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Low-energy physics for an iron phthalocyanine molecule on Au(111)
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The system of an iron phthalocyanine molecule on the Au(111) surface has been studied recently due to
its peculiar properties. In particular, several surprising results of scanning tunneling spectroscopy changing the
position of the molecule and applying magnetic field can be explained by the non-Landau Fermi liquid state of
a two-channel spin-1 Kondo model with anisotropy. The localized orbitals near the Fermi level are three, one of
symmetry z2 and two (nearly) degenerate π orbitals of symmetry xz and yz. Previous studies using the numerical
renormalization group neglected one of these orbitals to render the problem tractable. Here we investigate, using
a slave-boson mean-field approximation, if the splitting S between π orbitals caused by spin-orbit coupling
(SOC) justifies this approximation. We obtain an abrupt transition from a three-band regime to a two-band one
at a value of S, which is about 1/3 of the atomic SOC for Fe, justifying the two-band model for the system.

DOI: 10.1103/PhysRevB.105.205114

I. INTRODUCTION

The Kondo effect, found first in metals containing mag-
netic impurities [1,2], is a paradigmatic example of a strongly
correlated system in condensed matter physics. In the simplest
form, it arises when the free electrons of a metallic host screen
completely the magnetic moment of an impurity (under- and
overscreening are not discussed here [3]).

The high resolution and atomic control of the scanning tun-
neling microscope (STM) allow experimentalists to deposit
magnetic molecules on metallic surfaces leading to a large
class of realizations of Kondo phenomena in which the current
can be controlled by different external parameters [4–18].
This subject is of interest for its potential use in new electronic
devices [19,20]. The differential conductance G(V ) = dI/dV
as a function of the sample bias V , where I is the current
flowing through the STM, provides information of the low-
energy electronic structure of the system. This technique is
called scanning tunneling spectroscopy.

This spectroscopy for FePc on Au(111) at low temperature
shows several striking features. G(V ) around V = 0 shows
a broad peak of half width ∼20 meV and mounted on it
a dip nearly two orders of magnitude narrower [11,14,15].
Application of a magnetic field B transforms the dip into
a peak [15]. A similar behavior is observed for MnPc on
Au(111) [18]. When the molecule is raised from the surface,
weakening the Kondo effect, the dip broadens [14]. All these
features have been recently explained in a consistent fashion
by a two-channel spin-1 Kondo model with anisotropy [21].
This is an extension to nondegenerate channels of a model for
Ni impurities in a Au chain [22,23].

For B = 0, these models display a topological quantum
phase transition between an ordinary Fermi liquid with a peak
in the spectral density at the Fermi energy and a non-Landau
Fermi liquid with a pseudogap at the Fermi level, topolog-
ically characterized by a nontrivial Friedel sum rule with

nonzero Luttinger integrals. The results of Ref. [21] indicate
that FePc on Au(111) is near the topological transition at
the non-Landau side of it. Pressing the molecule against the
substrate by the STM tip should induce the transition.

An abrupt transition from a peak to a dip in the spectral
density has been found previously in other two-orbital [24]
and two-impurity [25,26] Anderson models. In the latter, the
transition was also ascribed as due to a jump in Luttinger
integrals [25,26].

LDA+U calculations [11] indicate that the configuration
of Fe in the system is (dxy)2(dz2 )1)(dπ )3. Therefore, the par-
tially filled orbitals can be described as one hole with z2

symmetry and one hole with π (xz or yz) symmetry. They
are coupled forming a spin S = 1 by the Hund rules. If this
configuration is hybridized with the different excited config-
urations with one hole, one has a three-channel Anderson
model, which has been studied by Fernández et al. [27] using a
slave-boson mean-field approximation (SBMFA). This model
is justified in more detail in Sec. II of this work. In the limit
of small hybridization compared with the difference between
the energies of both configurations, the model is equivalent to
a three-channel S = 1 Kondo model, which is more involved
than the two-channel Kondo model used to describe the sys-
tem as a non-Landau Fermi liquid [21]. The two-channel
Kondo model has been chosen because the three-channel case
is very difficult to treat by the numerical renormalization
group due to the huge increase in the Hilbert space at each
iteration, while the essence of the physics is expected to be
captured by the two-channel model [21].

