
01/2020

Accepted Article

Title: Galvanostatic Fast Charging of Alkali-Ion Battery Materials at the
Single-Particle Level: A Map-Driven Diagnosis

Authors: Edgardo Maximiliano Gavilán-Arriazu, Daniel Barraco, Yair
Ein-Eli, and Ezequiel Pedro Marcos Leiva

This manuscript has been accepted after peer review and appears as an
Accepted Article online prior to editing, proofing, and formal publication
of the final Version of Record (VoR). The VoR will be published online
in Early View as soon as possible and may be different to this Accepted
Article as a result of editing. Readers should obtain the VoR from the
journal website shown below when it is published to ensure accuracy of
information. The authors are responsible for the content of this Accepted
Article.

To be cited as: ChemPhysChem 2022, e202200665

Link to VoR: https://doi.org/10.1002/cphc.202200665



RESEARCH ARTICLE    

1 

 

Galvanostatic Fast Charging of Alkali-Ion Battery Materials at the 

Single-Particle Level: A Map-Driven Diagnosis 

E. Maximiliano Gavilán-Arriazu [a,b], Daniel E. Barraco[b], Yair Ein-Eli[c,d,e], Ezequiel P.M. Leiva* [a] 

 [a] Dr. E.M. Gavilán-Arriazu, Prof. E.P.M. Leiva 

Departamento de Química Teórica y Computacional  

           Facultad de Ciencias Químicas, Universidad Nacional de Córdoba  

           INFIQC, Córdoba, Argentina  

           E-mail: ezequiel.leiva@unc.edu.ar 

           http://www.laesunc.com/laes/ 

[b] Dr. E.M. Gavilán-Arriazu, Prof. D.E. Barraco 

           Facultad de Matemática, Astronomía y Física 

           IFEG-CONICET Universidad Nacional de Córdoba  

           Córdoba, Argentina 

[c] Prof. Y. Ein-Eli 

           Department of Materials Science and Engineering 

           Technion – Israel Institute of Technology  

           Haifa 3200003, Israel 

[d] Prof. Y. Ein-Eli 

Grand Technion Energy Program (GTEP) 

Technion – Israel Institute of Technology  

Haifa 3200003, Israel 

[e] Prof. Y. Ein-Eli 

Institut für Energie- und Klimaforschung (IEK-9: Grundlagen der Elektrochemie) 

Forschungszentrum Jülich  

D-52425 Jülich, German 

 

            

 Supporting information for this article is given via a link at the end of the document 

 
Abstract: In this work, we develop a new tool to provide a diagnostic 

map for alkali-ion intercalation materials under galvanostatic 

conditions. These representations, stated in the form of capacity level 

diagrams, are built from hundreds of numerical simulations 

representing different experimental conditions, summarized in two 

dimensionless parameters: a kinetic parameter denominated Ξ and a 

finite diffusion parameter l. To lay the theoretical and methodological 

foundations, a general model is used here. This model can be 

adapted to the thermodynamic and kinetic framework of specific 

systems. We provide two representative examples.  

Introduction 

Improving the charging rates of Li-ion batteries (LIBs), while 

maintaining high charging capacity is an urgent task when 

considering the spread-out of such batteries in the automotive 

industry. The efforts towards achieving this goal involve a proper 

selection of the battery materials, as well as unique construction 

architectures of the lithium-ion batteries [1,2]. Consequently, this 

requires the largest capacity to be loaded in the shortest time. 

Another important aspect to be considered is that the electrodes 

should be designed to entirely exploit the full capacity of the 

materials. To fulfil these objectives, a complete diagnosis through 

a systematic study of the electrochemical insertion of ions in the 

electrode materials at different experimental conditions must be 

achieved. Constant current (galvanostatic) experiments are of 

common use in initial and basic studies of the electrode materials 

in R&D laboratories, although cells and batteries are often 

charged in electronic and mobile devices via much more complex 

routines and methods [3]. 

In the quest for the development of new batteries, different types 

of alkali metal ions have been introduced as options to the already 

conventional LIBs[4–7]. Sodium-based batteries[8–10] offer an 

attractive alternative since sodium is an abundant element. 

