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Abstract:We study the evolution of two-dimensional high-Reynolds-number density currents propagating over horizontal porous substrates
initially saturated with a lighter fluid when an impermeable surface under the bed is used and a Darcy flow through the medium takes place.
Laboratory experiments were performed varying the initial characteristic parameters such as the volume released, the height-to-width ratio of
the dense fluid, the relative density difference between the current and ambient fluids, and the bed depth. The dynamic changes of the gravity-
driven flow and the influence of the thickness of the porous substrate are described by means of an empirical analysis that considers two lower
boundary conditions of the bed, that is, when it is bounded from below by an impermeable or a permeable layer. Thus, the new experimental
results are integrated to previous findings in a unified theoretical treatment. In the present case, the dense fluid penetrates into the porous layer
pushing the lighter one through the upper boundary located ahead of the current, as shown by the vorticity distribution, and modifying the
interaction between the flows over and inside the bed. This flow in the neighborhood of the front, although important, is smaller than the one
that would pass through the lower boundary if this were permeable. DOI: 10.1061/(ASCE)HY.1943-7900.0000477. © 2012 American
Society of Civil Engineers.
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Introduction

Gravity, density, or buoyancy currents are flows driven by a density
difference between the current and the ambient fluid into which it
penetrates. Many of them are of considerable scientific and prac-
tical importance to environmental sciences, geophysics, chemical
and hydraulic engineering, and oceanography as the comprehen-
sive review by Simpson (1997) shows. The wide range of situations
in which these flows appear has motivated a great number of basic
and applied research. We will consider the propagation of gravity
currents over horizontal porous layers initially saturated with an
ambient fluid. As the current fluid sinks into the bed driven by
the excess pressure at the top of the layer, the loss of mass through
the porous medium reduces the driving force of the current and
thereby affects its velocity and thickness. This kind of flow occurs
frequently in varied natural situations that include the currents of
brackish water generated by tidal motions over the permeable bot-
tom of estuaries, internal waves impinging on continental shelves,
and the irrigation waters that wander naturally to aquifers through a
porous substrate. In addition, man-made situations involve the re-
lease of sewage liquids on nearby coasts and the accidental escape
of toxic liquids from containers surrounded by gravel beds or a
thick vegetal cover, among others. An important application is

in the petroleum industry, where crude oil is trapped in natural
underground reservoirs that consist of porous sedimentary forma-
tions such as sand, stone, limestone, and dolomite usually disposed
in layers of different permeability. The most important practical as-
pect related to the dynamics of the flows over and within the porous
medium is the determination of the mass absorbed by the bed and
the maximum distance the current travels before stopping. Knowl-
edge of this length and the determination of the stage in which the
dilution of the fluid in the adjacent environment decreases below a
threshold value would be very useful for safety calculations con-
cerning, e.g., pollutants dispersion.

There are many studies of flows in steady-state over a porous
medium. Prinos et al. (2003) reviewed the main works related to the
effect of a porous bed on the free flow above it and the flow char-
acteristics near the interface for laminar and turbulent cases, and
described a few applications of the hydrodynamic effects of the
interface on water quality and mass transfer. They presented a com-
putational study of the turbulent flow features in a two-dimensional
open channel with a permeable bed simulated by different arrange-
ments of cylindrical rod bundles placed perpendicular to the flow
and compared the results with experimental findings. In addition
to this problem, research of the non-steady-state of flows such
as gravity currents propagating over porous media have been ad-
dressed both theoretically and experimentally. For currents flowing
over thin porous substrates, only the weight of the overlying fluid
drives drainage (Thomas et al. 1998; Ungarish and Huppert 2000;
Pritchard et al. 2001; Marino and Thomas 2002). Previous exper-
imental works related with inertial gravity currents (that is, with
Reynolds number R ≫ 1) were first devoted to study the release
of saltwater flows over horizontal porous surfaces modeled by met-
allic grids inside a rectangular cross section tank filled with tap
water, considering viscous (Thomas et al. 1998) and inertial
(Marino and Thomas 2002) flows through the substrate. For a
viscous flow inside a bed of thickness ε with Reynolds number
of the flow through the porous medium RPM ≤ 1, Darcy’s law
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(Bear 1972) is valid and, as found, gravity currents lose mass at an
exponential rate through the porous surface with a constant
of decay τD ¼ νε=κg00 where g00 = initial reduced gravity, ν =
kinematic viscosity of the fluid, and κ = permeability of the
bed, while the front velocity and the current height also decrease
exponentially. The loss of mass dominates the flow and, in contrast
to gravity currents evolving over solid bottoms, no self-similar re-
gime is developed. In the case of an inertial flow (that is, RPM > 1)
through a layer of high permeability and small thickness, the mass
of the gravity current also decreases exponentially but with a differ-
ent constant of decay τ I ¼ βA1=4

