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Alternaria is a fungal genus ubiquitous in the environment;

many species are saprotrophs or plant pathogens, which can

accumulate toxic metabolites in the edible parts of plants. Its

species, as well as its mycotoxins have been isolated from a

wide range of foods, such as cereals, fruits, vegetables, and

their derived products. The aim of this work is to review its

current taxonomy status, incidence of Alternaria species and

mycotoxins in foods, control strategies and analytical methods,

and to highlight the future needs for research in this field.
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Introduction
The genus Alternaria is, among the main mycotoxigenic

fungi in foods, the one that has received less attention

from research until the last decade; hence, estimating

their public health impact has become rather difficult.

However, due to its high prevalence in many food com-

modities, and of their toxins in food and food by-products,

there has been a bloom of scientific research on this fungal

genus in recent years.

Alternaria species are ubiquitous in the environment;

many are saprotrophs or plant pathogens, affecting crops

in the field, causing stem and leaf spot diseases, or

spoiling the plant fruits or kernels in postharvest stage.

As they are able to accumulate toxic metabolites in the

edible parts of plants, their correct identification and

classification is required to evaluate the risk associated

with its presence in foods.

Alternaria has been isolated from a wide range of food

products, such as small grain cereals, nuts, tomato fruits,
www.sciencedirect.com 
olives, bell peppers, apples, berries, citrus fruits, among

others, as well as their derived products.

Many obstacles remain to be overcome in order to achieve

a full knowledge on this genus and its relevance in food

products. Its taxonomy is, up to the present time, under

discussion, without a general consensus in the scientific

community. There are no official methods for detection of

its mycotoxins in food products, as well as not enough data

of their natural occurrence in staples and commodities.

The toxicity of their broad range of secondary metabolites

needs to be thoroughly investigated. All these items

should be covered in the next years to be able to develop

sensible legislation on susceptible foods and to establish

prevention strategies to control the health risk associated

with this genus.

The aim of this review is to provide an insight into the

current status of: taxonomy, incidence of Alternaria spp.

and its mycotoxins in foods, control strategies, modern

methods of analyses, and to highlight the needs for

further research in this field.

Taxonomy current status
The taxonomy of Alternaria has been discussed for many

years and has undergone several revisions. The morpho-

logical diversity within Alternaria is considerable and

great efforts were required to organize taxa into subge-

neric species-groups and species. Before the incorpo-

ration of molecular techniques, the classification of its

species was based on morphological characteristics under

standardized growing conditions, regarding mainly colony

and conidial aspects and conidial chain branching pat-

terns. Based on these features, more than 270 species

were described [1], many of which were of food origin.

The species-group concept was defined, in order to

simplify classification, as a group of taxa with similar

patterns of sporulation and sharing a high degree of

conidial morphological characters.

Another attempt of classification was based on the

pathogens associated with a particular plant disease.

Several A. alternata pathotypes have been described,

and the term pathotypes or formae specialis has been

used to describe species morphologically related to

A. alternata infecting a particular host and synthesizing

a host-specific toxin (HST), which would be responsible

for fungal pathogenicity or virulence and diseases

on host plants [2]. At least seven different f. sp.
epithets can be found in the literature, of which most

were raised to species level by Simmons in his

manual [1,3].
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2 Food mycology
In recent years, phylogenetic investigations have sup-

ported some of the main morphological groups described

on Simmons’ identification manual [1], on which relies

the current classification of the genus [3,4,5��,6]. Howev-

er, the small-spored Alternaria species with concatenated

conidia, among which the main plant and postharvest

pathogens are included, has not been supported by mo-

lecular studies up to now. Because of the minimal mo-

lecular variation existing between them, recent studies

have proposed to comprise them in a single section, the

Alternaria sect. Alternaria [3,5��]. This section consists of

approximately 60 of the common small-spored species, A.
alternata, A. arborescens, and A. tenuissima, among them. A

comprehensive revision on Alternaria taxonomy has been

recently published by Lawrence et al. [5��].

Polyphasic approaches, combining traditional morpholo-

gy, molecular sequence analysis and secondary metabo-

lite profiling, have been successful for the identification of

large-spored, plant pathogenic Alternaria species. How-

ever, when carried out on small-spored, food associated

species, have only achieved separation at species-group

level [7��].