Potassium is another alkali metal with promising applications [7,11].   

An electrode is usually composed of an ensemble of particles of 
the active material, a binder, and conductive additives. For this 
reason, analysis of the capacity of single particles should yield an 
upper limit for the kinetic behaviour of composites, since binder, 
defective electrical contact, diffusion in electrolyte, and other 
effects present in composites are detrimental to the capacity that 
can be reached in experiments. In other words, the present model 
yields predictions for composites that have been optimized for all 
these contributions, so that the limiting phenomena are charge 
transfer and diffusional transport within the particles. Furthermore, 
a few years ago, nanoelectrochemical techniques have begun to 
be applied at the single-particle level[12–18] with this aim. These 
techniques are important because they allow for studying the 
"pure" electrochemical response of the active materials. It was 
shown, for example, how the properties of the single particles 
constituting the electrode influence the response of the average 
of the ensemble. Thus, improved control of the shape and size of 
the particles of active material is crucial for the rational design of 
batteries with a high charging rate and capacity.  

At the single-particle level, charge transfer across the 

electrode/electrolyte interface and diffusion of ions inside the 

(electrode) particle, are two of the three main processes that 

control the charging speed; the other one is the transport of ions 
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through the electrolyte, but this is not the ordinary limitation in the 

current batteries. Thus, understanding how these phenomena 

impact charging rate, plays a key role in battery design. However, 

a complete diagnosis of the response of a certain material having 

a specific particle size under different galvanostatic conditions 

and charging speed is impractical from an experimental viewpoint, 

since hundreds of measurements should be required for different 

particle sizes and over a wide range of current densities (C-rates).  

Therefore, in the present work, we propose the construction of 

diagnostic maps with galvanostatic simulations to systematically 

examine the maximum capacity that a material is capable to 

accommodate at the single-particle level under different 

experimental conditions. In past work, we have constructed zone 

diagrams for the charging/discharging of materials under 

voltammetric conditions [19–21]. A similar concept is used here to 

construct level diagrams for galvanostatic simulations. To lay a 

general foundation, a model without taking the interactions among 

inserted ions is presented, with the aim that, in future works, the 

same kind of representations can be constructed to describe the 

electrochemical response of different materials. 

Computational Methods 

The reaction considered to occur at the surface of a single particle 

is:  

 

𝑂 + 𝑛𝑒− ⇌ 𝑅   (1) 

 

In the particular case of batteries, 𝑂 is an ion in the electrolyte, 𝑅 

is an ion intercalated inside the host and 𝑛  is the number of 

electrons transferred. It will be also assumed that: 

a) Charge transport inside the particle is limited by the 

motion of inserted cations, that is, electronic transport is 

fast. 

b) Diffusion of ions inside the host obeys 1D Fick’s second 

law for planar, cylindrical, or spherical geometry [21,22]. 

c) A high concentration of ions in the electrolyte allows for 

the neglection of mass transfer within it. 

d) Diffusion coefficient 𝐷  remains constant over all 

intercalation process. 

e) The flux of ions is zero at the centre of the particle. 

f) Charge transfer at the electrode/electrolyte interface is 

ruled by the Butler-Volmer approach. 

g) The heterogeneous rate constant 𝑘0 is the same over 

all the intercalation processes. 

h) The resistance of the cell is described by a constant 

value 𝑅Ω. 

i) Interactions between intercalated ions are neglected. 

j) Volume change of particles during charge/discharge is 

not considered. 

k) No side reactions occur. 

The implicit Crank-Nicholson method is used to solve Fick’s law 

equations [23].  

 

Derivation of galvanostatic parameters 

As previously discussed in the case of voltammetry conditions 
[21,24], to construct a galvanostatic diagram, a kinetic and a finite 

diffusion parameter must be derived from the fundamental 

equations. To transform concentrations (𝑐) into ions occupation 

inside the electrode (𝑥), and vice versa, we use the following 

relationship: 

 

𝑐 = (
𝜌

𝑀
) 𝑥        (2) 

 

where 𝜌 is a phase density and 𝑀 is the molecular mass. 

