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Abstract 

Background:  Single-step genomic predictions obtained from a breeding value model require calculating the inverse 
of the genomic relationship matrix (G−1) . The Algorithm for Proven and Young (APY) creates a sparse representation 
of G−1 with a low computational cost. APY consists of selecting a group of core animals and expressing the breeding 
values of the remaining animals as a linear combination of those from the core animals plus an error term. The objec-
tives of this study were to: (1) extend APY to marker effects models; (2) derive equations for marker effect estimates 
when APY is used for breeding value models, and (3) show the implication of selecting a specific group of core ani-
mals in terms of a marker effects model.

Results:  We derived a family of marker effects models called APY-SNP-BLUP. It differs from the classic marker effects 
model in that the row space of the genotype matrix is reduced and an error term is fitted for non-core animals. We 
derived formulas for marker effect estimates that take this error term in account. The prediction error variance (PEV) of 
the marker effect estimates depends on the PEV for core animals but not directly on the PEV of the non-core animals. 
We extended the APY-SNP-BLUP to include a residual polygenic effect and accommodate non-genotyped animals. 
We show that selecting a specific group of core animals is equivalent to select a subspace of the row space of the 
genotype matrix. As the number of core animals increases, subspaces corresponding to different sets of core animals 
tend to overlap, showing that random selection of core animals is algebraically justified.

Conclusions:  The APY-(ss)GBLUP models can be expressed in terms of marker effect models. When the number 
of core animals is equal to the rank of the genotype matrix, APY-SNP-BLUP is identical to the classic marker effects 
model. If the number of core animals is less than the rank of the genotype matrix, genotypes for non-core animals are 
imputed as a linear combination of the genotypes of the core animals. For estimating SNP effects, only relationships 
and estimated breeding values for core animals are needed.
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Background
Genomic predictions can be obtained from either a 
breeding value model or a marker effects model [1]. 
The equivalence between these two models [2] facili-
tates interpretation in terms of either marker effects or 
genomic relationships between individuals. On the one 
hand, from a computational point of view, breeding value 
models fit a random effect, with the number of levels 

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  mbermann@uga.edu

1 Department of Animal and Dairy Science, University of Georgia, Athens, GA 
30602, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5374-0710
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-022-00741-7&domain=pdf


Page 2 of 10Bermann et al. Genetics Selection Evolution           (2022) 54:52 

equal to the number of genotyped animals 
(
ngt

)
 . On the 

other hand, marker effects models fit a random effect, 
with the number of levels equal to the number of mark-
ers (m) . To obtain predictions for the first type of mod-
els using Henderson’s mixed model equations (MME), 
the inverse of the genomic relationship matrix (G) is 
needed [3]. However, direct inversion of G when ngt is 
large is very expensive or even not feasible—for instance, 
genomic evaluation data for US dairy cattle data contain 
millions of genotyped animals. In contrast, marker effect 
models do not suffer from this constraint because the 
size of the block of equations concerning marker effects 
remains constant. Besides this advantage, marker effect 
models require multiplications of dense matrices and the 
condition number (i.e. the quotient between the largest 
and smallest eigenvalue of the MME) of the system is 
larger than for the breeding value models [4]. To handle 
these issues, complex solvers [5] and refined convergence 
criteria [6] are needed.

Increasing numbers of animals are genotyped every 
year but the number of markers ( m ) remains constant at 
around 50K [7], and therefore the rank of G is (at most) 
50K. To make the breeding value models feasible with 
large ngt , several strategies have been proposed. Misz-
tal et al. [8] and Misztal [9] developed the Algorithm for 
Proven and Young (APY), which uses a sparse represen-
tation of G−1 . The APY consists of selecting a group of 
genotyped animals, known as core animals, which are 
selected to span roughly 99% of the eigenvalue spectra of 
G , and then expressing the breeding values of the remain-
ing genotyped animals, known as non-core animals, as 
a linear function of the breeding values of the core ani-
mals plus an error term. Mäntysaari et al. [10] proposed 
the GT best linear unbiased predictor (GTBLUP) model, 
which uses the Woodbury Identity [11] to obtain the 
inverse of G plus a regularization matrix without explic-
itly computing G−1 . The GTBLUP model requires more 
operations than APY when the number of core animals is 
less than m [10]. Fernando et al. [12] reviewed and devel-
oped different alternatives to the APY. In their study, the 
most practical implementation (Strategy IV) consisted 
of fitting a model with a design matrix that results from 
orthonormalization of the rows of the genotype matrix, 
and then obtaining the estimated breeding values as the 
product between the design matrix and the vector of 
solutions. APY, GTBLUP, and Strategy IV were compared 
in several scenarios and gave similar predictions when 
the spectrum of G was well covered by core animals [10, 
13].

