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Abstract: Climate models predict that plants will face extreme fluctuations in water availability
in future global change scenarios. Then, forage production will be more frequently subjected to
the destabilizing pressure of sequentially occurring waterlogging and drought events. While the
isolated effects of drought (D) and waterlogging (WL) are well characterized, little is known about
the consequences when both stresses occur sequentially. We hypothesized that plants sequentially
subjected to opposite water scenarios (D followed by WL or vice versa) are less stress tolerant than
plants experiencing repetitions of the same type of water stress (i.e., D + D or WL + WL) due to
contrasting acclimation and allocation to either shoots (WL) or roots (D). Chloris gayana (a tropical
forage grass capable of tolerating either D and WL) plants were randomly assigned to nine treatments
(a sequence of two stress rounds—WL or D—each followed by a recovery phase at field capacity).
Relative growth rates and allometric responses were measured after each stress round and recovery
period. In the first round of stress, both WL and D reduced plant RGR similarly, despite their
allocation being opposite—prioritizing shoots or roots under WL and D, respectively. The high
recovery displayed after either WL or D overrode any possible acclimation of the plants facing a
second round of water stress. We conclude that the tolerance of C. gayana to sequential water stress
(either for WL or D) is likely to depend more heavily on its recovery ability than on its previous
adjustment to any stress scenario that may evoke memory responses. Knowledge like this could
help improve forage grass breeding and the selection of cultivars for poorly drained soils subject to
sequential stress events.

Keywords: flooding; waterlogging; flooding recovery; sequential stress; water stress; allometric
responses; Rhodes grass; C4 forage grass; acclimation

1. Introduction

Plants are exposed to a wide range of abiotic stresses throughout their lifecycle,
including extreme environmental conditions such as drought and waterlogging. Over
recent years, climate change has intensified heavy rainfall and high temperature events,
leading to these dynamic water scenarios [1]. Even though plants must deal with sequential
stresses in nature, so far, most studies have addressed adaptive plant responses to single
stress events. Moreover, recovery from stress—regarding waterlogging as a single stress—is
also seldom reported [2,3]. In this work, we exposed potted plants of Chloris gayana—a
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C4 grass extensively used as a forage crop in pastures—to sequential events of drought
and waterlogging. We have also alternated the sequences of both stresses to verify the
potentially differential impact of either stress occurring early or late during the vegetative
phase on plant performance (i.e., stress history). The use of C. gayana to test our hypotheses
is based on its probed capacity to tolerate waterlogging submergence [4–6] and drought [7,8]
and its ability to show a vigorous recovery when these are applied as single stresses.

Plant performance is constrained by water stress—either excess or deficit. At the cellu-
lar level, flooded tissues experience oxygen shortages and energy crises due to the metabolic
reconfiguration from aerobic respiration to fermentation and cytoplasmic acidosis—all
changes that negatively impact even non-flooded organs of the plant [9,10]. During water
shortages, cells principally suffer from dehydration and loss of turgor, which impairs their
expansion potential [11]. Both types of stress factors can also drive stomatal closure and
falls in carbon assimilation rates [11–13]. In this matter, abscisic acid is the main hormone
involved in both flooding and drought-induced stomatal closure [10,14], and crosstalk
between both stress factors involves shared passive responses (i.e., leaves wilting) and
transcriptomic, proteomic, and metabolomic common tolerance mechanisms for the main-
tenance of cellular homeostasis [15,16]. On the other hand, plant growth and allometry
are especially sensitive to both water excess and deficits [11,17,18]. Moreover, dry mass
partitioning to above and below-ground organs under excess and deficits of water in the
soil is often opposite. In consequence, the shoot-to-root ratio tends to be higher under
waterlogging/partial submergence and lower under drought conditions. When plants
experience partial submergence, usually a higher proportion of dry mass is partitioned to
shoots while root growth is hampered [4,5]. This differential dry mass allocation facilitates
the emergence of a higher proportion of leaves above the water level [3,19]. Conversely,
when water is scarce, an increase in roots relative to shoots has been observed—mainly due
to a reduction of shoot growth [20,21], and in few cases, an increase in root biomass [22,23].
Therefore, according to the above-mentioned trade-offs in biomass partitioning between
compartments in contrasting hydric conditions, we hypothesized that plants subjected
sequentially to opposite water scenarios (drought followed by waterlogging or waterlog-
ging and then drought) will be less tolerant than plants experiencing a repetition of the
same water stress (i.e., drought plus drought or waterlogging plus waterlogging) due to
unbalanced transpiration (shoot)/water uptake (roots) [24].