According to references [24,25], the concentration of oxidized and 

reduced species at the electrode surface, involved in a single-step 

redox reaction (Equation 1) and under planar finite-diffusion 

conditions, can be expressed as: 

 

𝑐𝑂(0, 𝑢) = (𝑑/𝐷) ∫
𝑖

𝑛𝐹
𝜃3(0|𝑢 − 𝑧)𝑑𝑧

𝑢

0
    (3) 

 

𝑐𝑅(0, 𝑢) = 𝑐0 − (𝑑/𝐷) ∫
𝑖

𝑛𝐹
𝜃3(0|𝑢 − 𝑧)𝑑𝑧

𝑢

0
  (4) 

 

where the parameter 𝑢 = 𝐷𝑡/𝑑2,𝑡 is the time, 𝐷 is the diffusion 

coefficient, 𝑖 is the current density and 𝑑  is the diffusion length. 

𝜃3(𝑢) is the so-called theta function [25] and 𝑐0 is the maximum ion 

concentration in the material (corresponding 𝑥 = 1). Replacing 

equations (3) and (4) into Butler-Volmer Equation and considering 

𝑖𝑐 as a constant current density, yields: 

 
𝑖𝑐

𝑛𝐹𝑐0
= 𝑘0(𝑒𝛼𝑎𝜁 + 𝑒−𝛼𝑐𝜁) {

1

(1+𝑒−𝜁)
−

𝑑

𝐷
(

𝑖𝑐

𝑛𝐹𝑐0
) ∫ 𝜃3(0|𝑢 − 𝑧)𝑑𝑧

𝑢

0
}   (5) 

 

With 

 

𝜁 = (𝑛𝐹/𝑅𝑇)(𝐸 − 𝐸0′ − 𝑖𝑐𝑅Ω)     (6) 

 

All the other parameters have their usual meaning. 

Constant current 𝐼𝑐  can be expressed in terms of C-rate, as 

follows: 

 

𝐼𝑐 =
𝐶𝑟𝑄

𝑡ℎ
       (7) 

 

where 𝑄 is the electrode capacity for a volume 𝑉 (Equation 8), 𝐶𝑟 

is an integer or a fractional positive number (usually denominate 

C-rate) and 𝑡ℎ is the time equivalent to 1 hour in suitable time 

units.  

 

𝑄 = 𝑉 (
𝜌

𝑀
) 𝐹𝑛      (8) 

 

Replacing (8) in (7), dividing by the surface electrode area and 

also by 𝑛𝐹𝑐0: 

 
𝑖𝑐

𝑛𝐹𝑐0 =
𝑉𝐶𝑟

𝐴𝑡ℎ
       (9) 

 

Replacing (9) in (5) at the right side of the equality: 
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𝑖𝑐

𝑛𝐹𝑐0 = 𝑘0(𝑒𝛼𝑎𝜁 + 𝑒−𝛼𝑐𝜁) {
1

(1+𝑒−𝜁)
−

𝑑

𝐷
(

𝑉𝐶𝑟

𝐴𝑡ℎ
) ∫ 𝜃3(0|𝑢 − 𝑧)𝑑𝑧

𝑢

0
}    (10) 

 

here we define the parameter 𝑙 given by: 

 

𝑙 =
𝑑

𝐷
(

𝑉𝐶𝑟

𝐴𝑡ℎ
)       (11) 

 

Note that analogously to the parameter w defined in previous work 

dealing with cyclic voltammetry, this parameter contains the size 

of the system divided by the diffusion length. Instead of the sweep 

rate, 𝑙 contains the C-rate  𝐶𝑟  . 

Then, to normalize the current density, the term (𝑡ℎ/𝜆𝐷)1/2 can 

be multiplied on both sides of the equality of equation (10):  

 

𝑖𝑐

𝑛𝐹𝑐0 (
𝑡ℎ

𝐶𝑟𝐷
)

1/2

= 𝑘0 (
𝑡ℎ

𝐶𝑟𝐷
)

1/2

(𝑒𝛼𝑎𝜁 + 𝑒−𝛼𝑐𝜁) {
1

(1+𝑒−𝜁)
− 𝑙 ∫ 𝜃3(0|𝑢 −

𝑢

0

𝑧)𝑑𝑧}        (12) 

 

here we define the parameter Ξ given by: 

 

Ξ = 𝑘0 (
𝑡ℎ

𝐶𝑟𝐷
)

1/2

      (13) 

 

This parameter is analogous to the parameter Λ , previously 

defined in the voltammetric simulations. Note that this parameter 

contains kinetic information, scaling the rate constant 𝑘0 by the 

charging rate 𝐶𝑟
1/2 . Similarly to Λ , it also contains 𝐷1/2 in the 

denominator. 

