
Journal Pre-proof

Cycles to compute the full set of many-to-many stable matchings

Agustín G. Bonifacio, Noelia Juarez, Pablo Neme, Jorge Oviedo

PII: S0165-4896(22)00015-4
DOI: https://doi.org/10.1016/j.mathsocsci.2022.03.001
Reference: MATSOC 2241

To appear in: Mathematical Social Sciences

Received date : 22 October 2021
Revised date : 28 January 2022
Accepted date : 2 March 2022

Please cite this article as: A.G. Bonifacio, N. Juarez, P. Neme et al., Cycles to compute the full set
of many-to-many stable matchings. Mathematical Social Sciences (2022), doi:
https://doi.org/10.1016/j.mathsocsci.2022.03.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.mathsocsci.2022.03.001
https://doi.org/10.1016/j.mathsocsci.2022.03.001


Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Highlights

Cycles to compute the full set of many-to-many stable matchings

Agust́ın G. Bonifacio, Noelia Juarez, Pablo Neme and Jorge Oviedo

� We generalize the notion of “cycle in preferences” to a many-to-many
matching model with substitutable preferences that fulfill the law of
aggregate demand.

� We use cycles in preferences to compute the full set of stable matchings
in such many-to-many matching model.

� We present an example showing that the algorithm presented by [14]
has an error and provide some intuition on why it fails.
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Abstract

In a many-to-many matching model in which agents’ preferences satisfy sub-
stitutability and the law of aggregate demand, we present an algorithm to
compute the full set of stable matchings. This algorithm relies on the idea
of “cycles in preferences” and generalizes the algorithm presented in [18] for
the one-to-one model.

Keywords: Stable matchings, cyclic matching, substitutable preferences.
JEL: C78, D47

1. Introduction.

In many-to-many matching models, there are two disjoints sets of agents:
firms and workers. Each firm wishes to hire a set of workers and each worker
wishes to work for a set of firms. Many real-world markets are many-to-many,
for instance, the market for medical interns in the UK [18], the assignment of
teachers to high schools in some countries (35% of teachers in Argentina work
in more than one school). A matching is an assignment of sets of workers
to firms, and sets of firms to workers, so that a firm is assigned to a worker
if and only if this worker is also assigned to that firm. In these models, the
most studied solution is the set of stable matchings. A matching is stable if
all agents are matched to an acceptable subset of partners and there is no
unmatched firm-worker pair, both of which would prefer to add the other to

Preprint submitted to Mathematical Social Science January 28, 2022
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their current subset of partners.1 In their seminal paper, [8] introduce the
Deferred Acceptance (DA, from now on) algorithm to show the existence of
a stable matching in the one-to-one model. This algorithm computes the
optimal stable matching for one side of the market. Later, the DA algorithm
is adapted to the many-to-many case by [16].

In this paper, we present an algorithm to compute the full set of many-
to-many stable matchings. In the one-to-one model, beginning from a stable
matching and through a procedure of reduction of preferences, [18] define a
“cycle in preferences” that allows them to generate a new matching, called a
“cyclic matching”, that turns out to be stable.2 They present an algorithm
that, starting from an optimal stable matching for one side of the market and
by constructing all cycles and its corresponding cyclic matchings, computes
the full set of one-to-one stable matchings [see 11, 9, 18, for more details].
The purpose of our paper is to extend Roth and Sotomayor’s construction
to a many-to-many environment.

Our general framework assumes substitutability on all agents’ prefer-
ences. This condition, first introduced by [12], is the weakest requirement
in preferences to guarantee the existence of many-to-many stable matchings.
An agent has substitutable preferences when she wants to continue being
matched to an agent of the other side of the market even if other agents
become unavailable. Given an agent’s preference, [3] defines a partial order
over subsets of agents of the other side of the market as follows: one subset
is Blair-preferred to another subset if, when all agents of both subsets are
available, only the agents of the first subset are chosen.3 When preferences
are substitutable, the set of stable matchings has a lattice structure with
respect to the unanimous Blair order for any side of the market.4

In addition to substitutability, we require that agents’ preferences sat-
isfy the “law of aggregate demand” (LAD, from now on).5 This condition
says that when an agent chooses from an expanded set, it selects at least as

1This notion of stability is known in the literature as “pairwise stability”.
2[18] adapt the algorithm presented in [11]. Cycles are called “rotations” in [11]
3Blair’s order of an agent is more restrictive than the individual preference of that

agent.
4For instance, a set of workers is Blair-preferred to another set of workers for the firms

if the first set is Blair-preferred to the latter set for each firm.
5This property is first studied by [1] under the name of “cardinal monotonicity”. See

