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Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease, caused by mutations in the

gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Before the discovery

of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the

possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of

the lysosomal enzyme a-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate

dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the

affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration

of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete.

However, in recent years, using new approaches, several investigators reported similar or new

alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of

mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including

differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative

stress, apoptosis and innate immune response, which might explain some characteristics of the

complex CF phenotype and reveals potential new targets for therapy.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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Introduction

Cystic Fibrosis (CF) is one of the most severe and frequent
hereditary diseases [1]. It is the main cause of chronic lung
damage and exocrine pancreatic insufficiency in the first three
decades of life [2]. Other organs and all exocrine glands are also
affected to a greater or lesser extent [3].

Lowe and May have described CF as a genetic recessive disorder
back in 1949 [4,5]. However, the affected gene was not discovered
until 1989, when the team led by Lap-Chee Tsui [6] cloned the CFTR

gene (Cystic Fibrosis Transmembrane Conductance Regulator) and
found a deletion of three base pairs in both copies of the gene [6–8].
The deletion causes the loss of a phenylalanine residue at position
508 of the CFTR protein (DF508) [6]. Experiments of expression
then demonstrated that CFTR was a chloride channel [9–16], as it
was suspected for decades [17–32] and intuitively known for many
centuries [1,33,34].

Today, more than 1900 mutations have been described for the
CFTR gene (Cystic Fibrosis Mutation Database; www.genet.sick
kids.on.ca), although the DF508 mutation is the most abundant in
CF patients, with an occurrence of approximately 66 % [35,36].
It is noteworthy that a clear relationship between genotype and
phenotype could not be demonstrated in CF [2]. This is because
the different degrees and high variability of the parameters
studied in CF reflect the interaction of diverse factors, including
genetic and environmental influences, infectious events and
differences in treatments [37].

CFTR is an integral membrane glycoprotein frequently located
in the apical membrane of the epithelial cells; it is also present in
non-epithelial cells from blood, brain, heart, liver, kidney and
other tissues [38–42]. In addition to chloride, the CFTR channel is
able to transport bicarbonate [43] and glutathione [44]. On the
other hand, the possible role of CFTR as an ATP channel has been
controversial [45–54].

The CFTR channel belongs to the superfamily of ABC (ATP
Binding Cassette) transporter proteins. The protein includes two
nucleotide-binding domains (NBD1 and NBD2) that hydrolyze ATP
to regulate the channel activity [55]. In addition, an intracytoplas-
mic regulatory domain (domain R) is activated by protein kinase A
(PKA) phosphorylation to control the opening of the channel [16].
Thus, the chloride transport activity of CFTR is a cyclic AMP-
regulated process, a feature that differentiates CFTR from the other
chloride channels. The kinases PKC [56] and SRC also regulate the
CFTR channel activity [57]. Actually, all molecules or pathways
capable of modulating cAMP levels contribute to CFTR activation,
including epinephrine, isoproterenol, carbachol, phosphodiesterase
inhibitors [58] and G proteins, among other factors [59]. The CFTR
protein also forms a macromolecular complex with several
proteins, interacting either directly or indirectly [60,61]. Some
interactions involve PDZ domain-containing proteins [60,62,63].

Different factors regulate CFTR expression. Cell differentiation
in Caco-2 cells induces CFTR up-regulation; the same effect was
not observed in T84 cells [64]. In addition, cAMP up-regulates
CFTR mRNA levels [65] through a variant cAMP response element
(CRE) present at position -48 to -41 of the CFTR promoter [66].
On the other hand, INF-g [67], TNF-a [67] and progesterone [68]
are able to down-modulate CFTR expression. IL-1b modulates
CFTR expression of T84 cells in a biphasic way [69]. The CFTR
mRNA levels are up-regulated when the cytokine concentration is
near 1 ng/ml (E6 fM) and down-modulated at higher concentra-
tions. This biphasic response involves at least two different mechan-
isms: NF-kB accounts for the stimulation of CFTR mRNA levels at
low concentrations of IL-1b (around and below 1 ng/ml) [70]
whereas AP-1 appears to be involved in the down-modulation
observed at higher concentrations of this cytokine (2–5 ng/ml and
higher) [70,71]. Interestingly, IL-1b has been found in sputum from
CF children at high concentrations, between 2.8 and 32 ng/ml [72].
At these concentrations, according to the results obtained in T84
cells [69], the CFTR should be strongly down-modulated. Other
modulators of CFTR include protein kinase C (PKC), protein tyrosine
kinases (PTKs) and phospholipase C (PLC) [69], as well as steroid
hormones [73–76], nitric oxide [77–80], hyperosmolarity [81],
vasoactive intestinal peptide (VIP) [82,83], c-Src tyrosine kinase
(SRC) [57], with-no-lysine [K] 4 kinase (WNK4) [84], casein kinase 2
(CK2) [85] and spleen tyrosine kinase (SYK) [85].