An accurate taxonomic framework is required by plant

and human health organizations to identify and control

the Alternaria species involved in disease and accumulat-

ing toxic metabolites in foods. The lack of consensus on

this genus’ taxonomy has generated confusions about the

main species involved in crop diseases and food contami-

nation, together with wrong associations between a my-

cotoxin and the producing species, or has even led to the

common believe that A. alternata is the most widely

spread small-spore species in foods. More efforts are

needed in this direction to provide a solid taxonomic

system that allows univocally identification of the small-

spore species commonly distributed in foods, without

sacrificing the information that would be lost by the

reduction of a diverse group of species into a single

section.

Alternaria secondary metabolites and related
toxicity
Alternaria is a genus well known for its ability to produce a

wide spectrum of secondary metabolites, including vari-

ous phytotoxins related to plant pathogenesis, both host

and non-host specific, and mycotoxins that can contami-

nate food products.

Among the many Alternaria secondary metabolites only a

few are thought to pose a risk to human health. The

tetramic acid derivative, tenuazonic acid (TeA), the

dibenzopyrone derivatives, alternariol (AOH), and alter-

nariol monomethyl ether (AME), and perylene deriva-

tives altertoxins (ATXs) are considered the main

Alternaria mycotoxins because of their known toxicity

and their frequent presence as natural contaminants in
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food. Some studies also include altenuene (ALT) and

tentoxin (TEN), although only cytotoxic activity has

been proved for ALT, and TEN is a phytotoxin causing

chlorosis in the seedlings of many plants [8].

Toxicological data available in the literature are limited to

the above-mentioned metabolites; however, neither good

bioavailability studies nor long term clinical studies have

been performed on any of Alternaria mycotoxins. Data on

whole animal studies are absent in the literature except

for TeA. In relation to human health, AOH and AME

have been associated with high levels of oesophageal

cancer in China, and TeA with a haematological disorder

in Africa. These compounds have all been reported as

non-host-specific phytotoxins to several crops, together

with other Alternaria metabolites; meanwhile, the role of

many Alternaria compounds such as infectopyrones, pho-

mapyrones and novae-zelandins, is still not fully under-

stood.

Host-selective toxins (HSTs) produced by species of

Alternaria are low-molecular-weight secondary metabo-

lites with a diverse range of structures. Their phytotoxic-

ity has been studied on susceptible cultivars, and some of

them are chemically related. HSTs of the pathotypes of

Japanese pear (AK-toxin), tangerine (ACT-toxin), and

strawberry (AF-toxin) are structurally analogous metab-

olites and share an esterified decatrienoic acid (EDA) as

their common structures [2,9].

However, food relevant Alternaria species are able to

produce many more metabolites, for which there are

no reports on function, toxicity, and it is not known if

they can be produced in the plants. Moreover, new

compounds synthesized by this genus are constantly

being discovered from in vitro fungal cultures in the

search for new bioactive substances. The most recent

reports include new perylenequinone derivatives from

endophytic Alternaria sp. and A. tenuissima [10,11], a new

AME isomer, the alternariol-10-methyl ether, together

with capsaicin, from and endophytic A. alternata from

Capsicum annum [12], two altenuene derivatives and one

isocoumarin from A. alternata [13] and two new solana-

pyrones from endophytic A. tenuissima [14]. All these new

compounds showed biological activity at certain levels;

perylenequinones have shown toxic effects in plants, and

mutagenicity in bacterial and mammal cells, with variable

levels of bioactivity [10], AME isomer displayed a range

of cytotoxicity against a panel of human cancer cell lines

[12] the altenuene analogues and the solanapyrones

showed weak to moderate antibacterial activity [13,14].

