt − 1. That is, f has the form

f = bxp
t−1y +

pt−1∑

`=0

b`x
n−p`yp`, b, b` ∈ k, ` ∈ I0,pt−1 .

Using now that f is primitive, we get bxpt−1 ⊗ y + Ξ2 = 0, where Ξ2 is a
linear combination of tensors linearly independent of xpt−1 ⊗ y. Then b = 0
and P(A)p

t
= kxpt + kypt .

�
Lemma 3.5. G(k, `, a) ' G(k, `, 0) as braided Hopf algebras.

Proof. Let t ∈ k. The automorphism of Yetter-Drinfeld modules ψt : V → V
given by x 7→ x, y 7→ y + tx induces an automorphism of braided Hopf
algebras Ψt : T (V ) → T (V ) that descends to Ψt : B̃ → B̃ because Ψ(yx −
xy+ 1

2x
2) = yx−xy+ 1

2x
2. Thus we have a morphism of groupsGa → Aut B̃,

t 7→ Ψt.
Let now t ∈ k be a solution of the equation (tp − t)pk−1

+ a = 0. Arguing
recursively we prove that the following equalities hold in B̃:

(y + tx)n = yn + tnxn +

n−1∑

i=1

n∑

j=i

(
n

j

)[
j

i

]
(−2)i−jtixjyn−j , n ∈ N.

Hence (y + tx)p = yp + (tp − t)xp by (2.8). Since xp commutes with yp, we
get (y + tx)p

k
= yp

k
+ (tp − t)p

k−1
xp

k
= yp

k − axp
k . Then Ψ induces a
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morphism of braided Hopf algebras G(k, `, 0) −→ G(k, `, a). Repeating the
argument with Ψ−1 we conclude that G(k, `, a) ' G(k, `, 0). �

Because of the previous Lemma, we introduce G(k, `) := G(k, `, 0). We
now state the main result of this Section.

Theorem 3.6. If B is a finite-dimensional pre-Nichols algebra of V that
factorizes through B̃, then B ' G(k, `) for unique k, ` ∈ N.

Proof. By assumption, there is a morphism π : B̃ � B of pre-Nichols
algebras. Since dim B̃ = ∞, kerπ 6= 0. Pick 0 6= f ∈ kerπ homogeneous of
minimal degree m; then f ∈ P(B̃). By Proposition 3.4 , m = pk, k ∈ N,
and there exists (b1, b2) ∈ k2 − 0 such that f = b1x

pk + b2y
pk . We have now

two cases, b2 6= 0 and b2 = 0.
If b2 6= 0, taking a = − b1

b2
we get a morphism of pre-Nichols algebras

π1 : K(k, a) � B. Since dimK(k, a) = ∞, kerπ1 6= 0. Pick 0 6= f1 ∈ kerπ1

homogeneous of minimal degree m1; then f1 ∈ P(K(k, a)). By Proposition
3.4 , m1 = p`, ` ∈ N, and there exists (c1, c2) ∈ k2 − 0 such that f1 =

c1x
p` + c2y

p` ∈ kerπ1. Now the preimage of f1 in B̃ belongs to kerπ, hence
` ≥ k by the minimality ofm = pk. So f1 = c1x

p` +c2y
p` = (c1 +c2a

p`−k
)xp

` .
Hence 0 6= xp

` ∈ kerπ1 and we get a morphism of pre-Nichols algebras
π2 : G(k, `, a) � B which is actually an isomorphism. Otherwise pick 0 6=
f2 ∈ kerπ2 homogeneous of minimal degreem2 = ph; then f1 ∈ P(G(k, `, a)).
Now the preimage of f2 in K(k, a) belongs to kerπ1, hence h ≥ ` ≥ k, but all
the primitives in G(k, `, a) have degree < max{p`, pk}. So B ' G(k, `, a) '
G(k, `) by Lemma 3.5.

If b2 = 0, then we get a morphism of pre-Nichols algebras π3 : F(k) � B.
Since dimF(k) = ∞, kerπ3 6= 0. Pick 0 6= f3 ∈ kerπ3 homogeneous of
minimal degree m3; then f3 ∈ P(F(k)), m3 = p`, ` ∈ N, and there exists
(c1, c2) ∈ k2− 0 such that f3 = c1x

p` + c2y
p` ∈ kerπ3. Since the preimage of

f3 in B̃ belongs to kerπ, ` ≥ k. So f3 = c2y
p` . Hence 0 6= yp

` ∈ kerπ3 and
we get an isomorphism π4 : G(`, k, 0) � B arguing as above. �

3.1.3. The poset. We have the following picture in the poset of pre-Nichols
algebras of the restricted Jordan plane:

K(k, a)

$$ $$
T (V ) // // B̃

== ==

!! !!