In addition to its CFTR-chloride transport activity, CFTR indir-
ectly regulates the expression of different CFTR-dependent genes,
such as SRC and MUC1 [86], MT-ND4 [87], CISD1 [88], RANTES [89],
and other genes involved in inflammation or metabolic functions
[90–93]. It is noteworthy that two of these genes, MT-ND4 and
CISD1, encode for mitochondrial proteins having a reduced gene
expression in CF cells [87,88,94–107]. Since ND4 (encoded by
mitochondrial MT-ND4) is a key subunit for the activity of mito-
chondrial Complex I (mtCx-I), the early work of Burton L. Shapiro
and colleagues [108–113] regarding possible mitochondrial failures
in CF was rethought. Subsequent work of our laboratory demon-
strated that indeed the activity of mtCx-I was reduced in CFTR
defective cells [87,94,96,97,99]. Later, the mtCx-I failure and other
alterations found in the pioneer work of Shapiro and colleagues,
including glutathione and calcium metabolism [112–122], were
recently confirmed by other laboratories. Here we review the earlier
work and the recent findings on CFTR-induced mitochondrial
alterations, and their possible pathophysiological consequences.
Initial findings involving mitochondrial alterations in CF

Irena Antonowicz, from the laboratory of Harry Shwachman at
Harvard, studied several mitochondrial and lysosomal enzymes in
cultures of lymphoid cells obtained from CF patients [123]. They
found only alterations in the lysosomal a-glucosidase (which
degrades glycogen) without any changes detected in the three
mitochondrial enzymes tested: succinate dehydrogenase (succinate-
coenzyme Q reductase (SQR) or respiratory Complex II), glutamate
dehydrogenase (GLDH), and malate dehydrogenase (MDH). From
these results, the authors concluded that CF might be a lysosomal
disorder [123] (unfortunately the authors did not measure NADH
dehydrogenase). On the other hand, Congdon and Littlewood found a
glucose 6-phosphate dehydrogenase (G6PD or G6PDH) deficiency in
CF [124], although this observation was not further explored.

During the decade before the cloning of CFTR, Shapiro and Feigal
reported the existence of different mitochondrial abnormalities in CF
[108–113,115,117,125]. First, in 1979, based on previous work
from other laboratories [126–130], they found alterations on
calcium uptake and oxygen consumption in mitochondria isolated
from fibroblasts of CF patients [113]. In the same year,
they found alterations in the optimal pH of mitochondrial Complex
I (mtCx-I; NADH dehydrogenase, NADH:ubiquinone reductase
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(H(þ)-translocating), EC 1.6.5.3) and suggested that the mutant gene
responsible for CF might be expressed within the mtCx-I [111]. Later,
these same authors found that the increased calcium uptake by
mitochondria was associated with an altered respiratory system
activity [117] and found a reduced Km of mitochondrial NADH
dehydrogenase in whole cell homogenates of cultured skin fibroblasts
[110]. After these initial works, several studies described mitochon-
drial changes in CF [108,109,115,131–133], until the CFTR was
cloned and found to be a chloride channel [6,7,134]. Following this
important finding, the hypotheses of possible mitochondrial, lyso-
somal or cytosolic alterations in CF were totally disregarded. Future
work mostly focused on the involvement of CFTR as a chloride
channel. Few explored other areas. Among them, Picci et al.
reported differences in the 2D electrophoretic patterns of mito-
chondrial proteins in CF [135]. Also, de Meer et al., found higher
intracellular pH in CF patients in vivo, during workload [136]. More
recently, Day et al. [137] found decreased glutathione levels in
epithelial lining fluid of CFTR knockout mice, the last finding also in
agreement with the early work of B.L. Shapiro and colleagues,
regarding glutathione [119–122]. Now, by using different
approaches, several authors are reporting different results in
agreement with the pioneer work of Shapiro and colleagues,
reinforcing the idea that mitochondrial dysfunctions are indeed
present in CF, although as an indirect consequence of CFTR
signaling mechanisms, yet undefined.
Differential expression of genes in Cystic Fibrosis