Alternaria incidence in foods
Many Alternaria species are commonly associated with

several plant diseases, infecting the plant in the field

during pre-harvest stages and reducing crop yield. Be-

sides, this fungus has been found to be responsible for
www.sciencedirect.com



Alternaria in food products Patriarca 3
different diseases during the postharvest shelf-life of

many different horticultural products. The distribution

of Alternaria species in a wide range of agricultural pro-

ducts, such as cereals, fruits and vegetables is well known

and it has been reported worldwide. However, their

incidence in new food products is continuously added

to the list of the previously known as susceptible to

contamination with this genus. Table 1 shows the most

recent reports (covering the years 2014–2016) of Alter-
naria species isolated from foods in different studies

around the world.

Alternaria mycotoxins in food and food
products
The contamination of crops with Alternaria, and the

subsequent accumulation of their toxic metabolites in

foods have been thoroughly discussed in the literature.

However, more and more food products are being inves-

tigated for the presence of Alternaria mycotoxins, and the

range of contaminated foodstuffs widens as knowledge

advances on this field. More incidence data are needed, in

order to determine which products are the main contri-

butors to human exposure to Alternaria mycotoxins, and

therefore, establishing limits for their presence in those

particular foods. For, example, the risk posed by TeA in
Table 1

Recent reports of Alternaria species in foods (2014–2016).

Substratum (disease)a Country 

Apple (core rot) Greece 

Blueberry Argentina 

Cabbage Italy 

Cauliflower Italy 

Grape (bunch rot) Italy 

Pomegranate (fruit rot) Greece and Cyprus

Rocket Italy 

Tangerine and tangor (citrus brown spot) China 

Tomato (black mould) Argentina 

Walnut Argentina 

Wheat Argentina 

a When isolated from damaged food.
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infant foods has been recently evaluated by Rychlik et al.
[22].

In response to this need, several studies have been made

in recent years, comprising a diverse spectrum of foods

and foodstuffs. Not only new products have been inves-

tigated for the natural occurrence of Alternaria toxins,

such as infant foods, beer, or several types of fruit juices,

but new toxic compounds, whose toxicity is still not

clearly elucidated, have been incorporated to these sur-

veys. Besides the most common Alternaria mycotoxins,

AOH, AME, and TeA, other compounds such as TEN,

ALT, and ATXs are more frequently searched, and

metabolites never investigated before, such as isoalte-

nuene, altenuisol, altenuic acid III, etc. have been

reported for the first time in foods [23�,24�].

Moreover, the effect of different food processing methods

on the fate of Alternaria mycotoxins in the final products

has been recently investigated. Previous research studies

on brewing have suggested that existent mycotoxin levels

in the raw grain might increase in the malting process, as a

result of promoted fungal growth, and mycotoxins may, to

some extent, effectively overcome the brewing process

and thus be transferred from malt into beer. However, no

data was available on Alternaria mycotoxins. Recently,
Alternaria species/species-group References

A. tenuissima [15]

A. arborescens

A. tenuissima sp.-grp. [7��]

A. alternata

A. tenuissima

[16]

A. alternata sp.-grp. [17]

A. arborescens

A. alternata sp.-grp. [17]

A. alternata [18]

A. arborescens

 A. alternata [19]

A. arborescens

A. tenuissima

A. alternata sp.-grp. [17]

A. arborescens

A. japonica

A. alternata [20]

A. alternata sp.-grp. [7��,21]

A. arborescens sp.-grp.

A. tenuissima sp.-grp.

A. tenuissima sp.-grp. [7��]

A. alternata sp.-grp.

A. tenuissima sp.-grp. [7��]

A. infectoria sp.-grp.
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4 Food mycology
AOH was found in commercial beer samples from the

German market, with 100% positive samples (n = 44).

The range of contamination was low (0.23–1.6 mg/L,

median 0.45 mg/L); nevertheless, the frequency of their

occurrence justifies the survey of AOH in raw materials

used for beer brewing [25].

Winemaking is also known to be non-effective in elimi-

nating mycotoxins, but few data were available on the real

incidence of Alternaria toxins in wines from different

origin, which justified the recent investigations on several

wine varieties all over the world [24�,26,27]. Similar

results were observed with fruit juices, since pasteuriza-

tion does not eliminate the toxins, and the process can

even concentrate them, especially when mouldy fruit is

incorporated [23�,24�,26].