As stated above, it is useful to define here a normalized current 

density: 

 

𝜓 =
𝑖𝑐

𝑛𝐹𝑐0 (
𝑡ℎ

𝐶𝑟𝐷
)

1/2

       (14) 

 

So, replacing (13) and (14) into (12) yields the galvanostatic 

equation to be solved, in terms of dimensionless parameters Ξ 

and 𝑙. 

 

𝜓 = Ξ(𝑒𝛼𝑎𝜁 + 𝑒−𝛼𝑐𝜁) {
1

(1+𝑒−𝜁)
− 𝑙 ∫ 𝜃3(0|𝑢 − 𝑧)𝑑𝑧

𝑢

0
}  (15) 

 

Furthermore, in equations (9) and (11), the factor 𝑉/𝐴 depends 

on the geometry considered and on the surface in contact with the 

electrolyte. In Figure 1a, different particle geometries are 

represented and the surface exposed to the electrolyte is coloured 

in red. With this information, the surface/volume relationship is 

found to be [21]: 

 
𝐴

𝑉
=

𝑧

𝑑
        (16) 

Figure 1. a) Geometries used in the present galvanostatic simulations. The red areas indicate the surface where ions are inserted into particles, 

and d is the characteristic diffusion length. b) Theoretical potential profile for surface adsorption (Equation 17) and a simulation of ions insertion 

into a particle for the conditions indicated in the figure. A voltage cut-off of 150 mV is marked with a red dashed line. c) Theoretical -dx/dE vs E for 

a surface adsorption phenomenon (Equation 18) and a simulation of ions insertion into a particle for the conditions indicated in the figure.  
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where  𝑧 is a geometric factor equal to 1 for planar geometry, 2 

for a cylinder, and 3 for a sphere.  A transfer coefficient 𝛼 = 0.5 is 

assumed in all cases, such that 𝛼𝑐 = 𝛼  and 𝛼𝑎 = 1 −  𝛼 . The 

number of electrons involved is taken as 𝑛 = 1. 

In Supplementary information, the invariance of the potential 

profiles vs lithium fraction (x) for the same combination of Ξ and 𝑙  

is demonstrated in detail. 

Results and Discussion 

 

For a reversible reaction and small enough particles, the 

intercalation of ions in host materials should be equivalent to 

diffusionless surface adsorption. According to reference [26], the 

next equations can be easily derived for surface adsorption and 

𝑅Ω = 0:  

 

𝐸 = 𝐸0′ +
𝑅𝑇

𝐹
ln (

1−𝑥

𝑥
)  (17) 

 

𝑑𝑥

𝑑𝐸
= −

(𝐹/𝑅𝑇)e(𝐸−𝐸0′)(𝐹/𝑅𝑇)

[e(𝐸−𝐸0′)(𝐹/𝑅𝑇)+1]
2    (18)  

 

Plotting 𝐸  vs 𝑥  (Figure 1b) and −𝑑𝑥/𝑑𝐸  vs 𝐸  (Figure 1c) the 

galvanostatic response for reversible surface adsorption is 

obtained with the analytical solutions of equations (17) and (18). 

As observed in the figure, these results coincide with the 

simulations for the intercalation of ions into a host material using 

the parameters  Ξ = 100 and 𝑙 = 1x10−4 , which means, that at 

low  

charging rates and small particle sizes, the systems reach the 

reversible limit.  

From this figure, it also can be noted that a voltage cut-off of 150 

mV (red dashed line) relative to the equilibrium potential (𝐸0′ = 0) 

is enough to fill the volume of the host electrode with an 

occupation of 𝑥 ≈ 0.997. So, this voltage cut-off will be used in the 

first approach as a criterion to determine the maximum loading of 

the host material. 