Back in 1994, as an approach to explain the diverse phenotypic
characteristics of CF, we hypothesized that perhaps the CFTR
activity could indirectly affect the expression of several genes.
This hypothesis was tested by applying the method of differential
display [138]. First, it was necessary to find a way to avoid the
frequent false positive/negative signals of this method. Initially
we use T84 colon carcinoma cells treated with the phorbol ester
12-O-tetradecanoylphorbol-13-acetate (TPA), a drug that down-
modulates CFTR mRNA levels [139]. Since it was difficult to
determine which effects were due to TPA or CFTR, we later
changed the model system by using instead CFDE cells (derived
from a CF patient) and the same cells ectopically expressing wt-
CFTR (CFDE/6RepCFTR cells). The hypothesis was correct, and we
found several CFTR-dependent genes [86,140,141]. Some spots of
the differential display corresponded to unknown genes. One spot
overexpressed in CFDE cells (CF cells) was studied in detail; its
cDNA sequence corresponded to the SRC/c-Src tyrosine kinase.
Thus, the mRNA and protein expression of SRC/c-Src was found
increased in CFDE cells (CF cells). Since SRC/c-Src was known to
regulate several mucins, we tested the expression of MUC1, and
found that this mucin was also upregulated in CFDE cells, under
SRC/c-Src modulation. These results suggested that SRC/c-Src
might constitute a bridge between the CFTR failure and mucin
overexpression, at least in the case of MUC1 and CFDE cells [86].
Interestingly, the effects occurred as a primary failure of CFDE
cells, in the absence of any bacterial infection.

Almost in parallel, by using microarrays, Srivastava [90,91,93],
Galvin [92], Eidelman [142], Pollard [143] and colleagues found
several differentially expressed genes in CF cells. In addition,
Ichikawa et al. [144] studied the differential expression of genes
in the cell line A549, derived from lung pneumocytes, exposed to
Pseudomonas aeruginosa, thus analyzing differential gene expres-
sion in response to bacterial–host interaction. Interestingly, Xu
et al. found differential expression of 54 RNAs, corresponding to
genes that influence gene transcription, inflammation, intracellu-
lar trafficking, signal transduction, and ion transport, including
the CEBPd transcription factor and IL-1b [145,146], both
modulators of CFTR transcription [69,70,147]. More recently,
Ogilvie et al. have studied the differential expression of genes in
CF by using the Illumina HumanRef-8 Expression BeadChips
[148]. They conclude that CF and non-CF nasal and bronchial
epithelium are transcriptionally distinct. Also, the CF nasal
epithelium, with 15 differentially expressed genes, was not a
good surrogate for the lung epithelium that has 863 differentially
expressed genes. In addition, these cells showed a distinct pattern
of enriched pathways, being inflammation pathways predomi-
nant in bronchial cells, whereas the pathways controlling amino
acid metabolism were predominant in nasal epithelial cells [148].
Lately, antibody microarrays were used instead of DNA micro-
arrays to identify differentially expressed proteins as possible
serum biomarkers for CF [93,149].

After characterizing SRC/c-Src and MUC1 as CFTR-dependent
genes, we decided to study two additional spots of the differential
display, which contrary to SRC/c-Src and MUC1 were down-
modulated in CFDE cells. Surprisingly, both spots resulted in genes
encoding for mitochondrial proteins: CISD1 (a nuclear DNA-encoded
gene) [88,98,101,103,105,107,150–152] and MT-ND4 (a mitochon-
drial DNA-encoded gene) [87,100,102,104,106,141,153–155]. These
results are discussed with more detail in the next two sections.
CISD1 expression in CF cells

As mentioned above, a differential display (DD) obtained in
2002 from CFDE cells (CF cells) and CFDE/6RepeCFTR (CF corrected
cells) showed a cDNA spot that contrary to SRC had a reduced
expression in CF cells. It was isolated, cloned and sequenced from
a cDNA DD spot of 477 bp derived from CFDE cells. Initially, we
called this gene CFTR-RG2 (CFTR-regulated Gene 2), since it was
the second CFTR-dependent cDNA isolated and sequenced in our
laboratory [150]. Then, in 2004, to assign a name related to its
possible function, it was called KLPx, since we found sequence
similarities to kinesin motor proteins [107]. Then we realize that
the kinesin motor region was absent and therefore we preferred to
call it ZCD1, owing to the presence of a Zn finger-like motif, the
CDGSH motif [105], defined in a previously annotated sequence
obtained by Zhao M. et al. from hematopoietic stem/progenitor
cells (AF220049; unpublished). The mRNA corresponding to the
ZCD1 sequence from CFDE cells was finally annotated in GenBank
as ‘‘Homo sapiens zinc finger CDGSH-type domain 1 (ZCD1)
mRNA’’ (accession number AY960578 and AAY32336 for the
deduced protein).