Extrusion processing is used for producing a range of cereal

products such as breakfast foods, snacks, and animal feed,

many of which have shown contamination with Alternaria
mycotoxins. The possibility of reduction of Alternaria toxins

in wheat using the extrusion process was recently investi-

gated by Janić Hajnal et al. [28]. The reduction level of

mycotoxin concentration during extrusion processing is

largely dependent on several factors, including the type

of extruder, extruder temperature, screw speed, moisture

content of the extrusion mixture and residence time in the

extruder, as well as the type of mycotoxin and its initial

concentration in the raw material. Optimal extrusion pa-

rameters for reduction of three Alternaria toxins were mois-

ture content (w) = 24 g/100 g, feeding rate (q) = 25 kg/h,

and screw speed (v) = 390 rpm, with a reduction of 65.6%

for TeA, 87.9% for AOH and 94.5% for AME.

Table 2 summarizes the results from the main Alternaria
mycotoxin surveys in food and foodstuffs during the

2014–2016 period.

Control strategies
Natural strategies are currently preferred for the control

of fungal contamination, since the indiscriminate use of

synthetic antifungals has led to the development of

resistant strains, requiring higher doses of fungicides,

with the consequent increase in toxic residues in food

products. The genus Alternaria is not an exception; re-

cently, Avenot and Michailides [35] found that A. alter-
nata strains collected from commercial pistachio orchards

had developed resistance to two fungicides applied in the

field, cyprodinil and fludioxonil.

The work done about the influence of abiotic parameters

on the growth of the fungus and mycotoxins biosynthesis

offers the chance to use their combination to control

them. Adequate temperature and humidity conditions

during postharvest could prevent both growth and myco-

toxin accumulation by Alternaria species in susceptible

products [36–38].
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Several plant extracts, and natural compounds have

proved effective in reducing Alternaria spoilage of fruits

and vegetables [8,39]. Edible composite coatings based

on hydroxypropyl methylcellulose (HPMC), beeswax

(BW), and sodium benzoate reduced the incidence and

severity of Alternaria black spot on cherry tomatoes dur-

ing cold storage [40]. Chlorogenic acid, a polyphenol

found in tomatoes, inhibited the colonization by A. alter-
nata by inhibiting AOH biosynthesis [41]. Yan et al. [42]

could control A. alternata growth on cherry tomatoes by

the application of rhamnolipids as an alternative to che-

micals.

Induced plant resistance has also been studied as an

alternative to classical pesticides. Citrus plants treated

with hexanoic acid showed enhanced resistance against A.
alternata [43]. In addition, biological control approaches

were developed, alone or in combination with natural

compounds. Trichoderma spp. have shown inhibitory ac-

tivity against A. alternata [44]. The effect of rhamnolipids

on the biocontrol of A. alternata by Rhodotorula glutinis was

studied in the infection of cherry tomatoes [45]. The

combination of Cryptococcus laurentii with BHT (ben-

zothiadiazole), a systemic resistance inducer in several

plants, was used to control strawberries postharvest black

rot by A. alternata [46].

However, as most of these strategies have been studied in
vitro or validated in vivo in laboratory scale, its efficacy in

the field or in postharvest storage remains yet to be

proved.

Novel methods of detection and quantification
for Alternaria toxins
Based on the increasing need for incidence data, a bunch

of new analytical methods have been recently developed

for detection and quantification of Alternaria toxins in

foods. New multitoxin methods are available and easier

and more efficient clean-up procedures have been pro-

posed for several food matrices.

Alternaria toxins are usually extracted from solid and

liquid matrices with organic solvents or solvent mixtures.

Extracts clean-up is performed by liquid–liquid partition

or solid phase extraction (SPE). Some novelties in extrac-

tion and clean-up methodologies in recent years include

QuEChERs extraction methods for the analysis of Alter-
naria toxins in pomegranates [47], and in fruit and vege-

table juices and tomato products [33], as well as a pre-

treatment method with counter current chromatography

(CCC) for enrichment and clean-up of trace Alternaria
mycotoxins in wine and juice samples [26].

Detection and quantification are usually made by chro-

matographic methods. In previous years, HPLC with UV

or fluorescence detection (FLD) were the most used

techniques. Currently, they are increasingly being
www.sciencedirect.com
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Table 2

Natural occurrence of Alternaria mycotoxins in foods in the 2014–2016 period.