Plant growth resumption after a period of stress is critical to assess its tolerance.
A literature review on waterlogging impact on forage species has shown that 7 out of
10 reports lack a recovery period in their experimental setup [25,26]; therefore, the ability of
plants to resume their growth after the stress is often unknown. Moreover, plant responses
to sequential water stresses followed by recovery periods have been rarely been reported
(see [18] for submergence stress in Rumex palustris and [3] in C. gayana), while stress
responses (second round) following a recovery period have never been reported. We
propose that a prior stress can positively affect the degree of tolerance to a subsequent
event with the same stress factor (e.g., either drought or flooding), considering that the first
stress signature may lead to more rapid plant adjustment when responding to the second
event during the post-stress period (i.e., recovery).

2. Results

During the first round of stress, waterlogging caused a significant effect—inhibiting the
Total RGR of the Chloris gayana plants when compared to the control treatment (Figure 1a);
however, during the first recovery phase, previously waterlogged plants overcame the
control plants in terms of their Total RGR (Figure 1b; p < 0.05). Meanwhile, drought did
not show a significant effect on Total RGR when compared to the control treatment, both
during the first stress round or later during the recovery phase (Figure 1a,b; p > 0.05). Shoot
RGR was negatively affected by both stress factors: waterlogging and drought (Figure 1c;
p < 0.05); afterwards, the shoot RGR of the plants subjected to either stress overcame that
of the control plants during the recovery phase (Figure 1d; p < 0.05). Figure 1e shows the
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idiosyncratic inhibition of root RGR caused by waterlogging (p < 0.05); however, during
the recovery phase, previously waterlogged plants showed a significantly higher root RGR
than control plants (Figure 1f; p < 0.05). Root RGR did not show significant differences
between drought-stressed and control plants during either the first stress round or the
recovery phase (Figure 1e,f; p > 0.05).
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subjected for 13 days to control conditions (C, white bars), waterlogging (WL, grey bars), or drought 
(D, striped bars) in the first stress round (a,c,e) and the subsequent 15-day recovery phase (b,d,f). 
Values are means ± e.e. (n = 8). Different letters indicate differences between treatments (p < 0.05). 

A significant increase in allocation to leaves in waterlogged plants after the first stress 
round is shown in Figure 2a (p < 0.05); this promotion of LWR caused by excess water was 
buffered during the recovery phase (Figure 2b; p > 0.05). Drought-stressed plants showed 
a significant reduction in LWR (Figure 2a; p < 0.05), joined by an increase in RWR (Figure 
2c; p < 0.05) compared to control plants. Both effects disappeared during the recovery 
phase (Figure 2b,d; p > 0.05). Stolon development was low during the first stress round in 

Figure 1. Total (a,b), shoot (c,d), and root (e,f) relative growth rates (RGR) of Chloris gayana plants
subjected for 13 days to control conditions (C, white bars), waterlogging (WL, grey bars), or drought
(D, striped bars) in the first stress round (a,c,e) and the subsequent 15-day recovery phase (b,d,f).
Values are means ± e.e. (n = 8). Different letters indicate differences between treatments (p < 0.05).