When switching Ξ  and 𝑙  away from equilibrium conditions, 

potential profiles are modified. This is observed in Figure 2 for 

planar diffusion. In this figure, three different Ξ were considered 

and 𝑙  was varied for each of them, assuming 𝑅Ω = 0 . For 

increasing size parameter 𝑙  , the maximum loading of the cell 

(𝑥𝑚𝑎𝑥) reachable at -150 mV diminishes in all cases. Also, when 

the charging rate is faster (smaller Ξ) for the same 𝑙, a loss of 

maximum capacity is observed. These results show that the 

maximum loading that the cell reaches strongly depends on the 

parameters Ξ and 𝑙 , which are determined by the manageable 

parameters charging rate and particle size.  

With the previous information, a 3D plot of 𝑥𝑚𝑎𝑥   can be 

constructed in the Ξ - 𝑙  domain, with the corresponding level 

diagrams. This allows a straightforward diagnosis of the system 

response to different galvanostatic conditions. These two 

representations are shown in Figure 3 for planar, cylindrical, and 

spherical geometries.   

At first sight, the three geometries present similar characteristics. 

This is better appreciable in the level diagrams than in the 3D 

representations. The reversible and diffusionless point shown in 

Figure 1 is located in the upper left corner of the level diagrams. 

As commented above, a loss of maximum capacity is observed 

when decreasing Ξ  and increasing 𝑙  from the reversible-

diffusionless point. Also, all diagrams present a clearly defined 

zone above log(Ξ) ≈ 0 where the capacity practically does not 

change for a constant 𝑙. Below this value, as Ξ decreases, the 

drop in capacity gradually increases with 𝑙 , until a linear 

relationship is established.  

Despite the similarities, a more detailed analysis shows that the 

capacity loss is different for each geometry. For example, by 

plotting a longitudinal section of the diagram in Figure 3 for a 

constant log (𝑙)  vs log (Ξ)  in Figure 4a, it is evident that the 

behavior is not the same in all cases. As highlighted in the figure 

with dashed and dotted arrows, two Ξ  were selected as a 

reference. The numbers shown above the curves are the 

capacities for the spherical geometry, while those shown below 

them are those for planar diffusion (the cylinder presents 

intermediate values in all cases). As observed the electrode 

capacity of the planar geometry diminishes by 9 % in one case 

and 37 % in the other, relative to the sphere. Also, plotting a 

transversal section of the diagrams, 𝑥 vs log (𝑙) in Figure 4b for  

log(Ξ) = −2,   the same trend is observed.  

In the previous simulations we have used a relatively restrictive 

cut-off, say of 0.15 V, to evaluate the capacity of the system. We 

based our choice on the fact that a reversible reaction reaches 

with this cut-off 99.7 % of full occupation. However, in many 

experiments, the criterion chosen to estimate the capacity is far 

more permissive, and the cut-off chosen is of the order of 1 V. 

Figure S2 in Supplementary Information shows log(Ξ)  / log(𝑙)  

plots for a cut-off voltage of 1 V. Interestingly, the capacity limit 

reached at high values of  log(𝑙) is the same as in the previous 

case, showing that the cut-off value is not the limiting factor. 

Contrarily, the boundary where the capacity begins to decay Figure 2. Voltage/loading profiles for different Ξ and 𝑙  for planar diffusion. 
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extends to lower values of log(Ξ). So, in the former case, the 

length of the high-capacity zone depends on the extent of the 

voltage cut-off. 

By considering average values of the kinetic parameters (𝑘0 and 

𝐷), these diagrams can be transformed into 𝐶𝑟  vs 𝑑 diagrams. 

This type of plot allows visualizing the information in a more 

simple way, for specific systems. Although the application to a real 

system involves a series of more complex assumptions (as the 

modelling of a proper intercalation isotherm [19]), we can address 

in a simplified form two conventional electrode materials such as 

graphite (anode) and LiMn2O4 (cathode), to get a flavour of the 

type of information that we get. 