However, Fe has a spin-orbit coupling (SOC) ∼76 meV
[28] disregarded before. In first order, the SOC splits the π

states by this amount and leaves the z2 orbitals unchanged.
This splitting might justify the two-channel model, support-
ing the quantitative validity of previous results. Naively, one
would think that comparing the magnitude of the SOC with
another energy scale might solve the issue. However, this
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is not so simple. Note that, for degenerate channels in the
two-channel spin-1 Kondo model with easy plane anisotropy
DS2

z , the topological quantum phase transition takes place for
D = Dc ∼ 2.5TK , where TK is the Kondo temperature [22].
However, for inequivalent channels, there is no simple relation
between the critical anisotropy Dc and the Kondo tempera-
tures for both channels [21].

In this work we study the three-channel Anderson model
including a splitting S between the π orbitals. Due to the
complexity of the problem, we treat it in a SBMFA described
below. Since the approximation is unable to describe the
non-Landau Fermi liquid, we neglect the anisotropy D. We
modify previous treatments of the SMBFA in such a way
that the correct Kondo temperature is reproduced in known
limits. We note that alternative methods, like the noncrossing
approximation for this two-channel case (see the Appendix of
Ref. [23]) or equations of motion [29], do not reproduce the
correct Kondo temperature.

The results indicate that the excited π orbital can be ne-
glected for S > Sc, where the critical value Sc is about a third
of the SOC for Fe, supporting the validity of the two-channel
model.

This work is organized as follows. In Sec. II we describe
the three-band Anderson model used for this study and justify
it in detail. In Sec. III we explain the SBMFA used to solve
the model in the Kondo or integer valence limit. The results
are presented in Sec. IV and Sec. V contains a summary and
a discussion.

II. MODEL

We describe the system by an Anderson model containing
two magnetic configurations. This implies that we take the
limit of infinite Coulomb repulsion. This approximation does
not affect the essential physics at low energies, including
the Kondo effect. The neglected configurations might affect
slightly the parameters of the model (discussed at the be-
ginning of Sec. IV), but in any case they are adjusted from
low-energy experimental results.

The ground state corresponds essentially to the 3d6 con-
figuration of Fe with one hole in the 3dz2 orbital and another
hole in a π orbital (3dxz or 3dyz) forming a triplet. The dxy

orbitals are occupied by both spins and the dx2−y2 are empty.
It is known that, to have a Kondo effect, one needs either
spin degeneracy or orbital degeneracy in the ground-sate con-
figuration of the magnetic “impurity” (the FePc molecule in
our case). Therefore, the completely filled dxy orbitals and the
empty dx2−y2 orbitals might affect slightly the parameters of
the low-energy effective model, but not the form of it.

The three relevant 3d orbitals of Fe have some admix-
ture with linear combinations of orbitals of neighboring N
atoms, forming molecular states of the same symmetry [30].
In turn, these states also hybridize with surface and conduc-
tion bands of the same symmetry. In particular the surface
band can be accurately described by a free electron band
with plane waves exp[i(kxx + kyy)] [31–34]. Neglecting the
discrete nature of the substrate, the symmetry of the sys-
tem is C4v . The molecular orbital with symmetry z2 belongs
to the irreducible representation A1 of C4v and hybridizes
only with surface states (combination of plane waves) of the

form cos(kxx) cos(kyy), which also belongs to A1. Similarly
the molecular orbital with xz symmetry (a component of
the two-dimensional irreducible representation E ) hybridizes
only with surface states of the form sin(kxx) cos(kyy), and
for the xy symmetry the corresponding conduction states are
cos(kxx) sin(kyy). These arguments can be extended to the
bulk conduction states.

The above arguments justify the three-channel model stud-
ied previously by Fernández et al. [27]. However, here we
assume that the π orbitals are split by an energy S. We call
a (b) the linear combination of π holes with lower (larger)
energy. The other configuration, the 3d7 one, has a hole in
either the 3dz2 orbital or in a π orbital. We denote the two
spin triplets by |aM〉 and |bM〉, depending on which π orbital
is occupied by a hole, in addition to the z2 one, where M is
the spin-1 projection. Similarly, the three spin doublets are
represented by |z2σ 〉, |aσ 〉, and |bσ 〉, where σ is the spin-1/2
projection. Both configurations are mixed via hybridization
with the conduction bands. The model is an extension to finite
S of that considered previously by Fernández et al. [27].