0 g0�1=2
0 where β = constant and

A0 = initial lateral area of the fluid released.
In contrast, for gravity currents propagating over deep porous

media, Acton et al. (2001) showed that both the hydrostatic pres-
sure of the fluid in the current and the weight of the fluid within the
porous medium drive drainage. They used this description of drain-
age in a model of experiments in which low-Reynolds-number
gravity currents spread over a deep porous layer consisting of small
glass spheres. Thomas et al. (2004) analytically and experimentally
investigated plane high-Reynolds-number gravity currents travel-
ing over a thick porous bed, confirming that the fluid mass lost from
the current through the bed is well described by Darcy’s law and
scales on the timescale τD mentioned above. They used an exper-
imental setup in which there is a water channel below the porous
bed and presented an integral model that describes the flow of the
current in terms of a global mass balance suggesting an analytical
approximation for extended currents. Such a solution provides a
finite time of extinction in which all the mass of the current is lost.
Pritchard and Hogg (2002) have also applied the same drainage law
to their examination of gravity currents propagating within a porous
medium overlying a deep layer of lower permeability.

Numerical models concerning the study of releases of fixed vol-
umes of liquids under the shallow water approximation including
the cases of downward porous slopes (Moodie and Pascal 1999b)
and with axial symmetry (Moodie and Pascal 1999a) were also
reported. Ungarish and Huppert (2000) studied analytically and
numerically the consequences in the evolution of the flow because
of the presence of an impermeable bottom of the lock where the
dense fluid is initially contained in the experimental setup used
by Thomas et al. (1998). They argued that the gravity flow evolu-
tion depends on the decay constant τD but also on the characteristic
time tc ¼ x0=

ffiffiffiffiffiffiffiffiffi
g00h0

p
related to the initial height h0 and length x0 of

the lock where the dense fluid remains before release for t ≈ tc.
More recently, Spannuth et al. (2009) studied the axisymmetric
propagation of a viscous gravity current over a deep porous
medium for the fixed-flux case and presented a model that uses
lubrication theory for flow within the current, the drainage law
of Acton et al. (2001), and Darcy flow within the porous medium.
While the full spatial and temporal evolution of the current can only
be obtained numerically, an analytical expression for the steady-
state extent and profile of the current is found. Additionally, they
developed scaling laws describing the propagation of the current.

As that by Thomas et al. (2004), this paper is also concerned
with the releases of fixed volumes of a dense fluid that propagates
under the influence of gravity inside a lighter miscible fluid and
over a horizontal permeable substrate. Now, as the schematic dia-
gram in Fig. 1(a) depicts, a solid base limits the porous medium
causing a different flow inside it that is relevant to the gravity cur-
rent evolution. We describe the results of new laboratory experi-
ments in which the influence of the initial reduced gravity, the
thickness of the substrate and the volume of dense fluid released
is explored. After that, an analytical model is provided to describe
the influence of this lower boundary condition on the flows over
and through the permeable bed, which includes the case sketched in

Fig. 1(b). The latter may be now considered as a particular case of
the flow through a thick porous medium where Darcy’s law is valid.
Thus, the main contribution of this paper is not only to present the
results found using a new experimental configuration and support
them theoretically, but also to integrate them to previous findings
into a unified framework in order to understand the effect of the
flow inside the bed on gravity currents and its relative importance
on the dynamics of the global situation. Finally, the concluding re-
marks are given.

Experimental Procedure

Laboratory experiments were carried out by releasing fixed vol-
umes of salt water, colored to provide visualization, from behind
a lock with impermeable base into a rectangular cross section chan-
nel (3.0 m long, 0.2 m wide, and 0.6 m deep, with transparent
Perspex sidewalls) containing fresh water up to a depth h0 above
the porous bottom. A vertical barrier located at a distance x0 from
the rear wall is suddenly removed at t ¼ 0, allowing the dense fluid
to flow out along the porous bed. The porous medium, of porosity
φ ¼ 0:375 and permeability κ ¼ 6 × 10�5 cm2, is composed of
small glass spheres of 0.00286 m average diameter and saturated
with fresh water. After each run, the porous layer was washed with
fresh water and dried with warm air in order to avoid the formation
of random bubbles inside that might affect the reproducibility of the
results. The influence of the porous bed on the gravity currents was
investigated varying the lateral area A0 ¼ x0h0 of the initial released
volume of the dense fluid, the density relative difference Δρ=ρ,
and the thickness ε of the bed. The evolution of the front position,
maximum height, and mass of the current is also determined.