G(k, `, a) // // B(V )

F(`)

:: ::
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For two finite dimensional pre-Nichols algebras R1 and R2 from the previ-
ous families, we say R1 ≥ R2 if and only if there exist a pre-Nichols algebra
epimorphism R1 � R2. This is a well defined poset since if R1 ≥ R2

and R1 ≤ R2, then R1 = R2 by the respective PBW bases and because a
pre-Nichols algebra morphism is the identity in V .

Although G(k, `, a) ' G(k, `) as braided Hopf algebras, they are different
as pre-Nichols algebras if a 6= 0 and k < `. This is because we require pre-
Nichols algebras morphisms to be the identity in V . We then reserve the
notation G(k, `, a) only for the case a 6= 0 and k < `.

The aim of this subsection is the complete description of this poset.

Lemma 3.7. The following comparisons in the poset are valid:

(i) G(k, `, a) ≥ G(k′, `′, b) iff one of the following conditions holds:
(a) ` ≥ `′, `′ > k ≥ k′ and a = bp

k−k′ .
(b) ` ≥ `′ and k ≥ `′ > k′.

(ii) G(k, `, a) ≥ G(k′, `′) if and only if ` ≥ `′, k ≥ `′ and k ≥ k′.
(iii) G(k, `) ≥ G(k′, `′, a) if and only if ` ≥ `′ and k ≥ `′ > k′.
(iv) G(k, `) ≥ G(k′, `′) if and only if ` ≥ `′ and k ≥ k′.

Proof. For simplicity we denote by x, y the corresponding generators in
G(k′, `′, a) or G(k′, `′), and by x, y the ones in G(k, `, a) or G(k, `).

(i) If any of the two conditions for the constants `, `′, k, k′, a, b holds,
then clearly the corresponding pre-Nichols algebra morphism exists. Let
π : G(k, `, a) � G(k′, `′, b) be a pre-Nichols algebras morphism. Then π(xp

`
) =

xp
`

= 0, hence ` ≥ `′. If k ≥ `′ > k′ we are done, if `′ > k ≥ k′,
then yp

k′ − bxpk
′

= 0 hence yp
k − bpk−k′

xp
k

= 0. So 0 = π(yp
k − axpk) =

yp
k − axpk = (bp

k−k′ − a)xp
k , this implies bpk−k′

= a. Finally if k < k′, then
π(yp

k − axpk) = yp
k − axpk = 0, and this implies a = 0 a contradiction.

(ii) If ` ≥ `′,k ≥ `′ and k ≥ k′, then clearly the corresponding morphism
exists. Let π : G(k, `, a) � G(k′, `′) be a pre-Nichols algebras morphism. The
same argument as in (i) shows ` ≥ `′. If k < `′ then π(yp

k − axpk) = 0 =

yp
k−axpk , and this implies a = 0 since xpk 6= 0, a contradiction. Then k ≥ `′

and π(yp
k − axpk) = yp

k
= 0 hence k ≥ k′.

(iii) If ` ≥ `′ and k ≥ `′ > k′ then the corresponding morphism exist.
Now let π : G(k, `) � G(k′, `′, a). By the same argument as in (i), ` ≥ `′.
If k ≥ `′ > k′ we are done. If `′ > k ≥ k′, then π(yp

k
) = 0 = yp

k . Since
0 = yp

k′ − axp
k′ implies 0 = yp

k − ap
k−k′

xp
k

= ap
k−k′

xp
k . Then a = 0, a

contradiction. Only the case k′ > k remains. In this case π(yp
k
) = 0 = yp

k ,
but ypk 6= 0, a a contradiction.

(iv) If ` ≥ `′ and k ≥ k′ then the corresponding morphism exist. Now let
π : G(k, `) � G(k′, `′). By the same argument as in (i), ` ≥ `′. Now since
π(yp

k
) = 0 = yp

k then k ≥ k′. �
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3.2. Finite-dimensional Hopf algebras. By bosonization we obtain new
examples of Hopf algebras.

Corollary 3.8. (i) The Hopf algebras K(k, a)#kΓ and F(`)#kΓ have
GKdim = 1.

(ii) The Hopf algebras Hk,`,a = G(k, `, a)#kΓ have dimension p`+k+1. �

4. The graded dual of the Jordan plane

In this Section char k 6= 2. We present the graded dual E of the Jordan
plane B̃ by generators and relations. In this section the duals are calculated
in the category kΓ

kΓYD, hence the canonical identification (U1⊗U2)∗ ' U∗2⊗U∗1
for U1, U2 ∈ kΓ

kΓYD is used. Let (αi,j)i,j∈N0 be the dual basis of the basis
(xiyj)i,j∈N0 of B̃. Clearly E is linearly spanned by the αi,j ’s.