The lack of clear-cut, deterministic selection criteria for 
core animals in APY has been criticized [10, 12]; however, 
there are empirical studies on which [14] and how many 
[15] animals to include in the core group. However, the 

implications of using APY in terms of indirect predictions 
(direct genomic values) or single nucleotide polymorphism 
(SNP) effects are also unclear.

Although there are empirical results showing the reliable 
behavior of APY for prediction, an analytical framework 
to justify and examine its properties is lacking. Thus, the 
objective of this study was to derive a marker effects model 
that is equivalent to the APY. Departing from such a model, 
the secondary objectives of this study were to derive appro-
priate formulae for SNP and indirect predictions for geno-
typed animals without progeny and records, and to show 
the theoretical implications of selecting a specific group of 
core animals in APY.

Theory
Let u′ =

[
u
′

c u
′

n

]
′ be the vector of breeding values, where 

uc represents the sub-vector of breeding values for the core 
animals and un is the sub-vector of breeding values for the 
non-core animals. Hereafter, the sub or superscript c will 
denote an object belonging to the core animals, whereas 
the sub or superscript n will indicate that an object belongs 
to the non-core animals. For a conventional GBLUP model 
[1], the covariance matrix of u , assuming a genetic variance 
equal to unity, is equal to:

where k is a scaling factor based on the level of heterozy-
gosity (for instance: 1/2

∑
piqi ) or on the number of 

markers, and Z =

[
Zc

Zn

]
 is the matrix of genotypes for all 

the genotyped animals. Here it is assumed that Z was 
derived after genotype quality control [16], centering [2], 
and/or additional scaling [17]. Furthermore, it is assumed 
that the number of core animals is smaller than or equal 
to the number of markers and that the core animals are 
chosen such that Gcc is non-singular.

The APY approach is based on the following recursion 
[9]:

where Pnc = GncG
−1
cc  , and ξ is an error term that is 

assumed to be independent of uc . Taking the variance of 
both sides in Eq. (2), with their respective inverses, leads 
to:

(1)Var

[
uc
un

]
= G =

[
Gcc Gcn

Gnc Gnn

]
=

[
kZcZ

′

c kZcZ
′

n

kZnZ
′

c kZnZ
′

n

]
= kZZ,

(2)
[
uc

un

]
=

[
I 0

Pnc I

][
uc

ξ

]
,

Var

[
uc

un

]
= GAPY =

[
I 0

Pnc I

][
Gcc 0

0 Mnn

][
I Pcn

0 I

]

=

[
Gcc Gcn

Gnc Mnn +GncG
−1
cc Gcn

]
,
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where Var(ξ) = Mnn = Gnn −GncG
−1
cc Gcn . In practice, 

and hereafter, Mnn is assumed to be a diagonal matrix, 
that is, Mnn = diag

(
Gnn −GncG

−1
cc Gcn

)
 [9]. This implies 

that, conditional on core animals, the breeding values of 
non-core animals are conditionally independent, which is 
more explicitly shown in [8], and is a variant of the so-
called “approximate kernel methods” [18, 19]. It has to be 
noted that, even when G is full rank and invertible, G−1

APY 
is not equal to G−1.

APY‑GBLUP
Based on the matrices from Eq. (3), the APY-GBLUP model 
is defined as:

where y is the vector of phenotypes, b is the vector of 
fixed effects, e is the vector of error terms, X and W are 
design matrices, and σ2u and σ2e are the genetic and resid-
ual variances, respectively. Hereafter, it will be assumed 
that E[y] = Xb . Assuming multivariate normality for u 
and e , the MME for the APY-GBLUP model are:

where α =

σ
2
e

σ2u
.