Previously, in 1999, Zhao et al. from the Chinese National
Human Genome Center at Shanghai had annotated a 636 bp cDNA
sequence obtained from hematopoietic stem/progenitor cells as
‘‘Homo sapiens uncharacterized hematopoietic stem/progenitor
cells protein MDS029’’ (AF220049, unpublished). They also anno-
tated the deduced protein sequence (AAY32336), defining the
region 55.93 as ‘‘ZnF_CDGSH’’ a ‘‘CDGSH-type zinc finger’’, using
the conserved domain database CDD [156]. They also mentioned
the SMART signaling domain [157] smart00704, assigning an
unknown function to it. Since these results were unpublished
and further details are not available, it is not clear who actually
defined the CDGSH-type zinc finger, which corresponds today to a
superfamily of proteins (CDD cl02748: zf-CDGSH superfamily). In
addition, Strausberg et al. [158] annotated the CISD1 sequence as
C10orf70 (which stand for ‘‘chromosome 10 open reading frame
70’’) during the generation and analysis of more than 15,000
full-length human cDNA sequences (ORFs) from the human
genome, which was sequenced one year before [159].

In parallel, in studies linked to diabetes published in 2003,
Colca et al. [161] identified a pioglitazone binding protein
from bovine brain and rat liver mitochondria. Pioglitazone, an
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antidiabetic drug, also binds to the nuclear peroxisome proliferator-
activated receptor gamma (PPAR-g), which is an important target
for antidiabetic drugs [160]. The sequence was obtained by using
nanospray LC–mass spectroscopy (MS/MS) and N-terminal sequen-
cing confirmed the sequence; it was named mitoNEET [161].

Finally, when the crystal structure was determined by other
laboratories [162–164], instead of the predicted Zn2þ , a [2Fe2S]
cluster was found within the ZCD1 molecule [162–166].
In consequence, the official HUGO symbol (www.genenames.org)
was finally agreed as ‘‘CISD1’’ (Z was eliminated and ‘‘IS’’ was
added, which stands for Iron Sulfur binding motif). It is note-
worthy that recent evidences suggest that Zn2þ can also bind to
CISD1 and even may replace the [2Fe2S] cluster in E. Coli cultures
[167]. In consequence, Zn2þ might also bind to CISD1 in mam-
malian cells in addition to [2Fe2S]. A direct measurement of Fe2þ

and Zn2þ content of CISD1 isolated from mammalian cells or
tissues might indicate in which proportion these ions bind to
CISD1 and under which circumstances.

Although the exact function of this protein is unknown yet, it has
been shown that mitoNEET/CISD1 is a mitochondrial specific bind-
ing protein receptor for pioglitazone [161] and similar drugs [168].
Co-immunoprecipitation assays suggested that mitoNEET/CISD1
was associated with proteins that belong to the mitochondrial
complex I (mtCx-I), among other mitochondrial proteins [161]. The
protein was also proposed to be a modulator of the oxidative
capacity of cells [166], a sensor of the intracellular redox state
[164,169,170], and a mediator for the transference of a [2Fe–2S]
cluster to apoproteins [169,171]. We found that an eGFP-CISD1
chimera was mainly located in mitochondria after 24 h of transfec-
tion, suggesting that its primary location and function was indeed
mitochondrial [88]. However, the mechanisms involved in all these
possible functions, the targets of these functions, and their relevance
for the mitochondrial and cellular functioning, remain to be estab-
lished. The mechanisms by which CFTR controls CISD1 expression
and down-modulation in CF cells [88], and the possible conse-
quences for the cellular pathophysiology, are still unknown.
MT-DN4 expression in CF cells

The second gene found reduced in CF cells, MT-ND4, encodes for
ND4, one of the seven subunits (ND1 to ND7) of the mitochondrial
Complex I (mtCx-I) [172]. The mammalian mtCx-I is a holoenzyme
comprising 45 subunits that constitute a complex of approximately
one MDa. This complex is the entry point of electrons for the
oxidative phosphorylation system (OXPHOS system) [173]. ND4
subunit constitutes a fundamental component for the assembly and
correct activity of mtCx-I [172,174–180]. Thus, a MT-ND4 mutation in
Leber’s Hereditary Optic Neuropathy disease (LHON) determines a
low efficiency in the NADH oxidation due to a mtCx-I failure
[172,179,181]. The reduced expression of MT-ND4 found in CF cells
suggested that the activity of mtCx-I might be reduced in CF cells,
and, as it will be discussed below, we later found that the activity of
these mitochondrial complexes was indeed reduced in CF cells or in
cells with impaired CFTR activity (inhibitors, iRNA, etc.).
Mitochondrial complex I and Cystic Fibrosis