The Hamiltonian is

H = Hmol + Hband + Hmix,

Hmol = Ez

∑
σ

|z2σ 〉〈z2σ |

+
∑
πσ

Eπ |πσ 〉〈πσ | +
∑
πM

(Eπ + Ed )|πM〉〈πM|,

Hband =
∑
kνσ

εkνσ c†
kνσ

ckνσ ,

Hmix =
∑
πk

∑
σσ ′M

tπ

〈
1

2

1

2
σσ ′|1M

〉
(c†

kπσ
|z2σ ′〉〈πM| + H.c.)

−
∑
πk

∑
σσ ′M

tz

〈
1

2

1

2
σσ ′|1M

〉
(c†

kzσ |πσ ′〉〈πM| + H.c.),

(1)

where Hmol represent the molecular states, with Eπ = Ea for
π = a, Eb = Ea + S, and Ed < 0 is the difference between
the energies of the lowest lying states of both configurations.
Hband represents the three conduction bands, with the same
symmetry as the corresponding molecular states (ν = z2, a,
or b). Hmix describes the mixing Hamiltonian (also called
hybridization) in terms of Clebsch-Gordan coefficients and
two hopping amplitudes (we assume ta = tb).

In general, the origin of the splitting S could be either a
symmetry breaking which renders the orbital with symmetries
xz and yz inequivalent or SOC or both. If the origin is the SOC,
the states |πσ 〉with one hole in the π orbitals are (except for
an irrelevant phase)

|a ↑〉 = |xz ↑〉 + i|yz ↑〉√
2

, |a ↓〉 = |xz ↓〉 − i|yz ↓〉√
2

,

|b ↑〉 = |xz ↑〉 − i|yz ↑〉√
2

, |b ↓〉 = |xz ↓〉 + i|yz ↓〉√
2

,

(2)

and similarly for the triplet states |πM〉 combining with a z2

hole to build a spin triplet.
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In the limit in which only one multiplet is relevant for each
configuration (very large S and |Ez − Ea|) the model has been
solved exactly by the Bethe ansatz [35]. We use this result to
refine the SBMFA.

III. SLAVE BOSONS IN MEAN-FIELD APPROXIMATION
(SBMFA)

We solve the model using a slave-boson treatment similar
to that of Kotliar and Ruckenstein (KR) [36] in the mean-field
approximation. This treatment has severe limitations when a
magnetic field in an arbitary direction is applied or when finite
Coulomb interactions in the multiorbital case are considered.
In these cases the rotationally invariant slave-boson formalism
is more convenient[37,38]. The disadvantage of this method
is that it introduces more bosonic variables and determining
them minimizing the energy becomes more involved. Fortu-
nately in our case, in which infinite Coulomb repulsion is
implicitly assumed and no magnetic field is applied, the KR
formalism can be applied.

The KR approach consists of introducing bosonic operators
for each of the states in the fermionic description. In this
representation, in our case, we can write the doublets using
bosons s†

νσ which correspond to the singly occupied states

|πσ 〉 ↔ f †
πσ s†

πσ |0〉,
|z2σ 〉 ↔ f †

zσ s†
zσ |0〉, (3)

where f †
πσ ( f †

zσ ) is a fermionic operator that creates a localized
hole with π (z2) symmetry. The triplets are represented using
bosons d†

πM for the doubly occupied states as follows:

|π1〉 ↔ d†
π1 f †

π↑ f †
z↑|0〉,

|π0〉 ↔ 1√
2

d†
π0( f †

π↑ f †
z↓ + f †

π↓ f †
z↑)|0〉,

|π − 1〉 ↔ d†
π−1 f †

π↓ f †
z↓|0〉. (4)

The Hamiltonian in this representation takes the form

H = Ez

∑
σ

s†
zσ szσ +

∑
πσ

Eπ s†
πσ sπσ

+
∑
πM

(Eπ + Ed )d†
πMdπM +

∑
kνσ

εkνσ c†
kνσ

ckνσ

+
{

tπ
∑
πσ

[
f †
πσ cπσ

(
d†

π2σ szσ + 1√
2

d†
π0szσ̄

)
Oπ

]

+ tz
∑
πσ

[
f †
zσ czσ

(
d†

π2σ sπσ + 1√
2

d†
π0sπσ̄

)
Oz

]
+ H.c.