also [10].
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many agents as before. Under these two assumptions on preferences, the set
of stable matchings satisfies the so-called Rural Hospitals Theorem, which
states that each agent is matched with the same number of partners in ev-
ery stable matching. Substitutability of preferences and LAD ensure that
suitable generalizations of the concepts of “cycle” and “cyclic matching” can
be defined. To do this, given a substitutable preference profile and two sta-
ble matchings that are unanimously Blair-comparable (for one side of the
market), we define a “reduced preference profile” with respect to these two
stable matchings and show that this profile is also substitutable and satis-
fies LAD. Next, we adapt Roth and Sotomayor’s notion of a cycle for our
reduced preference profile and use this many-to-many notion of a cycle to
define a cyclic matching. This new matching turns out to be stable not only
for this reduced preference profile but also for the original preference profile.
With all these ingredients we can describe our algorithm as follows. Given
a preference profile, by the DA algorithm compute the two optimal stable
matchings, one for each side of the market. Pick one side of the market,
say the firms’ side, and obtain the reduced preference profile with respect to
the firms’ optimal and the workers’ optimal stable matchings. In each of the
following steps, for each reduced preference profile obtained in the previous
step, compute: (i) each cycle for this profile, (ii) its corresponding cyclic
matching, and (iii) the reduced preference profile with respect to this cyclic
matching and the worker optimal stable matching. The algorithm stops in
the step where all the cyclic matchings computed are equal to the worker
optimal stable matching. The firms’ optimal stable matching together with
all the cyclic matchings obtained by the algorithm encompass the full set of
stable matchings.

Several papers calculate the full set of stable matchings in two-sided
matching models. [15] are the first to present an algorithm that computes the
full set of one-to-one stable matchings. This algorithm starts at the optimal
stable matching for one side of the market and then, at each step, breaks
some matched pair and applies the DA algorithm to the new preference pro-
file in which the broken matched pair is no longer acceptable. This algorithm
is generalized by [14] to a many-to-many matching market in which agents’
preferences satisfy substitutability. However, we provide an example that
shows that the algorithm in [14] has an error: it stops before computing all
stable matchings. We also give an intuition of why this happens.

Following the lines of [11] and [18], [2] extend the notion of cycle to a
many-to-many matching model in which each agent has a strict ordering

3
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over individual agents of the other side of the market.6 Among other results,
they use cycles to compute the full set of stable matchings. [7] revise and
improve the algorithm presented in [2]. Moreover, they extend the algorithm
for a model in which agents’ preferences satisfy the “max-min criterion”.
This criterion establishes that agents rank stable matchings in a responsive
manner. However, their assumptions are more restrictive than substitutabil-
ity over subsets of agents and LAD. For a many-to-one matching model with
strict orderings over individual agents [4], using the notion of cycles intro-
duced by [2], show that broad classes of feasibility and optimization stable
matching problems can be solved efficiently.

A different approach to compute the full set of stable matchings is pre-
sented by [6]. For a one-to-one model, they generalize the DA algorithm
allowing both sides of the market to make offers in a specific order. The
paper proposes a generalized DA algorithm with “compensation chains” and
proves that: (i) for each order of the agents, the algorithm obtains a stable
matching, and (ii) each stable matching can be obtained as the output of the
algorithm for some order of the agents.

Our paper is organized as follows. In Section 2 we present the prelim-
inaries. The reduction procedure of preferences is presented in Section 3.
Section 4 contains the definition of a cycle in preferences together with the
algorithm that computes the many-to-many stable set. Concluding remarks
are gathered in Section 5, where the error in [14] is discussed. All proofs are
relegated to Appendix 6.

2. Preliminaries

We consider many-to-many matching markets where there are two disjoint
sets of agents: the set of firms F and the set of workers W . Each firm f ∈ F
has a strict preference relation Pf over the set of all subsets of W . Each
worker w ∈ W has a strict preference relation Pw over the set of all subsets
of F . We denote by P the preference profile for all agents: firms and workers.
A (many-to-many) matching market is denoted by (F,W,P ). Since the sets
F and W are kept fixed throughout the paper, we often identify the market
(F,W,P ) with the preference profile P . Given an agent a ∈ F ∪W , a set S
in the opposite side of the market is acceptable for a under P if SPa∅. A

6This setting is equivalent to the one defined by [17] for the many-to-many model in
which firms have responsive preferences over subsets of workers.

4
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pair (f, w) ∈ F ×W is mutually acceptable under P if {f} is acceptable
for w under P and {w} is acceptable for f under P . In this paper, the
preference relation Pa is represented by the ordered list of its acceptable sets
(from most to least preferred).7 Given a set of workers W ′ ⊆ W and a firm
f ∈ F , let Cf(W

′) (the choice set for f) denote firm f ’s most preferred
subset of W ′ according to the preference relation Pf . Symmetrically, given a
set of firms F ′ ⊆ F and a worker w ∈ W , let Cw(F

′) (the choice set for w)
denote worker w’s most preferred subset of F ′ according to the preference
relation Pw.

Definition 1. A matching µ is a function from the set F ∪W into 2F∪W

such that for each w ∈ W and for each f ∈ F :

(i) µ(w) ⊆ F ,

(ii) µ(f) ⊆ W ,

(iii) w ∈ µ(f) if and only if f ∈ µ(w).