Plants fully recovered either total, shoot, or root biomass, and no overcompensation
was observed during the recovery phase (Supplementary Material Figure S1b,d,f). Total
RGR values were lower during the recovery phase than the previous 15 days (i.e., first stress
round, cfr. Figure 1a vs. Figure 1b)—highlighting the effect of plant age on relative growth
rate. This age condition was also recorded for shoot RGR (Figure 1c vs. Figure 1d), as well as
for root RGR in control plants and plants recovering from drought (Figure 1e vs. Figure 1f);
yet, previously waterlogged plants slightly increased their RGR during the recovery phase
(Figure 1e,f).
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A significant increase in allocation to leaves in waterlogged plants after the first stress
round is shown in Figure 2a (p < 0.05); this promotion of LWR caused by excess water
was buffered during the recovery phase (Figure 2b; p > 0.05). Drought-stressed plants
showed a significant reduction in LWR (Figure 2a; p < 0.05), joined by an increase in RWR
(Figure 2c; p < 0.05) compared to control plants. Both effects disappeared during the
recovery phase (Figure 2b,d; p > 0.05). Stolon development was low during the first stress
round in relatively young plants, and yet increased during the recovery phase (Figure 2e,f);
however, after both the stress and recovery periods, waterlogged or drought plants did not
significantly differ from controls (Figure 2e,f; p > 0.05).
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Figure 2. Leaf weight ratio (LWR; (a,b)), root weight ratio (RWR; (c,d)), and stolon/total ratio (e,f) of
Chloris gayana plants subjected during 13 days to control conditions (C, white bars), waterlogging
(WL, grey bars), or drought (D, striped bars) in the first stress round (a,c,e), and the subsequent
15-day recovery phase (b,d,f). Values are means ± e.e. (n = 8). Different letters indicate differences
between treatments (p < 0.05).

Contrary to the expected plant hardening hypothesis, stress history did not change
stress tolerance during the second stress round, as both the interaction and the first stress
round were not statistically significant—as revealed by the two-way ANOVA of the RGR
calculations (Figure 3a,c,e; p > 0.05). Accordingly, the second stress factor was statistically
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significant for total, shoot, and root RGRs because drought plants showed lower values
than control and waterlogged plants (Figure 3a,c,e; p < 0.05). Noticeably, waterlogged
plants did not show lower RGR values than control plants during the second stress round
(Figure 3a,c,e; p > 0.05). RGR values during the recovery phase resembled those during
the second stress round, with both the interaction and the first stress factor being non-
significant (Figure 3b,d,f; p > 0.05). The second stress factor had a statistically significant
effect during the second recovery phase, as plants subjected to drought stress did not
recover and even continued to show decreasing RGR values (Figure 3b,d,f; p < 0.05).
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Figure 3. Total (a,b), shoot (c,d), and root (e,f) relative growth rates (RGR) of Chloris gayana plants
subjected for 8 days to control conditions (C, white bars), waterlogging (WL, grey bars), or drought
(D, striped bars) in the second stress round (a,c,e) and their subsequent 15-day recovery phase (b,d,f).
Values are means ± e.e. (n = 8). Different letters indicate differences between treatments (p < 0.05).

Allocation was only affected by the second stress round, as both the interaction and
the first stress factor did not show statistical differences between treatments (Figure 4).
Accordingly, LWR was lower for drought-stressed plants compared to control plants
(Figure 4a; p < 0.05), irrespective to the previous stress history (i.e., either from control,
waterlogged, or drought conditions in the first stress round). Markedly, plants during the
second stress round and with different stress histories were not affected by waterlogging
compared to control plants in terms of LWR or RWR (Figure 4a,c; p > 0.05). Drought-
stressed plants (second round) presented higher RWRs yet similar partitioning to stolons
compared to control plants (Figure 4c,e; p < 0.05 and p > 0.05, respectively); again, stress
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history did not play a significant role in these responses. Drought plants did not recover
after watering during the second recovery phase as partitioning to both leaves and stolons
decreased (Figure 4b,c)—thus increasing the RWR compartment relative to control plants
(Figure 4d).
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treatments (p < 0.05).