}
,

(5)

where the operators Oν = 1 in the physical subspace (they
are defined below) and the following constraints should be
satisfied to restrict the bosonic Hilbert space to the physical
subspace:

1 =
∑

σ

(∑
π

s†
πσ sπσ + s†

zσ szσ

)
+

∑
πM

d†
πMdπM ,

f †
πσ fπσ = s†

πσ sπσ + d†
π2σ dπ2σ + 1

2
d†

π0dπ0,

f †
zσ fzσ = s†

zσ szσ +
∑
π

(
d†

π2σ dπ2σ + 1

2
d†

π0dπ0

)
. (6)

The idea of the introduction of the operators Oν is to correct
the mean-field solution so that certain limits are reproduced.
For the Hubbard model, Kotliar and Ruckenstein have chosen
the corresponding operators in such a way that the noninter-
acting limit is reproduced. In this case, the approximation
becomes equivalent to the Gutzwiller approximation [36].
However, this choice, even in the one-channel case, leads to
a too large Kondo temperature for large Coulomb repulsion
[39]. In our model, this repulsion is infinite since only two
neighboring configurations of the localized states are retained.
Therefore, we determine the Oν requiring that, when only
one hybridization channel is relevant and in the Kondo limit
(small relevant tν compared to the difference between the
smallest energies of both configurations), the correct exponent
of the Bethe ansatz result [35] for the corresponding Kondo
temperature is reproduced

T π
K ∼ �ν exp

[
π (Ed + Eπ − Ez )

2�π

]
,

T z
K ∼ �z exp

[
πEd

2�z

]
, (7)

where �ν = πρνt2
ν , with ρν the density of conduction elec-

trons with symmetry ν, is called the resonant-level width for
orbitals of symmetry ν and coincides with half of the width
at half maximum of the corresponding peak in the spectral
density of the molecular orbitals with symmetry ν in the
noninteracting case. In the SBMFA results the prefactor is
replaced by the half band width D, but this is not essential
and the important point is to recover the correct exponent.

In addition we ask that when the π states are degenerate
(S = 0) and tz = 0 (two-channel degenerate case) the expo-
nent in T π

K is doubled [generalizing the SU(4) case [27]].
These limiting cases can be easily treated as in Ref. [27]. We
find that a possible choice is

Oπ =
[

1 − A
∑
πM

d†
πMdπM

− B

(∑
M

d†
aMdaM

)(∑
M

d†
bMdbM

)]−1/2

,

Oz =
(

1 − A
∑
πM

d†
πMdπM

)−1/2

, (8)

with B = 2(1 + 1/
√

2)2/3 
 1.9428 and A = 1 − B/2 

0.0286. For simplicity and without affecting the semiquanti-
tative validity of our results, we take B = 2, A = 0, implying
Oz = 1.

In the mean-field approximation, the bosonic operators are
replaced by numbers. Since we consider magnetic field B = 0,
these numbers do not depend on spin projection. Then, there
are five independent bosonic variables (sz, sa, sb, da, db).
Using the first constraint Eq. (6) we eliminate sz [see last
Eq. (10)] keeping the formalism symmetric in the π (a or b)
variables. The remaining constraints are treated introducing
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three Lagrange multipliers λν and adding to the Hamiltonian
the term

Hcont = λz

∑
σ

(
f †
zσ fzσ − 1

2
+

∑
π

s2
π

)

+
∑
πσ

λπ

(
f †
πσ fπσ − s2

π − 3

2
d2

π

)
.

The problem is reduced to a noninteracting fermionic
Hamiltonian, where the seven variables sπ , dπ , and λν are
obtained minimizing the energy (we take zero temperature).
Assuming constant density of conduction states ρν extend-
ing from −D to D, where the Fermi energy lies at zero,
the Green’s functions of the pseudofermions take a simple

form

G f vσ (ω) = 〈〈 fνσ ; f †
νσ 〉〉 = 1

ω − λν + i�̃ν

, (9)

where the renormalized half width of the resonances �̃ν

(which determine the three Kondo scales) are

�̃z = �z

(
1 + 1√

2

)2
(∑

π

sπdπ

)2

,

�̃π = �π

(
1 + 1√

2

)2 d2
π s2

z

1 − 18d2
a d2

b

,

with s2
z = 1 − ∑

π

(
2s2

π + 3d2
π

)
2

. (10)