Fig. 1. Schematic views of gravity current above porous bed saturated
with ambient fluid; porous medium is bounded by: (a) impermeable
surface as in this study; (b) permeable layer as in situation considered
by Thomas et al. (2004)
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The dense fluid mass per unit width over the porous medium is
obtained applying image processing. Behind the channel, a panel of
lights with a diffusing screen provided uniform backlighting. The
images captured by a COHU 4910 video camera placed at a fixed
position 6 m away from the tank were stored online and digitally
processed later. As the region of practical interest is approximately
3 m long and 0.30 m height, an anamorphic lens system is used to
enlarge the vertical scale and reduce the horizontal by a factor 2.
Measurements of the light intensity related to the concentration of
the dye along each light path are obtained for each pixel, so pro-
viding the width averaged dye concentration. Because the dye acts
as a passive tracer, its concentration is associated with the width
averaged salt concentration. Thus, the intensity measurements give
the two-dimensional density distribution ρðx; z; tÞ-ρa on each video
frame, and the current mass m per unit width is obtained by inte-
grating this density distribution. The error of m is found to be less
than 2% by calculating the mass of a dense current evolving over an
impermeable bottom at different times. As it is constant independ-
ently of the mixing between current and ambient fluids, the
deviation of the measured values from the initial one gives an es-
timate of the error of the whole image processing. More details of
the calibration procedure can be found in the work by Hacker et al.
(1996). Because of the opacity of the glass spheres, it was only
possible to obtain density measurements above the porous layer.

Particle image velocimetry (PIV) was also applied to find the
velocity and vorticity fields around the current front. Particles of
Pliolite VT (a granular resin used in the manufacture of solvent-
based paints) of density 1:02 g=cm3, similar to the fluids, were
sieved to obtain sizes in the range 300–500 μm and added to dense
and ambient fluids. The experiment was illuminated by a 500 W
halogen lamp with a linear filament that was focused by a lens into
a vertical light sheet, approximately 0.01 m thick, entering through
a slot made in a Perspex sheet located on the water free surface and
cutting along the central part of the tank. The use of this Perspex
sheet avoids the light intensity variations produced by the motion
of the free surface liquid. After completing an experiment, the im-
ages captured were digitally processed employing the software
DigiFlow (Dalziel 2006) to determine the instantaneous velocity
gradient field that is used to obtain the vorticity distribution.

Laboratory Results

Table 1 introduces the main parameters of the runs performed while
Fig. 2 shows the gravity current as seen in a typical experiment
under the boundary conditions of our interest. The images are in
a color scale that is related to the fluid density and show a number
of features, some of which are observed in currents over an imper-
meable base while others result from the penetration into the bed.
Initially, the flow is essentially the same as over a solid bottom: the
density in the bulk does not change during the collapse, a sharp
horizontal density gradient marks the current front, and the char-
acteristic head, deeper than the following current, forms. The dense
fluid moves horizontally while billows appear on the top. As the
current evolves, its depth (at any given horizontal location) and
the density (mainly in the head) decrease, as the variation in color
evidences. In general, it is observed that the changes resulting from
the penetration of dense fluid into the porous bed depend on the
relative density difference.

Quantitatively the dynamics of the gravity current leading part
for all the experiments performed is not strongly affected by the
reduction of the global mass during the time that a run lasts. Fig. 3
illustrates the classical evolution of the front position of gravity
currents for three different porous layer thicknesses. The same

Table 1. Main Parameters for Set of Laboratory Experiments

Run Δρ=ρ ε x0 h0 R

1 0.0049 0 0.152 0.300 12,700

2 0.0097 0 0.153 0.300 18,000

3 0.0115 0 0.199 0.300 19,500

4 0.0115 0 0.298 0.200 10,600

5 0.0170 0 0.152 0.300 23,800

6 0.0370 0 0.151 0.300 35,000

7 0.0058 0.03 0.151 0.301 13,900

8 0.0107 0.03 0.152 0.200 10,300

9 0.0107 0.03 0.149 0.150 6,600

10 0.0107 0.03 0.201 0.200 10,300

11 0.0108 0.03 0.151 0.301 19,000

12 0.0210 0.03 0.152 0.300 26,400

13 0.0403 0.03 0.152 0.299 36,300

14 0.0058 0.09 0.167 0.309 14,500

15 0.0107 0.09 0.151 0.307 19,500

16 0.0107 0.09 0.148 0.210 11,000

17 0.0107 0.09 0.147 0.156 7,100

18 0.0107 0.09 0.198 0.206 10,700

19 0.0108 0.09 0.153 0.400 29,100

20 0.0206 0.09 0.151 0.314 28,000

21 0.0409 0.09 0.146 0.315 39,700

22 0.0059 0.15 0.170 0.315 15,000

23 0.0109 0.15 0.166 0.327 21,600

24 0.0208 0.15 0.148 0.309 27,400

25 0.0404 0.15 0.161 0.325 41,100

Note: Initial values of Reynolds numbers are estimated using R ¼
ðh0=2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0h0=2

p Þ=ν.