As mentioned in the previous section, we found a down-
regulation of MT-ND4 in CF, a gene encoding for ND4, a mtCx-I
subunit essential for its assembly and activity [100]. The CFTR-
mediated down-modulation of MT-ND4 found in CF cells was in
agreement with the early findings of Shapiro et al., showing that
the activity of mtCx-I was affected in CF cells [108,110,111]. The
results obtained and the previous work by other laboratories
prompted as to measure the mtCx-I activity in CF cells. Consistent
with the earlier observations, we found a decreased mtCx-I
activity in cells derived from trachea of CF patients (CFDE and
IB3-1 cells) when compared to the same cells ectopically expres-
sing wild type CFTR (wt-CFTR) (CFDE/6RepCFR and S9, respec-
tively) [87,94,97,99]. This was also found in colon carcinoma cells
(T84 and Caco-2), which express high levels of endogenous wt-
CFTR, treated either with pharmacological inhibitors of CFTR
activity or RNAi [87,94,97,99]. The decreased activity of mtCx-I
found in CF cells might be a consequence of the MT-ND4 down-
regulation induced by CFTR mutations or inhibition [100].
In agreement with these findings, Kelly-Aubert et al. have
recently reported a decrease in mtCx-I activity in CF cells as
compared to cells rescued by ectopic expression of wt-CFTR, and
also by using a CFTR-knockout mice [182]. These authors sug-
gested that the observed reduction in the specific activity of
mtCx-I was caused by oxidation because of the oxidative stress
originated in reduced glutathione levels [182]. Altogether, these
observations suggest that the mtCx-I activity is altered in CF. The
possible mechanisms involved in regulation of mtCx-I by CFTR
(CFTR-mtCx-I) are unknown yet.
Altered Ca2þ homeostasis in mitochondria

Recently, Antigny et al. have reviewed the changes occurring in
calcium homeostasis and calcium signaling in CF [183]. Donnell et al.,
back in 1961, were perhaps the first to show alterations of calcium
homeostasis in CF [184]. They found evidences of calcium deposition
and signs of reparative fibrosis in the bowel of CF patients. Then,
Marmar et al. showed altered calcium in parotid gland secretions
[185] and Blomfield et al., reported hypersecretion of zymogen
granules in the submandibular saliva, with elevated calcium con-
centrations [186]. Since these initial reports, many investigators
found alterations in calcium secretion and homeostasis in CF. Later,
Shapiro and Lam [114], based on previous observations from different
laboratories [126–130], found increased intracellular calcium con-
centration ([Ca2þ]i) in fibroblasts derived from CF patients. Feigal et
al. also found an increased mitochondrial Ca2þ uptake attributed to
alterations in oxidative phosphorylation [115,117].

More recently, in contrast to the earlier observations of Feigal and
Shapiro, Antigny et al. have found a decreased mitochondrial Ca2þ

uptake in CF airway epithelial cells (DF508 homozygous) [187].
The reason for this discrepancy is unknown. In addition, they
observed a fragmentation of mitochondria and a decrease of the
mitochondrial membrane potential (DCmit) in CF cells as compared
to control cells. These changes in mitochondrial Ca2þ homeostasis
were linked to a decreased mitochondrial membrane potential
(DCmit), which in turn occurs owing to changes in the oxidative
phosphorylation [187].

Among several intracellular pathways activated by calcium, it
has been reported that increased [Ca2þ]i may lead to activation of
NF-kB (‘‘Nuclear Factor Kappa B’’) and its proinflammatory effects
[188,189]. Thus, the rise in [Ca2þ]i observed in CF cells may
induce or at least contribute to the increased NF-kB activation
seen in these cells. As discussed below, the increased oxidative
stress in CF also contribute to activation of NF-kB.
Diverse processes affected in CF and related to mitochondrial
pathways