Food product Country Mycotoxin Number of

positive/total

samplesa

Range

(mg/kg or

mg/L)

Reference

Alcoholic beverages

Beer Germany AOH 44/44 0.23–1.6 [25]

Wines Chinab AOH 11/12 0.04–0.70 [26]

AME 11/12 0.03–0.08

TeA 1/12 0.31

Red wine The Netherlands AOH 1/5 11 [27]

TeA 3/5 <5.0–46

Germany AOH 13/14 1.68–7.65 [24�]

AME 13/14 0.80–1.45

TeA 14/14 1.63–44.4

TEN 10/14 1.01–1.47

AA-III 3/14 5.87–6.10

ATL 10/14 1.09–2.91

White wine Germany AOH 4/11 0.65–1.19 [24�]

TeA 8/11 1.87–60.0

AA-III 7/11 Traces

ATL 6/11 1.18–1.80

Cereals and cereal based products

Bakery products Germany AOH 8/9 Traces [23�]

AME 8/9 3.2

TeA 9/9 75–210

TEN 9/9 9.2–12

Cereal grains The Netherlands AOH 1/14 5.2 [27]

AME 1/14 3.0

TEN 14/14 2.0–14

Oat flakes Belgium TeA 5/16 2.13–39 [29�]

Rice based cereal Belgium TeA 22/31 1.90–113 [29�]

foodstuff TEN 11/31 3.6–15.6

AOH 6/31 1.83–2.97

Wheat Serbia AOH 11/92 0.75–48.9 [30]

AME 6/92 0.49–70.2

TeA 63/92 2.5–2676

Durum wheat Italy AOH 23/74 8–121 [31]

AME 19/74 9–48

Dried products

Dried figs The Netherlands TeA 5/5 25–2345 [27]

Dry chilli Belgium AME 2/35 69.72–222 [32]

Fruits and fruit juices

ACE juicec Germany AOH 2/9 1.95–3.97 [24�]

TeA 6/9 1.38–2.64

TEN 2/9 3.59–5.66

Apples The Netherlands AOH 1/11 29 [27]

Apple juice China AOH 8/15 0.10–7.94 [26]

AME 7/15 0.03–0.88

TeA 6/15 1.75–49.61

Germany AOH 3/20 2.10–4.31 [24�]

TeA 14/20 1.74–8.94

TEN 4/20 traces

Apricot juice Germany AOH 2/2 4.20–4.86 [24�]

AME 2/2 1.50–1.54

TeA 2/2 5.34–19.2

ATL 1/2 2.24

Carrot juice Germany ALT 1/4 1.72 [24�]

Citrus juice Germany TeA 1/1 2.04 [24�]

ALT 1/1 18.4

AA-III 1/1 2.71

Currant juice Germany AOH 3/8 1.60–8.16 [24�]

TeA 6/8 2.78–3.61

TEN 4/8 2.69–10.27

ALT 1/8 1.18

www.sciencedirect.com Current Opinion in Food Science 2016, 11:1–9
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Table 2 (Continued )

Food product Country Mycotoxin Number of

positive/total

samplesa

Range

(mg/kg or

mg/L)

Reference

Grape juice Germany AOH 7/8 1.58–6.45 [24�]

TeA 6/8 1.94–2.70

TEN 8/8 2.50–8.07

ALT 1/8 3.95

Grapefruit juice Germany AOH 2/4 0.81–1.06 [24�]

AME 1/4 0.89

TeA 2/4 1.10–1.51

Juices (fruits and vegetables) Germany ALT 1/23 traces [23�]

AOH 13/23 0.65–16

AME 10/23 0.14–4.9

TeA 12/23 21–250

TEN 11/23 1.0

Multifruit juice Germany AOH 2/13 1.78–6.21 [24�]

TeA 6/13 2.66–5.98

TEN 3/13 1.32–6.00

ATL 1/13 5.85

Orange juice Germany AME 1/2 1.13 [24�]

TeA 1/2 2.02

Sour cherry juice Germany TeA 5/7 2.12–7.43 [24�]