Fig. 2. False color-representation of gravity current evolving over
porous layer (ε ¼ 0:03 m) with an impermeable base for Δρ=ρ ¼
1% at times t ¼ 0, 8.04, 12.72, 19.14, 25.94 and 33.58 s from release;
density scale is shown at bottom of figure
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self-similar laws describing the slumping (solid lines) and inertial
(dashed lines) current behavior over rigid bottoms are mostly valid
to describe the front position evolution in the present configura-
tions. Also, the same characteristic time tc, based on the horizontal
length x0 and the initial velocity

ffiffiffiffiffiffiffiffiffi
g00h0

p
, results useful to provide a

time dimensionless parameter in order to the experimental points
corresponding to different bed thicknesses collapse onto single
curves. However, a slight departure of this trend appears and more
noticeably for the ε ¼ 0:09 and 0.15 m cases at the latest times,
even for experiments with the same x0 and h0 as shown in Fig. 3.

Hence, we must pay attention to the evolution of another more
sensitive variable to visualize the effects of the porous bed on the
current dynamics. Fig. 4 shows the variation of the dimensionless
current mass MðtÞ, defined as the ratio between the dense fluid
mass per unit width at time t located above the porous bed and
the total saltwater mass per unit width released, for different initial

density relative difference and porous medium thickness. The loss
of mass for ε ¼ 0:03 m (circles) is too small under the present ex-
perimental conditions and the results for MðtÞ, associated with the
current lateral area AðtÞ, seem to coincide with those of the currents
running over impermeable bottoms (squares). On the contrary, the
decreasing of mass for ε ¼ 0:09 (up-triangles) and 0.15 m (down-
triangles) is noticeable, but significant differences between the re-
sults of both cases are not detected. For a given thickness, the
greater the relative difference of density, the greater the loss of
mass. In order to make this observation clear, we choose to re-
present M for the runs performed over a 0.15 m wide porous
medium in Fig. 5 together with the curves provided by the analysis
introduced in the section “ Analysis of the Flows Involved.” For
small values of Δρ=ρ, the mass variations detected are of the order
of the experimental error but are clearly observed for Δρ=ρ≈ 2
and 4%.

Fig. 3. Front position evolution of gravity currents for different ε and Δρ=ρ

Fig. 4. Dimensionless current mass that remains over porous substrate for different ε and Δρ=ρ
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On the other hand, it is interesting to observe Fig. 6, which
shows the velocity and vorticity instantaneous distributions
obtained by applying PIV technique around the frontal zone of
a gravity current evolving over the porous bed. The circle marks
the zone ahead of the current front that is influenced by the ambient
fluid flow displaced from the bed because of the entrainment of
dense fluid into it. The comparison with the case of a gravity cur-
rent running over a rigid surface (Thomas et al. 2003) indicates that
the vorticity is greater at the top of the current and that localized
zones of negative vorticity appear near the interface dense fluid-
porous bed. The roughness of this interface plays a significant role
in the generation of vortices and turbulence within the gravity flow,
probably implying a different erosive power in natural currents.
This feature is analyzed by means of a separate series of experi-
ments and the results are reported in a parallel work (Marino
and Thomas 2010).

Analysis of Flows Involved

As shown in Fig. 1, after release, a gravity current of dense fluid
(e.g., salt water) develops on the upper boundary of the porous
layer at z ¼ 0 while part of it flows into the bed. We assume that

the transversal coordinate y plays no role and all the flow may be
considered to be two-dimensional. The bed is saturated with a
homogeneous ambient fluid that is displaced as the dense fluid
sinks into it. Laboratory results show the current mass diminishes
slowly as function of the front position along the extent of the
present experimental setup (Figs. 4 and 5). The Reynolds number
of the density-driven flow over the bed is sufficiently large to ne-
glect the viscous forces and then a balance between buoyancy and
inertial forces dominates the flow dynamics. The porous medium is
homogeneous and isotropic on a macroscopic scale so that all the
physical properties like porosity and permeability, are uniform.
Although the flow through the porous layer involves dense fluid
over lighter fluid, which makes it unstable, the convective instabil-
ities are ignored for the purposes of this discussion.