Oxidative stress

Reactive oxygen species (ROS) levels are increased in airway
diseases, including CF [182,190–197]. CF cells also show higher
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sensibility to oxidative stress caused by environmental factors,
such as ozone [198] and air pollution [199], or infections [200].
The origin and consequences of high ROS levels are not fully
understood. Cleeter et al. suggest that a defect in mtCx-I may lead
to an increased ROS yield, which in turn further affect mtCx-I
activity [201]. On the other hand, Esposito et al. have shown that
inhibition of the OXPHOS system in Ant1(tm2Mgr) (-/-) mice,
lacking the heart/muscle isoform of the adenine nucleotide
translocation protein Ant, increase ROS levels. Interestingly, in
the same work, as a compensation response, increased levels of
manganese superoxide dismutase (Mn-SOD or SOD2) were also
observed [202]. They concluded that, if the antioxidant defenses
are not enough to deal with high ROS levels, then increased
mtDNA damage might occur. Similar results were obtained by
Lian and Godley in human RPE cells [203]. The increased mtDNA
damage may in turn further reduce the OXPHOS system activity,
producing a vicious cycle that results in additional ROS generation
[204,205].

Autophagy

Autophagy is a natural process by which cells degrade or
recycle damaged or unneeded proteins, organelles, and patho-
gens. The mechanisms of autophagy and their relationship with
disease are becoming of high interest [206]. Luciani et al. showed
that the CFTR failure in CF induces autophagy inhibition, since
defective CFTR upregulates ROS and tissue transglutaminase
(TG2), which in turn drive the cross-linking of beclin 1 [195].
This process favors the accumulation of beclin 1 in aggresomes,
resulting in a decreased degradation of these juxtanuclear inclu-
sion bodies that appear as a response to misfolded proteins [207].
Rescuing cells from autophagy through beclin 1 overexpression,
cystamine or antioxidants, results in improved CFTR transport
and reduced ROS formation and inflammation [195,208]. Abdul-
rahman et al. observed similar results rescuing autophagy by
using the immunosuppressant drug rapamycin on CFTR DF508
mouse macrophages [209]. Thus, the excessive intracellular
accumulation of defective CFTR observed in CF cells seem to be
a consequence of autophagy inhibition and aggresome accumula-
tion [195,208]. Targeting autophagy might be a useful strategy for
CF therapy [210].

Glutathione

The higher sensitivity to oxidative stress in CF might be
associated with several factors that affect the redox balance and
the susceptibility to high ROS levels. One of these factors is the
ratio between reduced and oxidized glutathione. Reduced
glutathione is the most abundant antioxidant inside cells and
the ratio between its reduced and oxidized form reflects the redox
state and health of cells. A deficient extracellular glutathione
(eGSH) transport that cause an imbalance between reduced
glutathione and oxidized glutathione (GSH/GSSG) outside cells
has been linked to the low CFTR activity found in CF [44,211–
213]. This deficiency in eGSH transport might decrease the
antioxidant protection of the extracellular space against oxidative
stress. In addition, lower mitochondrial GSH (mGSH) levels were
found in CFTR-knockout mice (CFTR �/�), and in tracheal cells
from CF patients, accompanied with increased ROS production
[193]. Recently, other authors have confirmed a decreased mGSH
levels in CF that occurs in the absence of a defect in the transport
of GSH through mitochondria [182]. Furthermore, these authors
reported a decrease in the mtCx-I activity of CF cells and CFTR-

knockout mice that was reverted to control values by treating
cells with GSH monoethyl ester (GSH-EE) [182]. GSH-EE is a
membrane permeable analog of GSH proved to be effective to
increase mGSH levels in several cellular models [214–216]. This
reactive, as well as other antioxidant compounds that allow
increased mGSH levels, might be potentially useful for CF therapy
[182].

Peroxiredoxin

In addition to GSH levels, other components of the antioxidant
defense mechanism are affected in CF. It is noteworthy that the
enzyme peroxiredoxin 6 (Prdx6, EC 1.11.1.15), which plays an
important role in the defense against oxidative damage in lung
[217–219], has a decreased expression and activity in CFTR-

knockout mice [217]. This enzyme uses GSH as electron donor
to reduce hydrogen peroxide (H2O2), fatty acid hydroperoxides
and phospholipid hydroperoxides [220]. Although the mechanism
responsible for decreased Prdx6 expression in CF is unknown,
these results are in agreement with the general idea of a redox
imbalance and higher susceptibility to oxidative damage in CF.