Holding its expectation and covariance structure, the 
model of Eq. (4) can be partitioned into core and non-core 
animals as follows:

resulting in the following MME:

(3)

Var

[
uc

un

]
−1

= G
−1

APY
=

[
I −Pcn

0 I

]

[
G
−1
cc 0

0 M
−1
nn

][
I 0

−Pnc I

]

=

[
G
−1
cc + PcnM

−1
nn Pnc −PcnM

−1
nn

−M
−1
nn Pnc M

−1
nn

]

y = Xb+Wu + e,

E[y] = Xb,

(4)Var

[
u
e

]
=

[
GAPYσ

2
u 0

0 Iσ2e

]
,

(5)
[
X′X X′W

W′X W′W +G−1
APYα

][
b̂
û

]
=

[
X′y
W′y

]
,

(6)
[
yc
yn

]
=

[
Xc

Xn

]
b+

[
Wc 0
0 Wn

][
uc
un

]
+ e,

where the superscripts in GAPY denote the blocks of G−1
APY 

corresponding to a specific combination of core and non-
core animals. Substituting un = Pncuc + ξ in Eq. (6) leads 
to the following model:

and the following MME:

Then, the BLUP of un is obtained as ûn = Pncûc + ξ̂ . 
These MME are similar to those shown in Eq.  (13) in 
[12] but differ in the error term ξ.

An equivalent model: APY‑SNP‑BLUP
Assuming that the genetic value of the core animals is 
fully explained by the markers, then:
uc = Zca and

where a is the vector of marker effects, and 
P = Z′

c

(
ZcZ

′

c

)
−1

Zc , that is, P is the perpendicu-
lar projection operator [11] to C

(
Z′

c

)
 (i.e., the vector 

space spanned by the genotypes of the core animals). 
Assuming that kσ2u is the variance of marker effects, i.e. 
Var(a) = Ikσ2u , Var(ξ) = Mnnσ

2
u , and cov(a, ξ) = 0 . Then:

Var(uc) = ZcVar(a)Z
′

c = σ
2
ukZcZ

′

c and

(7)




X′X X

′

cWc X
′

nWn

W
′

cXc W
′

cWc +Gcc
APY

α Gcn
APY

α

W
′

nXn Gnc
APY

α W
′

nWn +Gnn
APY

α









�b
�uc
�un



 =




X′y

W
′

cyc

W
′

nyn



,

[
yc
yn

]
=

[
Xc

Xn

]
b+

[
Wc

WnPnc

]
uc +

[
0
Wn

]
ξ+ e,

(8)Var




uc
ξ
e




=




Gccσ

2
u 0 0

0 Mnnσ
2
u 0

0 0 Iσ2e



,

(9)




X′X X′

cWc X′

nWn

W′

cXc W′

cWc + PcnW
′

nWnPnc +G−1
cc α PcnW

′

nWn

W′

nXn W′

nWnPnc W′

nWn +M−1
nn α








�b
�ul
�ξ



 =




X′y

W′

cyc

W′

nyn



.

(10)un = ZnZ
′

c

(
ZcZ

′

c

)
−1

Zca + ξ = ZnPa + ξ,
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Letting Z†
=

[
Zc

ZnP

]
 and Q =

[
0
Wn

]
 , the following 

APY-SNP-BLUP model is equivalent to the APY-
GBLUP model presented in Eq. (4):
y = Xb+WZ†a +Qξ+ e , with

Assuming multivariate normality for a , ξ , and e , the 
MME for the APY-SNP-BLUP model are:

where γ =

σ
2
e

kσ2u
.

If rank(Zc) = rank(Z) , which is true when the number 
of core animals is equal to the number of markers and 
given a non-singular Gcc , P = I . Further, Mnn = 0 , and 
since ξ has null expectation, ξ = 0 . Consequently, for a 
sufficiently large number of core animals:
uc = Zca and

Then, the model in Eq. (12) reduces to:

and the MME are:

which are the MME for a typical SNP-BLUP model [1]. 
Thus, APY-SNP-BLUP converges to the regular SNP-
BLUP when the number of core animals increases.