Flow inside Porous Substrate
At the time when the gravity current front is at the position xf , the
hydrostatic pressure excess above the porous medium is

pðx; z ¼ 0Þ ¼
� p1ðxÞ ¼ ρag0h for x ≤ xf

p2 ¼ 0 for x > xf

�
ð1Þ

where ρc and ρa = densities of the current and surrounding fluids,
respectively, and g0 ¼ gðρc � ρaÞ=ρa = reduced gravity with g =
gravitational acceleration. Because of mixing between the fluids,
ρc decreases while the current height h increases maintaining
the value of the total buoyancy ρag0h at any given position x; there-
fore, the effects of mixing may be neglected at first approximation,
ρc is assumed constant and the lateral area A of the current is pro-
portional to its mass M.

The pressure at z ¼ �ε is determined by the fact that the normal
velocity is zero on a solid impermeable surface as in Fig. 1(a) case,
or by the hydrostatic pressure if it were permeable as in the situation
represented in Fig. 1(b). The boundary condition at the interface
between a porous medium and a solid surface has been studied
by Haber and Mauri (1983), among others, and for the present in-
vestigation it may be obtained as follows. Within the porous
medium, the flow per unit area is given by Darcy’s law:

�q ¼ � κ
μ
½�∇p� ðρ� ρaÞ�g�; ð2Þ

where μ and ρ = dynamic viscosity and density of the fluid, respec-
tively. At the lower impermeable boundary, it results

∂p
∂z ¼ �ðρ� ρaÞg≈ 0

because there is no flow when ρ≈ ρa. Therefore, by neglecting the
effects of the impermeable bottom of the lock where the dense fluid
is initially contained, the lower boundary condition for the porous
layer is( ∂p

∂z ¼ 0 for an impermeable boundary ½Fig: 1ðaÞ�
p ¼ 0 for a permeable boundary ½Fig: 1ðbÞ�

)
ð3Þ

in z ¼ �ε for 0 ≤ x ≤ xm, and moreover in x ¼ 0 and x ¼ xm ≫ xf
for �ε ≤ z ≤ 0, where xm = position far enough from the current
front where the flow inside the bed is negligible.

Because the fluid in the pores is incompressible, it follows from
(2) that

∇ �q ¼ ∇2p� �g · �∇ρ ¼ 0: ð4Þ
The dense fluid gets into the porous layer for x ≤ xf causing the

lighter fluid to go out through the upper boundary located at x > xf
but also through the lower boundary at z ¼ �ε if it is permeable.

Fig. 5. Dimensionless current mass evolution for porous layer of thick-
ness ε ¼ 0:15 m and different Δρ=ρ

Fig. 6. Instantaneous distributions of velocity (arrows) and vorticity
(false color) for gravity current evolving over 0.03-m deep porous
substrate

JOURNAL OF HYDRAULIC ENGINEERING © ASCE / FEBRUARY 2012 / 137



In Boussinesq’s approximation, there are no significant differen-
ces between the fluid’s densities (that is ρc ≈ ρa), so that the
flow inside the porous medium may be considered as the flow of
a single homogeneous fluid at first approximation. This hypothesis
is valid if

∇2p ≫ �g · �∇ρ ¼ 0 ð5Þ

Therefore, Eq. (4) becomes

∇2p ¼ ∂2p
∂x2 þ

∂2p
∂z2 ¼ 0 ð6Þ

whose solution does not depend on the interface position between
the ambient and dense fluids inside the porous medium. Solving
Eq. (6) with boundary conditions Eqs. (1) and (3), the pressure field
is obtained there. By considering a velocity potential ϕ ¼ p� ρg0z,
with ∇2ϕ ¼ 0, the conjugate stream function ψ fulfills an equation
similar to Eq. (6).

Note that the velocity potential ϕ and the stream function ψ
inside the porous medium can only be found considering the boun-
dary conditions independently of the time. This is because Eq. (6) is
an elliptic differential equation or, from a physical point of view,
the flow inside the porous medium adjusts to any upper boundary
condition in a negligible time. Thus, it is not necessary to know the
evolution of the gravity current front position at this stage of the
analysis.

Fig. 7 shows the isolines of ϕ and ψ for different values of xf =ε
when the porous bed lies on an impermeable base. Solid lines cen-
tered at the front represent the streamlines that include 90 and 80%
of the flow, while dashed lines are intermediate values. The 0.9 line
starts about midway along the current (x=xf ∼ 1=2) in all cases. For
xf =ε ¼ 0:25, the 0.9 line finishes at a rather far point involving a
greater length of the upper boundary; however, the flow is always
important just near the current front but not in the deeper part of the
porous bed. The horizontal length of the zone with high flow in-
creases slightly for xf > ε, and the streamlines become almost
semicircular for the greatest value of xf =ε as shown in Fig. 7(d).
In this case, the boundary conditions at x ¼ 0 and xm ≫ xf do
not strongly affect the flow because this is mainly confined to a
horizontal length of the order of ε.