Superoxide Dismutases (SODs)

Another factor that affects the redox balance is the level and
activity of superoxide dismutases (SOD, EC 1.15.1.1). SOD
enzymes are key components of the cellular defense system
against the production of the free radical superoxide (O2

�), by
dismutation of O2

� in oxygen (O2) and hydrogen peroxide (H2O2).
A decreased protein expression of Cu/Zn-SOD (SOD1, cytosolic
localization) and Mn-SOD (SOD2, mitochondrial localization) was
found in pancreatic and tracheal cells derived from CF patients,
without changes in their activities [192]. By the contrary, a
decrease in the activity of extracellular SOD (EC-SOD/SOD3) was
observed in CF cells, without changes in its protein expression
level [192]. These results are in agreement with previous work in
which a decrease in the SOD activities was found in plasma of CF
patients [221]. They are also in agreement with a decrease in the
Cu/Zn-SOD activity of blood cells (mononuclear cells and poly-
morphonuclear cells) from CF patients [222,223]. The diminished
extracellular SOD activity, together with the diminished eGSH,
could produce a misbalance in the extracellular redox state,
affecting the structure and function of many membrane and
extracellular proteins.
Possible pathophysiological consequences

Apoptosis

Except for one work [224], different investigators have found
increased apoptosis in CF [191,192,198,199,225–228]. Although
several studies suggest that apoptosis in CF is a consequence of
the recurrent bacterial infections [225,226,228], others suggest
that apoptosis in CF is a primary defect that occurs even in the
absence of bacterial infections [191,192,227,229]. In infected
human conjunctiva epithelial Chang cells, apoptosis mediated
by mitochondrial alterations was induced after infection with
P. aeruginosa. These alterations include mitochondrial depolariza-
tion, enhanced ROS production, release of cytochrome c, and
activation of c-Jun N-terminal kinases (JNKs) [200]. On the other
hand, in JME cells (CF DF508CFTR nasal epithelial cells), the
homoserine lactone C12 rapidly activates apoptosis. However,
no differences were seen between JME cells and CFTR corrected
JME cells after C12 treatment, suggesting that CFTR is not an
important modulator of C12-induced apoptosis [228]. It should be
pointed-out, however, that corrected JME cells ectopically express
wt-CFTR under the control of a foreign promoter, thus possible
feedbacks on its own promoter are missing.
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Other studies suggest that the increased apoptosis in CF might
be related to a decrease in the antioxidant protection system,
which may contribute to self-perpetuate the inflammatory
process characteristic of CF [191,192,199]. In particular, Rottner
et al. reported a marked sensitivity of CF cells to start apoptosis
linked to activation of the NF-kB pathway, suggesting that the
secretion of proinflammatory cytokines from these cells promote
apoptosis [227]. Recently, a link between the high level of the
oxidative stress and apoptosis has been attributed to a decrease in
the antioxidant defenses, caused by reduced activity and expres-
sion of superoxide dismutase (SOD) enzymes [192]. Hence, a
tendency to increased apoptosis mediated by the mitochondrial
pathway seems to occur in CF cells, probably exacerbated upon
bacterial infections.
Chronic inflammation

Chronic lung inflammation is an important characteristic of
the CF phenotype [230,231]. Yet, it is difficult to define and
distinguish primary defects due to the CFTR failure from second-
ary defects that occur after bacterial infections. It is even more
difficult to determine their relative weight in defining the CF
phenotype or its clinical manifestations.

In early studies, several cytokines were found to be elevated in
sputum obtained from CF patients, including IRAP, IL-1a, IL-1b, IL-6,
and TNF-a [232,233]. In addition, in neutrophils from CF patients,
IL-8 was found at high levels and its receptors down-modulated
[234]. After these initial studies, several reports suggest elevated
concentrations of cytokines, chemokines (small cytokines) and other
inflammatory mediators in CF patients [72,235–250].

The role of Interleukin-1, neutrophil elastase and lipopolysac-
charide to regulate inflammation in CF has been reviewed by
Carroll et al. [251]. Studying possible modulators of CFTR expres-
sion, we found that IL-1b was able to modulate CFTR expression
in a biphasic way. At low concentrations (o1 ng/ml) IL-1b
up-regulates CFTR mRNA levels [69] through NF-kB [70,71].
Fig. 1. Representative scheme for mitochondrial alterations in CF. The effects of a CFTR

the main relationships between mitochondrial activity and antioxidant defense system

an imbalance in the antioxidant defense system and an impairment of the OXPHOS syst

ROS include DNA, protein and lipids damage, apoptosis and inflammation, the latter d

homeostasis for the mitochondria. All these effects suggest an important role of the