Distribution of breeding values and marker effects 
with APY
By defining the breeding values as in Eq. (10) and keeping 
the distributional assumptions of a and ξ from Eq.  (12), 

(11)
Var(un) = ZnPVar(a)PZ

′

n + Var(ξ)

= σ
2
ukZnPZ

′

n + σ
2
uMnn.

(12)Var




a
ξ
e




=




kIσ2u 0 0

0 Mnnσ
2
u 0

0 0 Iσ2e



.

(13)




X′X X′WZ† X′

nWn

Z†
′

W′X Z†
′

W′WZ†
+ Iγ PZ′

nW
′

nWn

W′

nXn W′

nWnZnP W′

nWn +M−1
nn α








�b
�a
�ξ




=




X′y

Z†
′

W′y
W′

nyn



,

(14)un = ZnPa + ξ = Zna + ξ = Zna.

y = Xb+WZa + e,

(15)with Var

[
a
e

]
=

[
kIσ2u 0

0 Iσ2e

]
,

(16)
[
X′X X′W
W′X Z′W′WZ+ Iγ

][
b̂
â

]
=

[
X′y

Z′W′y

]
,

the covariance matrix of the joint distribution of u and 
a is:

where V =

[
0 0
0 Mnn

]
 . Then, assuming normality for a 

and ξ , the conditional distribution of u on a is:

Note that this is a degenerate normal distribution 
because its covariance matrix is non-positive definite. In 
the classical GBLUP and SNP-BLUP models [1], the vari-
ance of u conditional on a is zero (i.e., if marker effects 
are known, the breeding value is fully explained), whereas 
Eq. (18) shows that in APY, the variance of u conditional 
on a is nonzero for the non-core animals.

Conversely, the conditional distribution of a on u is:

The BLUP of a given u = û can be obtained from 
Eq. (19) as [1]:

which after algebra reduces to [20]:

with variance equal to:

Thus, in order to obtain predictions of marker effects 
from the APY-GBLUP model, only the estimated breed-
ing values of the core animals and the corresponding 
blocks of matrices are needed.

Indirect predictions with APY
Indirect predictions 

(
ûip

)
 are estimated breeding val-

ues for animals without own records or progeny with 
records, based on estimated marker effects from the 
genetic evaluation. Therefore, an indirect-predicted ani-
mal is by definition a non-core animal. Using Eq.  (18), 
indirect predictions with APY are calculated as:

(17)Var

[
u
a

]
=

[
kZ†Z†

′

+ V kZ†

kZ†
′

kI

]
σ
2
u,

(18)p(u|a) = N
(
Z†a,Vσ2u

)
.

(19)

p(a|u) =N

(
kZ†

′
(
kZ†

Z
†
′

+ V

)
−1

u,

(
kI− kZ†

′
(
kZ†

Z
†
′

+ V

)
−1

Z
†k

)
σ
2
u

)
.

(20)
â|û = E

[
a|u = û

]
= kZ†

′
(
kZ†Z†

′

+ V
)
−1

û = kZ†
′

G−1
APYû,

(21)â|û = kZ†
′

G−1
APYû = kZ′

cG
−1
cc ûc,

(22)Var
(
â|û

)
= k2Z′

cG
−1
cc (Gcc − PEVcore)G

−1
cc Zc.
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where Zip is the centered and scaled genotype matrix for 
the indirect-predicted animals, and Gip,c is the genomic 
relationship matrix between indirect-predicted and core 
animals. Note that the genotype matrix Zip has to be cen-
tered and scaled in exactly the same manner as the matri-

ces Z =

[
Zc

Zn

]
 that are used for genomic evaluation by 

any method; otherwise, the algebra (i.e. Eq. (17)) used to 
derive the joint distribution of breeding values and mark-
ers is an approximation. Changing the centering of Zip 
(i.e., using a different set of allele frequencies) results in a 
shift of the mean and, in addition, a different implicit ξ in 
the APY approximation. Changing the scale of Zip (i.e., 
multiplying by a different k ) changes the scale of marker 
effects and of the indirect predictions.