Oilseeds and vegetable oils

Olives The Netherlands TeA 1/10 5.3 [27]

Sunflower seeds Germany isoALT 1/11 Traces [23�]

ALT 1/11 Traces

AOH 6/11 16–39

AME 7/11 0.64–21

ATX-I 1/11 Traces

TeA 11/11 350–490

TEN 10/11 6.7–800

The Netherlands TeA 5/5 85–449 [27]

TEN 1/5 5.0

Vegetable oils Germany AOH 9/19 6.0 [23�]

AME 16/19 2.8–14

TeA 4/19 15

TEN 9/19 11

Tomato products

Tomato concentrate Belgium AOH 23/27 <3.5–31.0 [33]

AME 18/27 <4.7–6.10

TeA 27/27 <3.3–174.3

TEN 10/27 <5.0–8.9

ALT 15/27 18.7–62.0

Tomato juice Belgium AOH 20/28 <0.8–27 [33]

AME 15/28 <0.9–3.3

TeA 28/28 3.7–333.1

TEN 18/28 <0.7

ALT 14/28 <1.6–6.1

Tomato products Germany AOH 24/34 6.1–25 [23�]

AME 27/34 1.2–7.4

TeA 31/34 52–460

TEN 9/34 Traces

Belgium and Spain TeA 11/11 700–4800 [34]

Tomato sauce Belgium AOH 24/28 <1.4–41.6 [33]

AME 22/28 <0.8–3.8

TeA 28/28 7.7–330.6

TEN 6/28 <1.8

ALT 9/28 <3.6–12.1

The Netherlands AOH 4/8 <2.0–25 [27]

AME 4/8 <1.0–7.8

TeA 8/8 66–462

AOH, alternariol; AME, alternariol monomethyl ether; TeA, tenuazonic acid; ALT, altenuene; isoALT, isoaltenuene, TEN, tentoxin; ATX-I, altertoxin-I;

AA-III, altenuic acid III; ATL, altenuisol.
a Positive samples include samples at traces or non-quantifiable levels.
b Samples include sorghum, rice, pine nuts, buckwheat, barley, medicinal, walnut, millet, and plum wine.
c Vitaminized fruit juice, mixture of orange and carrot juice.

Current Opinion in Food Science 2016, 11:1–9 www.sciencedirect.com



Alternaria in food products Patriarca 7
replaced by HPLC–MS or HPLC–MS/MS. Even though

quantification precision is sacrificed by MS detection,

these methods have the advantage to allow simultaneous

detection of up to more than 20 metabolites in the same

sample. Given the need of incorporating more Alternaria
toxins in the screening, these techniques seem a useful

alternative for ambitious exploratory surveys.

In the 2014–2016 period, several LC–MS methods

have been developed, such as a semiquantitative

screening method for six mycotoxins (including AOH

and AME) in different matrices (tomatoes, bell pep-

pers, onions and soft red fruits) [34], and LC–MS/MS

methods for detection of AOH, AME, and TeA in wheat

[30], and in strawberries [48]. But the actual outburst

during this period was the development of LC–MS/MS

multitoxin methods, either for detection and quantifi-

cation of Alternaria toxins alone or together with other

fungal toxins commonly present in foods. As many as 12

Alternaria mycotoxins (AOH, AME, TeA, TEN, ALT,

isoALT, ATX-I, ATX-II, ATL, AA-III, AAL TB1,

and AAL TB2) can be detected and quantified by

these methods in matrices as diverse as cereals, wine,

fruits, juices, tomatoes, olives, oilseeds and oils

[23�,24�,27,29�,31,33].

Conclusions
A considerable advance has been made in the recent years

on the knowledge of the genus Alternaria, which had been

disregarded in the past when compared with other toxi-

genic fungal genera. More research is necessary, especial-

ly in order to clarify its taxonomy in a unique, organized

system; more toxicology studies are needed on its wide

range of secondary metabolites, and more data on the

incidence of its species and toxins in the different foods

and food products are required.

All these information would be useful to establish safe

limits for Alternaria toxic metabolites in foods in order to

prevent health risk for human population and to develop

efficient control strategies for this pathogen.
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