3. Discussion

Under a climate change scenario, forage plants must be able to successfully deal with
contrasting and dynamic water conditions to fulfill productivity expectations. In this work,
we explored—for the very first time—plant growth responses to a second round of drought
or waterlogging after full recovery from a previous water stress event. We used Chloris
gayana, a widespread forage grass that experiences sequential drought and waterlogging
conditions in large areas of its native African range [4,5,7,8], to expose plants to both stress
factors, given sequentially during the vegetative phase.
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3.1. Responses to Waterlogging, Drought, and Mixed Sequential Stresses

In contrast to young C. gayana plants (30 days old), which showed clear growth
inhibition during the first waterlogging, adult plants (58 days old)—no matter their stress
history—were fully acclimated to waterlogging conditions according to their total RGR.
An increase in waterlogging tolerance along the ontogeny has been observed in several
forage grasses [26,27], and it could be related to the high capacity of adult grasses to
generate new adventitious aerenchymatous roots able to facilitate oxygen transport to
root meristems [12,26]. By contrast, young, smaller-sized plants are expected to be less
tolerant to waterlogging than adult plants, in accordance with their limited carbon fixation
and potential for resource acquisition (i.e., small root system) [27,28]. Interestingly, dry
mass allocation was similar between waterlogged and control plants, irrespective of their
stress history—implying, non-exclusively, that (i) adult plants might be metabolically
pre-acclimated to waterlogging, or (ii) the high tolerance to waterlogging of this species
is not related to carbon partitioning, but relies on other traits (i.e., anato-morphological
responses such as aerenchyma formation, leaf lengthening, etc.). Overall, our data suggest
that adult C. gayana plants can withstand frequent and recurrent waterlogging without
major yield losses.

Flooded plants can experience leaf dehydration during stress or even after flood-
waters recede, as well as in stressful conditions shared with drought and other stress
factors [15,29,30]. In relation to this, it has been shown in the crop rice that de-submergence
upregulates gene transcripts associated with the acclimation to dehydration [15]. A net
of shared core regulatory mechanisms are conserved across different plant stresses—as
revealed by recent studies in the literature [31–33]—and were, consequently, expected
to occur in plants acclimated to either drought or waterlogging. Besides this, previous
literature indicates that abiotic stress trigger responses such as accumulation of organic
metabolites and expression of ROS detoxification enzymes could acclimate C. gayana, as
well as other forage grasses, to adverse conditions [34,35]. Considering this, a tentative
hypothesis is that C. gayana plants acclimated to either waterlogging or drought are primed
for a second stressful event and perform better in terms of growth potential to mixed
stresses than previously non-stressed plants (control plants at field capacity). Despite the
high sensitivity of growth-related parameters to abiotic stress [11,36], our results did not
support this hypothesis, as plant performance during a second stress round in terms of
RGR did not depend on the occurrence of a previous acclimation to either drought or
waterlogging. Cross-protection based on hormonal (mainly abscisic acid) and metabolic
acclimations was observed between drought and several stress factors capable of triggering
leaf dehydration, such as heat, salinity, and freezing temperatures [37,38]. In this first
exploration we could not find any evidence of cross-protection inducing hardening against
waterlogging and drought.

3.2. Is Stress Memory Noticeable in Chloris gayana at the Whole-Plant Level?

Drought memory has been a subject of recent interest at the molecular and plant cell
levels, pinpointing the importance of biochemical acclimations in obtaining a faster and
stronger response to a second stress [39–41]. Then, our stress imposition protocol repre-
sented a good opportunity to test if drought memory can scale up to the whole-plant level
in a forage grass species. In the case of C. gayana, we did not find an enhanced response to
a second drought after the rewatering phase (i.e., expected yet ineffective, smaller decrease
in either total or stem RGR—or even increased root RGR), as plants that had experienced
drought performed even more poorly than plants that were well-watered during the first
stress round. Moreover, plants from different backgrounds (either previously waterlogged
or controls) faced second drought recovery similarly. Stress memory might not be a consti-
tutive or conserved plant trait because it involves costs—it may hinder recovery and affect
potential yield and, in consequence, be considered maladaptive [40]. On the other hand,
the high recovery growth during the rehydration phase might have reset plants from any
potential stress memory programmed during the first instance of drought stress, or the
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first stress might even have been too short to trigger the memory response where it existed.
Whatever the reason, the conclusion is that short-term drought stress memory affecting
growth or biomass partitioning could not be established in C. gayana plants.