Note that the leftmost expression in Eq.  (23) is, as 
expected, the selection index formulation for estimation 
of breeding values. Two measures of uncertainty are asso-
ciated with estimation of ûip . First, the uncertainty associ-
ated with the variance in Eq. (18) that arises from the error 
term in Eq. (10), i.e. due to the approximation in APY. This 
uncertainty is calculated similarly to a reliability:

where gii and mii are the diagonal element of G and the 
element of Mnn , respectively, corresponding to the ith ani-
mal. Equation (24) converges to one when ξ → 0 , which 
occurs when the size of the core increases. The second 
measure of uncertainty is the usual reliability associated 
with the prediction error variance of ûip|â , which is:

where gi,c is the block of G that relates the i th individual 
with the core animals, and gc,i = gi,c

′ . The reliability asso-
ciated with Eq. (25) is:

(23)ûip|â = ZipP â = Gip,cG
−1
cc ûc,

(24)ρi = 1−
mii

gii
,

(25)
Var

(
ûip|â − uip

)
i
= mii + gi,cG

−1
cc PEVcoreG

−1
cc gc,i,

(26)
reli = 1−

mii + gi,cG
−1
cc PEVcoreG

−1
cc gc,i

gii

= ρi −
gi,cG

−1
cc PEVcoreG

−1
cc gc,i

gii
.

APY‑GBLUP and APY‑SNP‑BLUP models with a residual 
polygenic effect
To consider an extra polygenic effect based on pedi-
gree, G−1

APY in Eq. (5) can be calculated based on the fol-
lowing G∗:

where A22 is the block of the numerator relationship 
matrix corresponding to the genotyped animals, L is the 
Cholesky factor or its approximation of A22 [21], and β 
is the proportion of the residual polygenic effect. When 
the matrices from model Eq.  (4) are constructed based 
on Eq.  (27), the resulting model is designated as APY-
GBLUP with a residual polygenic effect. In this case, the 
breeding values are not fully explained by the markers. 
Therefore:

where ε ∼ MVN
(
0,βAccσ

2
u

)
 is the vector of residual 

polygenic effects [22], Acc is the block of the numerator 
relationship matrix corresponding to the core animals, 
P∗

nc = G∗

ncG
∗

−1

cc  , P
∗

= Z∗

′

c

(
Z∗

cZ
∗

′

c

)
−1

Z∗

c , and 

S =

[
I 1
√

(1−β)k

0

]
 . Then, a marker effects model equiva-

lent to APY-GBLUP with a residual polygenic effect is:

where Z†∗
=

[
Zc

Z∗

nP
∗S

]
 and R =

[
I

Z∗

nZ
∗

′

c

(
Z∗

cZ
∗

′

c

)
−1

]
 . 

The MME for the model in Eq. (29) are:

(27)

G
∗

= Z
∗

Z
∗

′

=

[√
(1− β)kZ

√

βL
][√(1− β)kZ′

√

βL′

]

= (1− β)
(
kZZ

′

)
+ βA22,

uc = Zca + ε,

(28)
un = P∗

nc(Zca + ε)+ ξ = Z∗

nP
∗Sa + Z∗

nZ
∗

′

c

(
Z∗

cZ
∗

′

c

)
−1

ε+ ξ,

y = Xb+WZ†∗a +WRε+Qξ+ e,

(29)

Var





a
ε
ξ
e



 =





(1− β)kIσ2u 0 0 0

0 βAccσ
2
u 0 0

0 0 Mnnσ
2
u 0

0 0 0 Iσ2e



,

(30)





X′X X′WZ†∗ X′WT X′

nWn

Z†∗
′

W′X Z†∗
′

W′WZ†∗
+ Iδ Z†∗

′

W′WT S′P∗Z∗

′

n W
′

nWn

T′W′X T′W′WZ†∗ T′W′WT+ A−1
cc ζ

�
Z∗

cZ
∗

′

c

�
−1

Z∗

cZ
∗

′

n W
′

nWn

W′

nXn W′

nWnZ
∗

nP
∗S W′

nWnZ
∗

nZ
∗

′

c

�
Z∗

cZ
∗

′

c

�
−1

W′

nWn +M−1
nn α









�b
�a
�ε
�ξ



 =





X′y

Z†∗
′

W′y
R′W′y
W′

nyn



.
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where δ = σ
2
e

(1−β)kσ2u
 and ζ =

σ
2
e

βσ2u
.