The vertical black arrows indicate the net effect of a CFTR failure. The red connectors ill

of the references to color in this figure legend, the reader is referred to the web versio
However, at concentrations over 2.5 ng/ml (between 2.3 and
32 ng/ml were found in CF children [72]), the IL1-b effect was
the contrary, inducing a down-regulation of CFTR expression. The
mechanism involved in this second phase was not fully defined
yet and might involve the AP-1 transcription factor [71], as occurs
with TNF-a, which down-modulates CFTR mRNA by increasing its
degradation through the AP1 pathway [252–255]. These results
suggest that CF children, having high concentrations of IL-1b and
TNF-a, should have a strong down-modulation of CFTR, which
together with the low levels of DF508-CFTR able to reach the cell
membranes in CF cells, might constitute a negative loop with
profound consequences for the disease. In addition, CFTR nega-
tively regulates NF-kB-mediated innate immune response [256],
establishing an additional loop between CFTR and NF-kB (CFTR–
9NF-kB-CFTR). In addition to its effects on CFTR, IL-1b reduces
the mtCx-I activity in human chondrocyte cells [257] and its
mRNA was found elevated in cells with impaired CFTR activity
[95,258,259]. Therefore, IL-1b might be an important piece of the
CFTR--mitochondrial signaling.

Following these initial studies, additional cytokines were
found increased in CF, including IL-8 [259–265] and IL-17 [266–
270]. The increased concentrations of different cytokines might
be responsible for the abundant neutrophil recruitment observed
in CF and drive the activation of transcription factors such as the
nuclear factor-kB (NF-kB) [271,272] and the activator protein 1
(AP-1) [273], increasing in turn the inflammatory response with
the consequent tissue damage. Now, numerous studies support
the concept that alterations in the inflammatory process are
present in CF [247,264,274–278].
Innate immunity

A central question is whether the mitochondrial defects found
in CF are strong enough to influence innate immunity and, in the
long-term, favor lung bacterial infections. Initial works in models
of viral infection connected mitochondria, apoptosis and innate
failure on ROS production, apoptosis and inflammation are shown, together with

in CF. CFTR inhibition or mutation leads to mitochondrial alterations that produce

em, inducing an excessive ROS production by mitochondria. The noxious effects of

ue to ROS-induced NF-kB. Also, the CFTR failure induces an alteration in calcium

mitochondria in defining at least some of the phenotypic characteristics of CF.
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immunity [279–282]. Then, death receptors (DDs) have been
recognized as modulators of immune and inflammatory
responses [283]. Also, it has been shown that exacerbated
inflammation might impair the function and structure of mito-
chondria [284]. More recently, studies on pattern recognition
receptors (PRRs), including Toll-like receptors (TLRs) and cytosolic
Nod-like receptors (NLRs), have become important players in the
innate immune and inflammatory responses [285,286]. These
studies led to the characterization of the ‘‘inflammasome’’, a
macromolecular complex that uses NLRs as scaffold proteins,
which recruits and activates inflammatory caspases, essential
mediators of inflammation and cell death responses. The activa-
tion of caspases directly connects to the mitochondrial apoptotic
pathways [285]. Mitochondria, in turn, play a very important role
in modulation of the cell death pathway during defense against
bacterial infections [287]. In addition, the process of autophagy
[288–290] and the production of ROS [291,292] became new
players in defining innate immunity. Even more, mitochondria by
itself, once released from damaged cells, can trigger an acute
inflammatory response [293]. Thus, mitochondria emerges as a
fundamental piece of the innate immune response [294–297],
modulating the inflammasome-mediated production of proinflam-
matory cytokines [298]. Dysfunctional mitochondria generate ROS
and induce the NLRP3 inflammasome activation [299,300]. On the
other hand, autophagy negatively regulates the NLRP3 inflammasome
[299]. In consequence, the role of autophagy [195,208,209,301–305]
and the inflammasome [303,306,307] both have increased relevance
in CF research.
Concluding remarks

Fig. 1 summarizes the mitochondrial abnormalities found in CF
cells or tissues. Among them, differential expression of genes or
proteins, alterations on calcium homeostasis, membrane poten-
tial, increased ROS, and reduced Complex I activity, all appear to
occur in mitochondria due to the CFTR failure. These mitochon-
drial effects in turn induce changes in the ratio of reduced/
oxidized glutathione, trigger apoptotic events, and produce
inflammatory responses that affect innate immunity. These
alterations might influence the phenotype or clinical manifesta-
tions of CF and have profound pathophysiological consequences.

A complete understanding of these interactions, their mechan-
isms of action and the relative importance of each pathway, will
help to better define the CF phenotype and clinical manifesta-
tions, and to find possible new targets for CF therapy. Thus, the
role of CFTR in regulating mitochondrial functions, in particular
de OXPHOS pathway, and the role of mitochondria in modulating
the inflammatory process, and their possible effects on innate
immunity, are issues of increasing interest in CF research.
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