Using these Green’s functions, the change in energy after
adding the impurity can be evaluated easily as in similar
problems using the SBMFA [1,27]. The result is

�E = Ez − λz + 2
∑
π

(Eπ − Ez + λz − λπ )s2
π + 3

∑
π

(Eπ + Ed − λπ )d2
π

+ 1

π

∑
ν

[
−2�̃ν + �̃ν ln

(
λ2

ν + �̃2
ν

D2

)
+ 2λνarctan

(
�̃ν

λν

)]
. (11)

Minimizing Eq. (11) with respect to the Lagrange multipli-
ers one obtains

λz = �̃z

tan
[

π
2

(
1 − ∑

π s2
π

)] ,

λπ = �̃π

tan
[

π
2

(
2s2

π + 3d2
π

)] . (12)

The derivatives with respect to sπ and dπ are lengthy
and we do not reproduce them here. Some simplification is
achieved noting that

∂�E

∂�̃ν

= 1

π
ln

(
λ2

ν + �̃2
ν

D2

)
. (13)

Equating these derivatives to zero and using Eqs. (12) one
obtains a system of four equations with four unknowns sπ and
dπ . For positive splitting S, the results for sd and particularly
db indicate if the band of symmetry b is important or not.
Furthermore, according to Eqs. (3), (4), (8), (9), and (10), the
low energy part of the spectral density of the molecular states
becomes

ρν
mol(ω) = �̃2

ν

�ν

[
(ω − λν )2 + �̃2

ν

] , (14)

which is a Lorentzian centered at λν of half width �̃ν and
weight �̃ν/�ν (the rest of the spectral weight is at high
energies and is not captured by the SBMFA).

IV. NUMERICAL RESULTS

In this section we present our results for the solution of
the system of four equations with four unknowns described in

the previous section. We take the hole Fermi energy εF = 0
as the origin of energies. Following a previous study for
degenerate π orbitals [27], we take in eV D = 10, Ez = 1,
Ea = 2, and Ed = −2. The parameters are justified as follows.
From the diagonalization of the ground-state localized config-
uration with realistic Coulomb interaction (see, for example,
Ref. [40]) restricted to the three relevant orbitals, it has been
established that Ea − Ez ∼ 1 ± 0.3 eV in order for the ground
state to be a triplet with one hole in the z2 orbital and one
in the π orbital [27]. A shift in all energies by the same
amount is irrelevant. In order for the configuration with two
holes to be the ground state of Hmol (isolated molecule) one
should have Ea + Ed < Ez + εF . Ed was chosen arbitrarily to
result in a difference of 1 eV. However, a change in Ed and
D does not affect the low-energy physics (the Kondo effect
in particular) if the hoppings are also changed to result in
the same Kondo temperatures. In order that the result gives
the Kondo temperature for the z2 channel of the order of
the reported one �̃z ∼ 20 meV, we have taken �z = 1.2 eV.
Similarly in order to obtain �̃a two orders of magnitude
smaller than �̃z, we take �π = 0.35 eV as a basis for our
study.

We find that, for positive splitting S, there is always a
local minimum of the energy for sb = db = 0, indicating a
two-channel situation. As expected, this local minimum is
not the global minimum for small S. In this case the weight
of the singly occupied states for both π channels are similar
(s2

b ∼ s2
a) and the same happens for the doubly occupied sites

(d2
b ∼ d2

a ). We expected that for large S there would be a
global minimum for small nonzero sb, db, but this is not the
case. There is an abrupt jump in the position of the global
minimum between two local minima—one with sb = db = 0
and the other one with s2

b ∼ s2
a and d2

b ∼ d2
a .
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FIG. 1. Energy (top) and orbital polarization (bottom) for the
three-channel solution as a function of the splitting S. The dashed
line indicates the energy of the two-channel solution.