APY single‑step GBLUP (APY‑ssGBLUP) and APY single‑step 
SNP‑BLUP (APY‑ssSNP‑BLUP)
For a general ssGBLUP model [23] with APY [14], assum-
ing a genetic variance equal to 1, the covariance matrix of 
the breeding values is equal to:

where the subscripts 1 and 2 denote the non-genotyped 
and genotyped animals, respectively. Letting 

A
−1
22

=




A
cc
22

A
cn
22

A
nc
22

A
nn
22



 , the inverse of HAPY is equal to [24]:

Then, the APY-ssGBLUP model is defined as:

The MME for the model in Eq. (33) are:

Following [25], the breeding values of non-genotyped 
animals can be written as: u1 = A12A

−1
22 u2 + η , where 

η ∼ MVN
(
0,
(
A11

)
−1

)
 and represents the imputation 

error [23, 25]. Then, the breeding values of all animals 
can be expressed as:

(31)
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]
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22
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GAPY

GAPYA
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]
,
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+
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0 −M
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M
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


.

y = Xb+Wu + e,

(33)Var

[
u
e

]
=

[
HAPYσ

2
u 0

0 Iσ2e

]
.

(34)




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2
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X1 W′

1
W1 + A11α A12α

W′

cXc A21α W′

2
W2 +

�
A22

+G−1

APY
− A−1
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
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(35)


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


=


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�
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

.

Letting W†
=

[
W1A12A

−1
22 Z

†

W2Z
†

]
 , T =

[
W1

0

]
 , and 

Q†
=

[
W1A12A

−1
22 Q

Q

]
 , an equivalent model to that pre-

sented in Eq. (33) is:

y = Xb+W†a + Tη+Q†ξ+ e,

(36)Var


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The MME corresponding to this model are:

APY‑ssGBLUP and APY‑ssSNP‑BLUP with a residual 
polygenic effect
If G−1

APY in H−1
APY is built using G∗ from Eq. (27), the result-

ing model is called APY-ssGBLUP with a residual poly-
genic effect. In such a case, Eq. (35) is modified to:

(37)
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Letting W†∗
=

[
A12A

−1
22 Z

†∗

Z†∗

]
 , R†∗

=

[
A12A

−1
22 R

R

]
 , and 

Q†∗
=

[
A12A

−1
22 Q

Q

]
 , Eq.  (33) leads to the following 

model:

with the following MME:

Computational complexity of the APY‑based models
In terms of pre-processing steps, i.e., preparation of the 
required matrices to set up the MME, the APY-GBLUP 
model has a cubic cost in the number of core animals, 
and a linear cost in both the number of markers and the 
number of non-core animals. In contrast, the APY-SNP-
BLUP model has a quadratic cost in both the number of 
core animals and the number of markers, and a linear 
cost in the number of non-core animals. Per iteration, 
the computational cost of APY-GBLUP is quadratic in 
the number of core and linear in the number of non-
core animals, while APY-SNP-BLUP is quadratic in the 
number of markers and linear in the number of non-core 
animals. Thus, as long as the number of core animals is 
smaller than the number of markers, APY-GBLUP will be 
computationally less demanding than APY-SNP-BLUP. If 
a residual polygenic effect is assumed, the choice of the 
core animals plays a major role in computational effi-
ciency because of the computation of A−1

cc  . For example, 
if unrelated core animals are chosen, then computations 
that involve A−1

cc  are trivial. Regardless, the APY-SNP-
BLUP model may not be of great practical interest, as it 
can be replaced by either GBLUP or SNP-BLUP. How-
ever, the APY-SNP-BLUP model is useful to derive ana-
lytical properties of the APY algorithm.

Under single-step models, computational requirements 
for genetic evaluation of genotyped animals depend 
on how A−1

22  is included in the MME for both breeding 
value and marker-based models. That is, A−1

22  is included 

y = Xb+W†∗a + R†∗ε+ Tη+Q†∗ξ+ e,

(39)
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either as the product of A−1
22  times a vector for breeding 

value models [26] or as the solution of the sparse system 
A11Ẑ†

= −A12Z† for marker based models [25], where Ẑ† 
is the matrix of imputed genotypes.