The values of the parameters for graphite [27] and LiMn2O4 (LMO) 
[28] according to the literature, are given in Table 1, for 𝛼 = 0.5 . In 

the case of graphite, 𝑘0 was calculated for an exchange current 

density of 1 mA.cm-2 at 𝑥 = 0.5 [27], while for LMO 𝑘0 was obtained 

from a charge transfer resistance of 20 Ω cm2, at 𝑥 = 0.5 [28]. In 

the last case, the diffusion coefficient was taken as the average 

value obtained from potential step chronoamperometry for the 

total occupation range.  With these values and equations (11) and 

(13),  𝐶𝑟 and 𝑑 can be derived for anode and cathode. Figure 5 

show the diagrams for these cases. We only show the 

experimentally useful range. 

 

Table 1. Kinetic parameters were taken from the experimental 

data of references [27,28] for graphite and LiMn2O4 

Parameter Graphite LiMn2O4 

𝑘0[cm. s−1] 1.15x10−7 1.8x10−6 

𝐷[cm2. s−1] 8.3x10−8 1x10−9 

 

Regarding graphite, changing the voltage cut-off from 150 mV 

(Figure 5a) to 1 V in (Figure 5b) shows remarkable differences 

between the diagrams. In the first case, considering the particle 

size used in reference [27] (𝑑 = 9 μm), marked with a light blue 

dashed line in Figures a and b,  we find that  the capacity drops 

from 1 to 0.8  at log (𝐶𝑟) = 0.73 or 𝐶𝑟 ≈ 5.4  .  However, for a 

voltage cut-off of 1V, the same drop takes place at log (𝐶𝑟) = 2.7 

or 𝐶𝑟 ≈ 500.   

As observed, the latter is an interesting figure since it marks a 

limiting value that could be reached assuming the limitations set 

Figure 3.  Level diagrams and 3d plots for different geometries, using a cut-off voltage of 150 mV to define the capacity. Black full lines separate 

𝑥𝑚𝑎𝑥 increments of 0.2.  

 

Figure 4. a) capacity for a constant 𝑙  and varying 𝛯  for all geometries. b) 

capacity for a constant 𝛯 and varying 𝑙 for all geometries 
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in the present model: charge transfer and solid-state diffusion. In 

the real system, other processes not considered here will set a 

lower limit. 

In the case of LMO, considering the same particle size as that of 

graphite, the maximum capacity falls to 0.8 at log (𝐶𝑟) = 0.87 

( 𝐶𝑟 ≈ 7.5 ) for 150 mV, while this value is reached at log(𝐶𝑟) =

0.9  (𝐶𝑟 ≈ 8 ) for a cut-off voltage of 1 V. However, if smaller 

particle sizes are used this transition changes strongly. For 

example, if the LMO particles are of 𝑑 = 1 μm the drop to the 0.8 

capacity should take place at 𝐶𝑟 ≈ 670, for the 1V cut-off voltage. 

The influence of the cell resistance can be straightforwardly 

introduced in the present modelling. In all cases, the inclusion of 

a constant cell resistance 𝑅Ω ≠ 0  would result in a shift of the 

potential transients to larger overpotentials. This would lead to a 

concomitant shift in the diagrams. 

A recent publication [29] shows that as predicted by the present 

modelling, spherical graphite particles present better 

electrochemical performance than “flake” particles. The 

performance was evaluated at different C-rates, as reproduced in 

Figure S3b in supplementary material. The simulation for a 

spherical graphite particle with the present model shows a similar 

trend to this experimental data regarding the drop in the specific 

capacity when increasing the charging rate, especially at low C-

rates. A level diagram was also constructed for this case as 

shown in figure S3c. So, it is possible to make predictions of the 

behaviour of the system for different particle sizes. For example, 

we marked in the diagram a dotted line representing the 

capacities for the same range of C-rates analysed for 7.5 μm, but 

for a particle radius of 13.5 μm. The diagram predicts that 80% of 

the theoretical capacity is reached at different C-rates in each 

case: 𝐶𝑟 = 2.14 for 7.5 μm and 𝐶𝑟 = 2.25 for 13.5 μm. This 

difference is larger for higher C-rates; for example, for 𝐶𝑟 =3, a 

54 % of the theoretical capacity is reached for 7.5 μm, while a 

40% of the theoretical capacity is reached for 13.5 μm. 