Fig. 8 shows the ϕ and ψ isolines obtained in the case of a
porous bed with permeable lower boundary. Here the 0.9 line fin-
ishes at the lower boundary for all the depicted cases. In fact about
30% of the dense fluid flows through the lower boundary for
xf =ε ¼ 0:25 [Fig. 8(a)], and this percentage increases for a decreas-
ing thickness of the bed reaching 60% for xf =ε ¼ 2 [Fig. 8(d)]. The
upper boundary for x > xf only participates significantly in the
flow near x=xf ∼ 1, where the streamlines concentrate adopting a
semicircular shape. The term ρg in Eq. (2) is not considered here
for the sake of simplicity but it may become significant, as we will
see below.

Thus, the flow between the upper boundaries at x < xf and x >
xf of the porous layer dominates near the current front. It takes
place between the surfaces at the same level and perpendicular
to gravity, so that the mean pressure gradient in this zone may
be estimated as

j �∇ pj≈Δp=Δx ð7Þ

where Δp is the pressure difference corresponding to a character-
istic local horizontal length.

By using Eqs. (1) and (2) the order of magnitude of the flow per
unit area is obtained

qf ≈ κ
μ

�
p1
Δx

�
¼ κ

μ

�
ρag0hf
Δx

�
ð8Þ

where hf = local height that characterizes the gravity current lead-
ing part. Let us find now the vertical characteristic depth Δz for
which the flow per unit transversal length Qf is important. Thick
and thin porous media isΔz < xf andΔx≈ ε < xf , respectively. In
any case we expect that Δz≈Δx and then

Qf ≈ qfΔz ¼ κg0

ν
hf ð9Þ

Fig. 7. Box model of gravity current (dashed region) spreading over
porous medium (shadow region) with impermeable lower boundary,
and lines with equal values of pressure p-ρg0z (dotted lines) and stream
function ψ (solid and dashed lines) inside the bed: (a) xf =ε ¼ 0:25;
(b) 0.5; (c) 1; (d) 2
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where κg0=ν = characteristic velocity of the flow through the
porous medium known as “hydraulic conductivity” in the ground-
water studies when g0 ¼ g. Thus, according to Eq. (9), the flow Qf

does not depend on the layer thickness.
The percolation through the porous medium from the upper

boundary at the rear part of the current plays an important role
in the case of extended currents and a permeable lower boundary,
as seen in Fig. 8. In such a case, the term ρg in Eq. (2) may become
significant and be taken into account using the model proposed by

Thomas et al. (2004) as follow. As the gravity current travels sig-
nificantly faster over the bed than the dense fluid penetrates into the
porous layer, the dense fluid extends over a horizontal length much
greater than the vertical depth η through which the current fluid
percolates into the porous medium. In such a situation, the gravity
current is approximated to a fluid layer of constant thickness h≈ hf
and density ρc (box model), the pressure excess p1 becomes uni-
form and the flow per unit area through the porous medium can be
treated as one-dimensional. From Eq. (2) the vertical flow per unit
area is

qν ¼ � κ
μ

�∂p
∂z þ ρg

�
ð10Þ

where the term ρg is kept without adding difficulty to this
approximation.

The pressure gradient driving the fluid from the current into the
bed is given not only by the difference in pressure excess p1 at the
top of the bed [see Eq. (1)] and the pressure pð�ηÞ at the interface
located at z ¼ �η between the dense and ambient fluids, but also
by the buoyancy of the dense fluid incorporated in the bed. Hence,
Eq. (10) becomes

qν ¼ � κ
μ

�
ρag0h� pð�ηÞ

η
þ ρag0

�
ð11Þ

The vertical flow per unit area between the interface and the
permeable bottom of the bed [where the pressure excess is
p ¼ 0, see Eq. (3)] is given by

q3 ¼ � κ
μ

�
pð�ηÞ
ε� η

�
ð12Þ

We assume that the length of the upper and lower boundaries of
the bed involved in this flow is approximately the same. Continuity
requires that qν ≈ q3, and then

qν ¼ � κ
ν
g0ðhþ ηÞ

ε
: ð13Þ

The velocity of the interface per unit area, ∂η=∂t, is related to qν
by means of the porosity φ of the porous layer by means of

φ
∂η
∂t ¼ qν ð14Þ

and the volumetric flow per unit transversal length is

Qν ≈ qνxf ð15Þ
with

κ
ν
g0
hf
ε
xf < Qν <

κ
ν
g0
ðhf þ εÞ

ε
xf ð16Þ

The ratio between the horizontal [Eq. (9)] and vertical [Eq. (15)]
flows within the porous medium is

Qf

Qν
≥ ε
xf

ð17Þ

Eq. (17) indicates when the vertical flow dominates and the one-
dimensionality hypothesis used to reach Eq. (10) is valid. Other-
wise, we can take Eq. (9) as an approximation of the flow that sinks
into the permeable layer.