In Fig. 1 we represent the energy and the difference
P = d2

a − d2
b for the three-channel solution as a function of

the splitting S. For the two-channel solution, the energy is
constant at the value �E = −21.5745 eV. Similarly in this
solution d2

a = 0.317 (slightly below 1/3 as expected, since the
weight is shared by all three spin projections of the triplet) and
d2

b = 0. For both solutions in general d2
a + d2

b ∼ 1/3 and s2
z

and s2
π are very small. Therefore, 3P, which is the total orbital

polarization of the ground state, is the more relevant bosonic
variable.

As observed in the figure, the orbital polarization of the
three-channel solution increases almost linearly (the curvature
is small and positive) with S, but its magnitude is very small
(less than 5% of the maximum value in the range studied)
and as a consequence the energy increases fast with S (almost
linearly with a negative second derivative). For the parame-
ters chosen, the ground state of the isolated molecule Hmol

is Ea + Ed = 0. Therefore, a positive �E (as we obtain for
the three-channel solution for large S) would indicate that
including the mixing terms Hmix of the molecule with the
conduction electron increases the energy of the system. This is
nonphysical and points out the instability of the three-channel
solution for large S. Actually, at the critical splitting Sc =
27.07 meV there is a transition to the two-channel solution
which becomes that of lower energy for S > Sc.

TABLE I. Results for different observables at the transition be-
tween both phases for �π = 0.35 eV. The two- (three-) channel
results are above (below) the horizontal line in the middle.

z a b

s2
ν 6.87 ×10−4 0.0232 0

d2
π 0.317 0

�̃ν (meV) 25.7 0.222 0
λν (meV) 1.88 4.80 ×10−4 0

s2
ν 0.0235 0.00727 0.00691

d2
π 0.156 0.152

�̃ν (meV) 15.3 6.53 6.36
λν (meV) 0.681 6.89 6.98

The results for the different quantities at the transition are
indicated in Table I. In the two-channel solution, the half
width of the resonance for the molecular states of z2 sym-
metry (identified with the respective Kondo temperature) is
�̃z = 25.7 meV, somewhat larger than reported previously:
�̃z ∼ 20 meV [11]. However, comparison with theory sug-
gests that �̃z > 20 meV [21]. The position of this peak (λz =
1.88 meV) is practically at the Fermi energy. The half width
of the peak for the molecular a state is �̃a = 0.222 meV and
it lies at the Fermi energy. The molecular b state is absent at
low energies in this solution. Note that the weight of the singly
occupied a states is related to the valence fluctuations of the
z2 states and vice versa. Therefore, �̃z > �̃a implies s2

a > s2
z

(s2
a = 0.023 and s2

z ∼ 7 × 10−4 in this case).
The three-channel solution is markedly different. The π

(a and b) channels behave as quasidegenerate. The weight
of these channels in the ground state configuration of doubly
occupied states is very similar (d2

a = 0.156 and d2
b = 0.152).

This fact has an effect of increasing markedly the Kondo
temperature of these channels, as expected for example when
the symmetry of the SU(2) Kondo model is increased to SU(4)
[41–43]. We obtain �̃a = 6.53 meV and �̃a = 6.36 meV. The
corresponding peaks are shifted from the Fermi energy (below
it in the electron representation as opposed to the hole one
used here) by λa = 6.89 meV and λb = 6.98 meV. The fact
that the position and the half width of the peaks are of the same
order is also expected, for example, from the SU(4) Anderson
model [41–43]. The increase of the Kondo energy scale for
the π channels has the effect of decreasing the corresponding
scale for the z2 channel. This competition has been studied
before for degenerate π channels [27]. As a consequence the
half width of the molecular state with z2 symmetry is reduced
to �̃z = 15.3 meV.

The critical splitting for the transition Sc = 27.07 meV is
markedly smaller to the SOC of Fe ∼ 76 meV [28]. In order
to see the sensitivity of the results with �̃a (which has some
uncertainty) and in particular if Sc can be increased substan-
tially, we have increased the resonant-level width of the π

states to �π = 0.4 eV. The new critical splitting becomes
Sc = 46.77 meV.

The corresponding results for the different quantities at this
value of the splitting are listed in Table II. The main change
in the two-channel region is that the Kondo temperature of the
a channel is increased by a factor near 4 to �̃a = 0.815 meV,
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TABLE II. Same as Table I for �π = 0.4 eV.

z a b

s2
ν 2.21 ×10−3 0.0228 0

d2
π 0.317 0

�̃ν (meV) 25.2 0.815 0
λν (meV) 1.81 5.66 ×10−3 0

s2
ν 0.0322 0.00591 0.00544

d2
π 0.155 0.149

�̃ν (meV) 12.1 10.0 9.58
λν (meV) 0.431 10.7 10.9

which seems too large for an agreement with experiment [21].
The corresponding result for the z2 channel is only moderately
decreased to �̃z = 25.2 meV.