Discussion
In this study, we derived a marker effects model that is 
equivalent to the APY-GBLUP model. On the one hand, 
when the number of core animals is equal to the rank of 
the genotype matrix, GAPY is singular, as noted by [12]. 
This can be interpreted as core animals covering all the 
genetic variation in the population that is captured by the 
genotyped markers. In that case, APY-GBLUP is equiva-
lent to a regular GBLUP or SNP-BLUP, which has been 
analytically proven in this study (for further informa-

tion, a numerical illustration is provided in Additional 
file  1). On the other hand, when the number of core 
animals is lower than the rank of the genotype matrix, 
GAPY is non-singular and a marker effects model, named 
APY-SNP-BLUP, can be constructed that is equivalent to 
APY-GBLUP. The APY-SNP-BLUP differs from the regu-
lar SNP-BLUP model in the following manner: (i) it has 
a reduction in the row and column spaces of Z (from its 
replacement with Z† ), and (ii) it has an additional error 
term (ξ) for non-core animals. The former indicates that 
the number of possible genotypes and haplotypes that 
can be formed by a linear combination of the rows or col-
umns of the genotype matrix is reduced. The degree of 
reduction of both spaces is controlled by the number of 
core animals. With a fixed number of core animals, select-
ing different sets of core animals is equivalent to select-
ing different subspaces of the row and column spaces of 
Z . When the number of core animals is such that a large 
portion of the spectrum of G (or the set of singular val-
ues of Z ) is covered, those sub-spaces that correspond to 
different sets of core animals will increasingly overlap, 
which means that their intersection will not be equal to 
the null vector space. In that case, many genotypes in 
the population can be generated as linear combinations 
of the rows of Zc . If a certain genotype, say zi , cannot be 
formed, the distance between zi and its projection to the 
row space of Zc(d(zi −Pzi)) is in general expected to be 
small. The particular choice of core animals is not impor-
tant, as long as it covers the spectrum of G . Although the 
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heuristics of how core animals should be chosen needs to 
be refined, a wide random choice appears to be adequate 
[10, 13, 27, 28]. However, as the population evolves and 
new haplotype combinations are created, the chosen core 
may become less representative, although this is expected 
to be a slow process. Methods to choose and update a set 
of core animals that spans most variability in G, e.g., [29], 
is an open area of research.

The large changes in estimated breeding values for 
some non-core animals when the core animals are 
changed, while keeping its number constant, as reported 
by [30], can be explained by a large distance between the 
projected and the real genotype of those individuals. This 
is the case, for instance, when a mislabeled animal is eval-
uated within one breed but actually belongs to another 
breed.

Note also that core animals do not need to be indi-
viduals with, a priori, high reliability. Marker effects are 
back-solved from core animals, but these animals gather 
information from the entire population through the 
genomic relationships. Thus, the accuracy of the esti-
mated breeding values of these core animals will be very 
high. For instance, in dairy cattle, core animals could 
be based on cows. If these cows have a strong relation-
ship with the whole population, they are very accurately 
estimated, and so will be the SNP effects and indirect 
predictions.

We also derived the distribution of breeding values 
conditional on the marker effects and vice versa when 
using APY. For the first case, breeding values of the non-
core animals are only partially explained by the marker 
effects because of the error term ξ in Eq.  (10). For the 
second case, we showed that the BLUP of the marker 
effects conditional on the breeding values of animals, 
only requires the matrices and estimated breeding values 
corresponding to the core animals—this result was not 
known before. Although non-core animals do not appear 
in the explicit calculation of the marker effects, their 
information is used to estimate breeding values of the 
core animals. When Eq.  (21) is not used to obtain esti-
mates for the marker effects from an APY-GBLUP model, 
those estimates will not have minimum variance.

In genetic evaluations, indirect predictions for ani-
mals without own records or progeny with records can 
be calculated from estimates of marker effects that are 
obtained by back-solving from the estimated breed-
ing values [20]. If an APY-(ss)GBLUP model is used for 
genetic evaluations then the proper way to calculate indi-
rect predictions is based on the distribution in Eq.  (18). 
For core animals, the formula to calculate indirect pre-
dictions is equal to the Eq.  (10) in [20]. However, for 
genetic evaluation, animals for which indirect predic-
tions are calculated are, by definition, non-core animals. 