Evolution of Gravity Current
The gravity current evolves by changing the length xf of the bed’s
upper boundary that is affected according to Eq. (1). Figs. 7 and 8
also illustrate the corresponding sequences of an idealized gravity

Fig. 8. Box model of gravity current of given volume spreading over
porous medium with permeable lower boundary and lines with equal
values of pressure p-ρg0z (dotted lines) and stream function ψ (solid and
dashed lines) inside the bed: (a) xf =ε ¼ 0:25; (b) 0.5; (c) 1; (d) 2
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current of a homogeneous fluid. Its nonsteady evolution can be
treated as a succession of steady states in which the pressure dis-
tribution inside the porous medium fulfills the boundary conditions
Eq. (1) and (3) varying with time. It is assumed that the current
slowly loses mass into the porous layer, which is a reasonable hy-
pothesis for our experiments and a wide range of natural situations.
Thus, the front velocity is

uf ¼ F
ffiffiffiffiffiffiffiffi
g0hf

q
; ð18Þ

where F ∼ 1 is the Froude number (Marino et al. 2005 and refer-
ences therein).

For the case of a permeable lower boundary of the porous
medium, the flow into the bed near the front located between
the upper boundaries x < xf and x > xf of the porous layer may
only be important during the first part of the evolution of the cur-
rent. As deduced from Eq. (17), this flow may be neglected for
extended gravity currents. On the contrary, this is the main flow
for the case of an impermeable lower boundary of the porous sub-
strate. In such a case, mass conservation suggests that

Qf ¼ � dA
dt

¼ �uf
dA
dxf

ð19Þ

where A ¼ hf xf = current lateral area or volume per unit length.
It is well known that gravity currents propagating on a rigid

surface display phases described by particular features [see for in-
stance Marino et al. (2005)]. In the first one, called “slumping”
phase, the front velocity is constant and the current height at the
front is of the order of hf ≈ h0=2 (Simpson 1997). Therefore,
for a gravity flow over a porous substrate, Eq. (19) allows us to
find that the gravity current volume decreases linearly, that is

A
A0

≈ 1� αðxf � x0Þ ð20Þ

where

α ¼ κ
νFx0

ffiffiffiffiffiffi
2g0

h0

s
ð21Þ

Eq. (20) implies that in this phase the dense fluid of the gravity
current that seeps into the pores of the bed forms a layer of constant
depth η ¼ αA0=φ. Figs. 4 and 5 show that the theoretical approxi-
mation Eq. (20) reasonably agrees with the experimental findings,
while Fig. 9 illustrates that experimental results satisfy Eq. (21).

Because our experimental setup does not allow us to measure
for very long lengths of time (that is, for very extended currents),
we may attempt to understand what happens analyzing the dynam-
ics of gravity currents spreading on solid bottoms and adapting it
to the present case. After the front advances a distance of about
10x0, the flow evolves to another regime in which velocity front
decreases and a self-similar solution may be found from the shallow
water equations. In this case, the front position as a function of
time is

xf ¼ ξðg00A0Þ1=3t2=3 ð22Þ

where ξ = constant. Details of how this formula is found were
reported by Marino et al. (2005) among others. Eq. (22) describes
the asymptotic behavior for t ≫ tc, which is represented by dashed
lines in Fig. 3. The front height is not constant in this stage and
changes with xf maintaining the current height profile shape that
is given by

hðx=xf Þ
hf

¼ xf
x

�
F2

4
þ
�
1� F2

4

��
x
xf

�
2
�

ð23Þ

with

hf ¼
A0

Ixf
ð24Þ

where the shape factor [also used by Rottman and Simpson (1983)
and Gratton and Vigo (1994)]

I ¼
Z

1

0
ðh=hf Þ · dðx=xf Þ ¼

�
12

12� 2F2

�
≈ 1:2 ð25Þ

does not depend on xf .
If the mass is lost slowly into the porous bed, the flow over it can

be treated as a succession of self-similar states in which the area A
depends on time and

hf ¼
AðtÞ
Ixf

ð26Þ

Under this hypothesis, the regime of the gravity current is
quasi-self-similar, description which has been applied in other
similar contexts (Gratton et al. 1996). Note that the relationship of
Eq. (26) differs from that derived from the box model only by a
factor I.