The changes in the three-channel region are moderate and
expected. �̃a and �̃b increase to ∼10 meV, �̃z decreases to
12 meV, and correspondingly s2

z decreases and s2
π decrease.

We have also studied the case �π = 0.3 eV. The critical
splitting decreases to Sc = 12.94 meV. The values of the dif-
ferent observables at the transition are displayed in Table III.
In the two-channel solution, �̃a decreases by a factor near 5
with respect to the case shown in Table I (for which �π =
0.35 eV). �̃z increases in 1%. In the three-channel solution,
�̃z = 19 meV is more similar to the value of the two-channel
solution and �̃π ∼ 3.5 meV with near 1% difference between
�̃a and �̃b (they tend to be equal due to the decrease of the
splitting).

V. SUMMARY AND DISCUSSION

We have studied a generalized Anderson model in which
two triplets are hybridized with three higher energy doublets,
with a variable splitting S between both triplets assumed to be
the same as that between two doublets. The model contains
three hybridizing channels and has been proposed to describe
the low-energy physics of an isolated iron phthalocyanine
molecule deposited on the Au(111) surface. The triplets con-
tain one hole in the Fe 3d orbital with z2 symmetry and
another one in one of the 3d π orbitals. The split π orbitals are
orthogonal linear combinations of xz and yz orbitals. If the ori-
gin of the splitting is spin-orbit coupling, these combinations
are given by Eq. (2). The doublets have one hole in any of the
three molecular orbitals. The different channels correspond to
the three different symmetries.

Clearly, for large S one of the π channels can be neglected
at low energies and the model can be reduced to a two-channel
type, justifying previous calculations in which several exper-
iments were explained on the basis of a two-channel spin-1
Kondo model with easy plane anisotropy [21]. These calcula-

TABLE III. Same as Table I for �π = 0.3 eV.

z a b

s2
ν 1.37 ×10−4 0.0233 0

d2
π 0.318 0

�̃ν (meV) 25.9 0.038 0
λν (meV) 1.90 1.63 ×10−5 0

s2
ν 0.0145 0.00882 0.00861

d2
π 0.157 0.155

�̃ν (meV) 19.0 3.54 3.50
λν (meV) 1.04 3.67 3.70

tions are particularly interesting because they imply that the
system is a topologically nontrivial non-Landau Fermi liquid.
We have not included the anisotropy here to avoid entering
the topologically nontrivial phase which cannot be described
by the approach.

The question we have addressed is how large S should be
to justify this further low-energy reduction to a two-channel
model. Our results using a slave-boson mean-field approxi-
mation predict an abrupt transition from a three-channel to
a two-channel regime with increasing splitting. While the
first-order nature of the transition is probably an artifact of
the mean-field approximation, we believe that the resulting
critical splitting Sc has semiquantitative validity. For the pa-
rameters which best correspond to experimental observations
we obtain Sc ∼ 27 meV. This is substantially smaller than
the spin-orbit coupling of Fe ∼ 76 meV [28]. Therefore, we
expect that in fact the two-channel model is justified and the
relevant π channel corresponds to the a states described in
Eq. (2). The effective SOC might be reduced by a few percent
due to the admixture of some amount of N p orbitals in the
molecular states [30], but this does not affect our conclusions.

The reduction of the model from three channel to two
channel due to spin-orbit coupling has other consequences
in the comparison to experiment. The states of the ground
state configuration with spin projection Sz = ±1 have also
angular momentum projection Lz = ±1 [see Eqs. (2) and be-
low them]. Therefore, the effect of a magnetic field Bz in the
z direction [perpendicular to the Au(111) surface as applied
experimentally [15]], with a correction term (2Sz + Lz )Bz, is
3/2 larger than the case in which only the spin is considered.
In addition, the effect of magnetic field perpendicular to z,
involving spin flips, induces mixing with excited b states and
is smaller than for the case without splitting.
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