These preliminary results show that the present modelling gives 

a correct qualitative trend for the prediction of the specific capacity 

with C-rate. A more quantitative assessment will require 

introducing in the model the insertion isotherms and occupation-

dependent diffusion coefficients, it is gratifying that the 

experimental results may be understood in terms of the present 

general framework. 

 

 

Conclusion 

The construction of capacity diagrams in kinetic/size domains 

using computer simulations under galvanostatic conditions was 

presented in this work. The aim was to provide a rapid diagnostic 

tool for alkali-ion battery materials. For this purpose, two 

dimensionless parameters were derived theoretically and alkali-

ion insertion/deinsertion in particles with different geometries was 

analysed. We showed the dependence of the maximum ion 

capacity of the particle with these dimensionless parameters and 

the cut-off voltage. Assuming particular values of 𝑘0 and 𝐷, we 

also constructed charging rate/particle-size diagrams, which 

provide a more straightforward overview.  

In the Computational Section, we made a number of assumptions 

prior to the calculations. We briefly analyse here the extent to 

which these assumptions may affect the estimated capacity of the 

cell or the relative weight of the two types of processes considered 

in the model (charge transfer and diffusion). Assumption (a) will 

lead to an overestimation of the experimental cell capacity in the 

case where there is some electronic transport limitation. Similarly, 

the real capacity of the cell will be lower than the predicted one if 

there is some diffusional limitation in the electrolyte (c), if the cell 

resistance is not negligible (h), if the volume of the particle 

increases upon loading (j) or if side reactions occur (k). 

Approximation (b) will collapse in case of the occurrence of a first-

order phase transition and approximation (d) will probably lead to 

an overestimation of the experimental capacity, since regions 

where the diffusion coefficient is smaller will become limiting in 

Figure 5. C-rate vs particle size Level diagram using kinetic parameters for graphite and LiMn2O4 from the literature. Spherical diffusion was assumed 

for both electrodes. The light blue dashed lines marked correspond to a particle size similar to that used in references[27,28]. The yellow dashed line 

marks at which C-rate 80% of the maximum capacity is reached. The cut-off voltage is indicated at the top right of each diagram. 

 

10.1002/cphc.202200665

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemPhysChem

This article is protected by copyright. All rights reserved.



RESEARCH ARTICLE    

7 

 

the case of a system with patches of the inserted ion. 

Approximation (e) is a boundary condition that should be always 

valid, while approximation (f) will lead to an overestimation of the 

charge transfer rate at the particle/solution interface at high 𝐶𝑟,  if 

the system actually follows  Marcus–Hush or Marcus–Hush–

Chidsey (MHC) kinetics as proposed in reference[30]. The effect of 

approximation (i) is more difficult to assess. In previous work, 

where we analysed voltammetric zone diagrams[20], we found that 

kinetic and diffusional limitations shift in opposite directions 

depending on the nature of the interactions between inserted 

particles (attractive or repulsive). More precise analysis will 

require the consideration of the insertion isotherm. 

Hence, although the actual situation for the intercalation of ions 

into electrode materials is more complex, as other factors 

affecting the charge-discharge of the electrode must be 

considered, a general model serves to lay the theoretical and 

methodological foundation for more sophisticated approaches. It 

is also useful to show the intrinsic limitations that charge transfer 

and ion diffusion in the material imposes on the 

charging/discharging process. Future work should also combine 

the present approach with more sophisticated modelling, like the 

inclusion of electrolyte and thermal dynamics [31] or volume 

change of particles [32]. The kinetic Monte Carlo Method [33–36] 

could also be used in combination with the present modelling, 

providing occupation-dependent diffusion coefficients and 

interfacial rate constants. The present ideas may be also useful 

for the development of multiscale models [37,38], which account for 

other features of the composite, like binder and electrolyte 
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We present a model to rapidly estimate the specific capacity of single particles of alkali-ion materials under galvanostatic 

charging/discharging conditions at different C-rates and particle sizes. The capacity is assessed in terms of two scaled parameters of 

the material, representing kinetic and diffusional restrictions. 
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