By solving the differential equation resulting from Eq. (19) and
using Eqs. (9), (18), and (26) we obtain

A
A0

¼
�
1�

� ffiffiffiffi
xf
L

r
�

ffiffiffiffiffi
x0
L

r ��
2

ð27Þ

where

L ¼ A0ν2F2I
κ2g0

¼ A0

ηc
ð28Þ

is a characteristic length that provides an approximated horizontal
scale where the porous substrate affects the evolution of the gravity
current, which is mainly related to a combination of the permeabil-
ity, the reduced gravity, and the dense fluid viscosity. Note that we
may also think L as a quotient of the initial volume per unit length,
A0, and the characteristic depth ηc ¼ κ2g0=Iν2F2 of the interface
between the dense and light fluids in the porous medium. Combin-
ing Eq. (28) with the characteristic front velocity of Eq. (18) at
t ¼ 0 we obtain the corresponding characteristic time

τ ¼ L
uf ðt ¼ 0Þ ¼

A0ν2F
κ

ffiffiffiffiffiffiffiffiffiffi
h0g03

p ð29Þ

Fig. 9. Experimental data (symbols) of coefficient introduced in
Eq. (20) as function of reduced gravity; relationship given by
Eq. (21) is represented with dotted line
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Another interesting observation associated with Eq. (27) is that
concerning to the ratio x0=L. Fig. 10 shows that the smaller this
ratio is, the higher the loss of dense fluid into the porous substrate
in the same distance run by the front. The fast drop of the trans-
versal area displayed by the gravity current for x0 ≪ L is because of
the high value of hf involved for the same A0 in the initial moments
of spreading.

Final Remarks

The influence of an impermeable surface below a porous bed on the
evolution of plane inertial gravity currents mass was investigated
experimentally varying the volume of the dense fluid released, the
relative difference of density, and the thickness of the bed extending
the case studied by Thomas et al. (2004).

The developed analytical treatment provides a physical insight
of the main fluxes over and through the porous medium. The ex-
periments performed, in which the bed is modeled using small glass
spheres, show new interesting aspects such as the effects of the
roughness of the medium’s upper boundary on the current dynam-
ics that may be related to erosive-sedimentary processes in natural
situations. The current decelerates as the driving pressure decreases
because of the current thinning because of the sinking of fluid into
the bed, but significant changes in the evolution of the front posi-
tion or its velocity take place outside the maximum extension of our
experimental setup. We describe the flow dynamics in terms of a
quasi-steady-state global mass balance, suggesting analytical ap-
proximations, and find that the flow of ambient fluid from the
bed ahead of the current front may be significant, particularly if
the depth of the layer is greater than the extension of the current
[see Eq. (17)]. The expressions that allow estimating the depth of
dense fluid layer inside the porous bed are given while, as opposed
to that obtained by Thomas et al. (2004), no exponential decreasing
of the current mass is determined for the case of a porous bed with
an impermeable lower boundary.

The measurements of the mass do not show a clear dependence
of h0 and x0 separately in agreement with Eqs. (27) and (28). The
situation resembles others where gravity flows evolution does not
strongly depend on the height profile, mixing, Froude number at
the front, details of the fluid’s release, and the initial fractional
depth of the dense fluid. Therefore, the behavior of the flows
involved seems to be insensitive to these variables. Instead, the
decreasing of the mass is associated with the characteristic lengths
L or 1=α given by Eqs. (28) and (21), respectively, which makesM
a good experimental parameter to validate analytical relationships
and complex numerical codes.
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Notation

The following symbols are used in this paper:
A = current lateral area of the gravity current;
F = Froude number at current head;
g0 = initial reduced gravity;
h = current height;
I = shape factor;
L = characteristic length;
M = dimensionless gravity current mass;
m = current mass per unit width;
p = pressure;

Qf = flow per unit transversal length within porous bed;
q = flow per unit area within porous bed;
qν = vertical flow per unit area within porous bed;
q3 = vertical flow per unit area between interface and

permeable bottom of bed;
R = Reynolds number of current;

RPM = Reynolds number of the flow through porous medium;
t = time;
tc = characteristic time of gravity current;
u = current velocity;
v = vertical component of velocity of dense fluid inside

porous bed;
x = horizontal position of current front;
z = vertical coordinate;
α = coefficient in the law of mass evolution;

β, ξ = constants;
ε = thickness of porous bed;
η = depth of dense fluid inside porous bed;
ηc = characteristic depth of dense fluid inside porous bed;
κ = permeability of bed;
μ = dynamic viscosity;
ν = kinematic viscosity;

ρa, ρc = density of ambient fluid and current fluid;
τ = characteristic time of flow within porous bed;

τD = constant of decay for viscous flow through porous
medium;

τ I = constant of decay for inertial flow through porous
medium;

ϕ = velocity potential;
φ = porosity of bed; and
ψ = conjugate stream function of velocity potential.

Subscripts

0 = initial values; and
f = values at the front.
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