Proposition 4.1. The braided Hopf algebra E is presented by generators
x[n], y[n], n ∈ N, and relations

x[n]x[m] =

(
n+m

n

)
x[n+m], y[n]y[m] =

(
n+m

n

)
y[n+m],

x[n]y[m] =
m∑

k=0

(
n+ k

k

)
(−1)k

[−n][k]

2k
y[m−k]x[n+k], x[0] = y[0] = 1,

(4.1)

for all n,m ∈ N0. The family (y[m]x[n])n,m∈N0 is a basis of E. The coproduct
and the braiding are given by

∆(x[n]) =

n∑

k=0

x[k] ⊗ x[n−k],

∆(y[n]) =
n∑

k=0

k∑

i=0

(−1)i
[n− k][i]

2i
y[n−k] ⊗ y[k−i]x[i].

(4.2)

c(y[j]x[i] ⊗ y[m]x[n]) =

y[m]x[n] ⊗
j∑

k=0

(
k + i

k

)
(−1)k

[2(n+m)][k]

2k
y[j−k]x[k+i],

(4.3)

for all n,m, i, j ∈ N0.

Proof. Let A be the algebra presented as above. It is graded with deg x[n] =
deg y[n] = n for every n. The elements

x[n] = α0,n and y[n] = αn,0, n ∈ N,

of E satisfy the relations (4.1), hence we have a graded epimorphism A� E .
By dimension counting in each degree this is an isomorphism. A direct
calculation shows that y[m]x[n] = αm,n, hence (y[m]x[n])n,m∈N0 is a basis of E .
The coproduct and braiding formulas follow in a straightforward way. �

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in JAA

J.
 A

lg
eb

ra
 A

pp
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
IN

G
`S

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 M

A
U

G
H

A
N

 L
IB

R
A

R
Y

 &
 I

N
FO

R
M

A
T

IO
N

 S
E

R
V

IC
E

S 
C

E
N

T
R

E
 (

IS
C

) 
- 

JO
U

R
N

A
L

 S
E

R
V

IC
E

S 
on

 0
7/

22
/2

0.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



24 NICOLÁS ANDRUSKIEWITSCH AND HÉCTOR PEÑA POLLASTRI

In the previous proof, the following coproduct formula in B̃ is useful for
computations. Given n ∈ N0, ` ∈ I0,n, we have

∆(xn−`y`) =

n−∑̀

k=0

∑̀

t=0

t∑

i=0

(
n− `
k

)(
`

t

)(
t

i

)
(−1)i

2i
[t− `− 2k][i]xn+i−`−kyt−i ⊗ xky`−t.

Let G(k, `) = G(k, `)∗; this is a post-Nichols algebra of (W, c).

Corollary 4.2. (i) If char k = 0, then E ' B̃ as braided Hopf algebras.
(ii) If char k = p > 2, then E =

⋃
k,`∈NG(k, `).

Proof. (i) In char k = 0, x[n] = 1
n!(x

[1])n and y[n] = 1
n!(y

[1])n for every n ∈ N0.
Hence E is presented by the elements x[1], y[1] with relation

y[1]x[1] − x[1]y[1] +
1

2
(x[1])2 = 0.

Then E ' B̃ via the isomorphism of algebras given by x[1] 7→ u and y[1] 7→
−v. This is actually an isomorphism of braided Hopf algebras since x[1] and
y[1] are primitive in E , and the braiding c between them is given by

c(x[1] ⊗ x[1]) = x[1] ⊗ x[1], c(x[1] ⊗ y[1]) = y[1] ⊗ x[1],

c(y[1] ⊗ x[1]) = x[1] ⊗ (−x[1] + y[1]), c(y[1] ⊗ y[1]) = y[1] ⊗ (y[1] − x[1]).

Hence the claim follows.
(ii) Since B̃ � G(k, `), then G(k, `) ↪→ E . Hence

⋃
G(k, `) ⊆ E . Now

since E = ⊕n∈N0En, it is enough to show that for every N ∈ N0 there exist
k, ` ∈ N such that EN ⊆ G(k, `). Fix N ∈ N0 and take k, ` ∈ N such that
min{pk, p`} > N . Then using the PBW basis of G(k, `) and B̃, G(k, `)N is
isomorphic as a vector space to B̃N hence EN ' G(k, `)N ⊆ G(k, `). �
Corollary 4.3. Let k, ` ∈ N. The braided Hopf algebra G(k, `) is presented
by generators x[n], y[m], n ∈ I0,pk−1, m ∈ I0,p`−1, and relations 4.1 for
n ∈ I0,pk−1, m ∈ I0,p`−1; the comultiplication and braiding are given by (4.2)
and (4.3); the set {y[m]x[n] : n ∈ I0,pk−1,m ∈ I0,p`−1} is a basis of G(k, `).

Proof. The projection π : B̃ � G(k, `) induces π∗ : G(k, `) ↪→ E . Let βm,n
the dual basis of {xmyn : n ∈ I0,pk−1,m ∈ I0,p`−1}. Then π∗(βm,n) = y[m]x[n]

and the result follows. �
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