Therefore, in that case, their indirect predictions must be 
obtained from Eq. (23).

Two measures of uncertainty associated with indirect 
predictions were derived. The first measure of uncer-
tainty, Eq.  (24), quantifies how different the indirect 
prediction would be from that calculated with a regu-
lar GBLUP or SNP-BLUP model. If the number of core 
animals is large enough, this measure will be close to 1. 
A value of 1 indicates that the individual is in the space 
of genetic variation described by the core animals and 
indirect predictions based on APY and SNP-BLUP are 
identical. The second measure of uncertainty, based on 
Eq.  (26), is a classical reliability of estimated breeding 
value and is a function of the prediction error variance 
of the indirect prediction in Eq. (25). This reliability can 
be expressed in terms of prediction error variances of 
marker effects or in terms of prediction error variances of 
core animals. The latter results in higher computational 
efficiency because the number of core animals is smaller 
than the number of markers.

In the same way that an equivalent SNP-BLUP model 
exists for the APY-BLUP model, we showed that when 
genotyped and non-genotyped animals are combined in 
the evaluation using a single-step approach, there is an 
APY-ssSNP-BLUP model that is equivalent to the APY-
ssGBLUP model. In the APY-ssGBLUP model, breeding 
values are jointly estimated for non-genotyped, core, 
and non-core animals, while the APY-ssSNP-BLUP 
model estimates SNP effects based on the core animals, 
an error term for non-core animals, and the genotype 
imputation error for non-genotyped animals. Esti-
mates of breeding values for all the animals can then 
be obtained by a linear combination of the correspond-
ing design matrices and the vector of solutions. As in 
Fernando et al. [31], estimated breeding values for non-
genotyped animals can be obtained directly to improve 
computational efficiency. Adding the polygenic effect 
does not change the MME for APY-ssGBLUP but adds 
an extra term ( ̂ε ) to the MME for APY-ssSNP-BLUP. In 
that case, the number of unknowns is equal to that in 
the model presented by [22]. Therefore, APY-ssSNP-
BLUP is more complex and involves more convoluted 
matrix multiplications. Whenever the MME are aug-
mented, there is a question on the feasibility and con-
vergence of the model with real datasets. Vandenplas 
et al. [5] proposed a second-level preconditioner to ease 
convergence problems in ssSNP-BLUP, and Vandenplas 
et al. [6] presented a different termination criterion to 
determine convergence of such models. Although APY-
ssSNP-BLUP is more flexible regarding the use of dif-
ferent priors for marker effects [25], its convergence 
will need to be monitored carefully.
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Conclusions
The APY-GBLUP model is equivalent to a family of 
marker effect models that are here described as APY-
SNP-BLUP. We show that when the choice of core ani-
mals covers the rank of the genotype matrix, which is 
generally equal to the number of markers, APY-GBLUP 
is equivalent to a conventional SNP-BLUP model and 
is, therefore, just as accurate. If the choice of core 
animals does not cover the spectrum of the genomic 
relationship matrix, the genotypes for the non-core ani-
mals are imputed as a linear combination of the geno-
types of the core animals. Marker effect estimates for 
the APY-SNP-BLUP model can then be calculated by 
a linear transformation of the estimated breeding val-
ues of the core animals. Thus, all the matrices involved 
have a size equal to the number of core animals. Indi-
rect predictions for non-core animals with APY can be 
calculated from estimated marker effects from APY-
SNP-BLUP, or from estimated breeding values for core 
animals, without a need to consider non-core animals, 
which simplifies the calculations. The reliability of 
indirect predictions is solely a function of the predic-
tion error variance of the estimated breeding values 
of core animals. Therefore, choosing core animals that 
cover correctly the spectra of the genotype matrix will 
give indirect predictions with high reliability. Both the 
APY-GBLUP and the APY-SNP-BLUP models can fit a 
residual polygenic effect, and when the APY-SNP-BLUP 
is used, only residual polygenic effects for core animals 
are fitted.
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