In the highly variable environments in which C. gayana cultivars are being introduced,
such as areas with poorly drained soils in which drought and waterlogging dynamically
follow each other, plant forage yield (i.e., dry matter production) depends on a great
extent to both stress acclimation and fast post-stress recovery. Our data indicate that,
for C. gayana plants, the benefit or cost of acclimation to a first stress was offset after a
full recovery as any acclimatization reached during the first stress round was disabled
during the subsequent recovery phase. This result prompts further questions concerning
yet-unknown relationships between the level of recovery and performance against a second
abiotic stress. Those questions should be addressed in future experiments to establish if
stress memory and cross-protection can help stabilize forage productivity under a more
dynamic weather scenario, as is predicted from climate change models.

4. Materials and Methods
4.1. Species Description

Chloris gayana Kunth (Rhodes grass) is a major tropical grass cultivated worldwide as
one of the most important warm-season forage grasses in subtropical and tropical areas [8].
It is used for direct grazing, producing high-quality hay and silage, and is a promising
species for revegetating erodible sites. C. gayana is a C4 stoloniferous and tufted, leafy
perennial grass with ascending stems (0.5–1 m tall). It has been described as tolerant to
salinity and drought [42], but the species has also been introduced in areas suffering from
water excess causing soil waterlogging [4,43]—such as floodplain rangelands, in which
excesses and deficits in soil water can dynamically follow each other [44].

4.2. Plant Culture and Treatments Setup

Seeds of C. gayana cv. Fine Cut were germinated in an incubator at 25 ◦C in polystyrene
boxes containing absorbent white paper saturated with distilled water. After 10 days,
germinated seeds were transplanted to 3 L plastic pots (five per pot) filled with thoroughly
mixed topsoil from arable cropland and sand (1:1 v/v) and transferred to a glasshouse at
the Faculty of Agronomy of the University of Buenos Aires, Argentina. Seedlings were
subsequently thinned to one per pot and left to grow for 30 days.

Plants with two tillers were randomly assigned to each of the nine treatments (sum-
marized in Figure 5) and exposed to a sequence of two stress periods (waterlogging or
drought), each followed by a recovery phase at field capacity. While some of the treatments
mimic the seasonal transition from wetter to drier conditions during the growing season
in rangelands (e.g., WL + D treatment), this experimental design not only let us subject
plants to a sequence of mixed stress factors and control conditions (WL: waterlogging,
D: drought, C: Control at field capacity), but also allowed us to account for plant age at the
time of applying either water stress. Eight replicate plants per treatment were harvested
for biomass measurements at the end of the establishment period and after each stress or
recovery phase (see Figure 5).

The drought treatment guided the length of each of the stress rounds and consisted
of watering withdrawal until water resupply during the recovery phase. The first stress
round lasted for 13 days and finalized when 50% of the drought-stress plants had negligible
stomatal conductance levels (i.e., below detection levels < 5 mmol m−2 s−1) after two
consecutive clear days, as measured with a portable porometer at 10 am (Decagon Devices,
Pullman, WT, USA). The second stress round lasted for 8 days and finalized when C + D
plants showed symptoms of senescence in approximately 1/3 of leaves. Waterlogging
(i.e., inundation water 1 cm above substrate level) was imposed by placing pots in pots
of the same volume lined with impermeable plastic bags. Both recovery phases were
standardized to two weeks, the length of time needed to diagnose the status of recovery
after a stress period [2]. Control plants were watered every other day and drained freely.
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Waterlogged pots were allowed to drain at the end of each stress round, and drought plants
were rewatered. Toward the end of both the establishment phase and each stress period,
pots were irrigated with five times their volume to homogenize the nutrient level after each
treatment. Then, pots were fertilized at a rate of 1 g per pot with 12% N, 5% P, 15% K, 2%
Mg, and 8% S + micronutrients with a commercial fertilizer (DF Nitrofull S.R.L., Buenos
Aires, Argentina) to prevent any potential nutrient deficits. Total evapotranspiration of
drought-stressed plants was estimated as the difference between overnight rewatered
pots minus their final weight (pot plus plant weight, n = 5) after each drought period.
Pots were randomly arranged in the greenhouse. Mean environmental conditions in the
greenhouse were 22.3 ± 5.2 ◦C and 63 ± 17 RH%. PAR irradiation in the greenhouse was
70% of the natural amount of sunlight. At the end of the first stress round, pots from
drought-stressed plants lost on average 0.49 ± 0.02 L water through evapotranspiration. In
addition, during the second stress round, pots assigned to drought-stressed plants lost on
average 0.47 ± 0.03 L water, without significant differences between both drought rounds
(p > 0.05).
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4.3. Measurements

Dry mass accumulation per plant was measured at the end of each stress round and the
recovery phase (Figure 5). After harvest, plants were dissected into each of the following
parts: leaves, roots, and stolons. Stolons were included in the aerial-shoot compartment
along with leaves due to its position above soil level, its importance as a propagation organ,
and its role in stress tolerance (i.e., heat, drought) in some forage species [45,46]. The
material was classified as senescent or alive according to a visual and tactile appraisal of
plant compartments. In all cases, the material was weighed after oven drying for 72 h at
80 ◦C. After each of the stress rounds or recovery phases, the relative growth rates (RGRs)
for each of the treatments was calculated from dry biomass data following the equation of
Hunt (1982) [47]:

RGR (g/g d−1) = [ln (W2) − ln (W1)]/(t2 − t1) (1)

where W2 and W1 are the dry biomass at the end and the beginning of each stress or
recovery period for any of the treatments (Figure 5), and t2 − t1 is the time spent in each of
the periods.

Allometric relationships as Leaf Weight Ratio (LWR = Leaf weight (g)/Total weight
(g)), Root Weight Ratio (RWR; RWR = Root weight (g)/Total weight (g)) and Stolon/Total
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(Stolon Weight (g)/Total Weight (g)) were calculated from dried biomass after each one of
the harvests.

4.4. Statistical Analysis

One-way ANOVAs were used to determine the effect of treatments (i.e., waterlogging,
drought, control) in RGRs or biomass allocation patterns after the first stress round and the
first recovery phase. Interaction and treatment effects on RGRs and biomass allocation after
the second stress round and recovery were evaluated by two-way ANOVAs, with ‘first
stress’ and ‘second stress’ as main factors. Tukey tests at p < 0.05 were used to determine
treatment effects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11202699/s1, Figure S1: Total (a,b), shoot (c,d), and root (e,f) dry biomass of Chloris
gayana plants subjected for 13 days to control conditions (C, white bars), waterlogging (WL, grey
bars), or drought (D, striped bars) in the first stress round (a,c,d) and the subsequent 15-day recovery
phase (b,d,f). Values are means ± e.e. (n = 8). Different letters indicate differences between treatments
(p < 0.05). Figure S2: Total (a,b), shoot (c,d), root (e,f), and stolon (e,f) dry biomass of Chloris gayana
plants subjected for 8 days to control conditions (C, white bars), waterlogging (WL, grey bars), or
drought (D, striped bars) in the second stress round (a,c,d,e) and the subsequent 15-day recovery
phase (b,d,f,g). Values are means ± e.e. (n = 8). Different letters indicate differences between
treatments (p < 0.05).
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