Agent a ∈ F ∪W is matched if µ(a) ̸= ∅, otherwise she is unmatched. For
the following definitions, fix a preference profile P . A matching µ is blocked
by agent a if µ(a) ̸= Ca(µ(a)). A matching is individually rational if
it is not blocked by any individual agent. A matching µ is blocked by
a firm-worker pair (f, w) if w /∈ µ(f), w ∈ Cf (µ(f) ∪ {w}), and f ∈
Cw(µ(w)∪{f}). A matching µ is stable if it is not blocked by any individual
agent or any firm-worker pair. The set of stable matchings for a preference
profile P is denoted by S(P ).

Agent a’s preference relation satisfies substitutability if, for each subset
S of the opposite side of the market (for instance, if a ∈ F then S ⊆ W ) that
contains agent b, b ∈ Ca(S) implies that b ∈ Ca(S

′ ∪ {b}) for each S ′ ⊆ S.
Moreover, if agent a’s preference relation is substitutable then it holds that

Ca(S ∪ S ′) = Ca(Ca(S) ∪ S ′) (1)

for each pair of subsets S and S ′ of the opposite side of the market.8

Given a firm f , [3] defines a partial order for f over subsets of workers as
follows: given firm f ’s preference relation Pf and two subsets of workers S

7For instance, Pf : w1w2, w3, w1, w2 indicate that {w1, w2}Pf{w3}Pf{w1}Pf{w2}Pf∅
and Pw : f1f3, f3, f1 indicates that {f1, f3}Pw{f3}Pw{f1}Pw∅.

8See Proposition 2.3 in [3], for more details.

5
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and S ′, we write S ⪰f S′ whenever S = Cf (S ∪S ′), and S ≻f S′ whenever
S ⪰f S ′ and S ̸= S ′. The partial orders ⪰w and ≻w for worker w are
defined analogously. Given a preference profile P and two matchings µ and
µ′, we write µ ⪰F µ′ whenever µ(f) ⪰f µ′(f) for each f ∈ F , and we write
µ ≻F µ′ if, in addition, µ ̸= µ′.9 Similarly, we define ⪰W and ≻W .

The set of stable matchings under substitutable preferences is very well
structured. [3] proves that this set has two lattice structures, one with respect
to ⪰F and the other one with respect to ⪰W . Furthermore, it contains two
distinctive matchings: the firm-optimal stable matching µF and the worker-
optimal stable matching µW . The matching µF is unanimously considered by
all firms to be the best among all stable matchings and µW is unanimously
considered by all workers to be the best among all stable matchings, according
to the respective Blair’s partial orders [see 16, 3, for more details].

Agent a’s preference relation satisfies the law of aggregate demand
(LAD) if for all subsets S of the opposite side of the market and all S ′ ⊆ S,
|Ca(S

′)| ≤ |Ca(S)|.10 When preferences are substitutable and satisfy LAD,
the lattices (S(P ),⪰F ) and (S(P ),⪰W ) are dual; that is, µ ⪰F µ′ if and only
if µ′ ⪰W µ for µ, µ′ ∈ S(P ). This is known as the “polarization of interests”
result [see 1, 13, among others].

3. The reduction procedure

In this section, we present a reduction procedure that will allow us to
define a cycle in preferences, a concept that is essential for developing our
algorithm. Given a substitutable preference profile and two Blair-comparable
(for the firms) stable matchings, this reduction procedure generates a new
preference profile, in which the most Blair-preferred stable matching is the
firm-optimal matching and the least Blair-preferred stable matching is the
worker-optimal matching, for the market identified with this new preference
profile. The reduction procedure is described as follows. Let µ and µ̃ be
stable matchings for the matching market (F,W,P ) such that µ ⪰F µ̃.

Step 1: (a) For each f ∈ F , each W ′ ⊂ W such that W ′ ≻f µ(f), and each

w̃ ∈ W ′ \ µ(f), remove each W̃ ⊂ W such that w̃ ∈ W̃ from f ’s
list of acceptable sets of workers.

9We call ⪰F the unanimous Blair order for the firms.
10|S| denotes the number of agents in S.
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(b) For each w ∈ W , each F ′ ⊂ F such that F ′ ≻w µ̃(w), and each

f̃ ∈ F ′ \ µ̃(w), remove each F̃ ⊂ F such that f̃ ∈ F̃ from w’s list
of acceptable sets of firms.

Step 2: (a) For each f ∈ F , each W ′ ⊂ W such that µ̃(f) ≻f W ′, and each

w̃ ∈ W ′ \ µ̃(f), remove each W̃ ⊂ W such that w̃ ∈ W̃ from f ’s
list of acceptable sets of workers.

(b) For each w ∈ W , each F ′ ⊂ F such that µ(w) ≻w F ′, and each

f̃ ∈ F ′ \ µ(w), remove each F̃ ⊂ F such that f̃ ∈ F̃ from w’s list
of acceptable sets of firms.

Step 3: After Steps 1 and 2 are performed, if f is not acceptable for w (that
is, if {f} is not on w’s preference list as now modified), remove each
W ′ ⊂ W such that w ∈ W ′ from f ’s list of acceptable sets of workers.
If w is not acceptable for f (that is, if {w} is not on f ’s preference list
as now modified), remove each F ′ ⊂ F such that f ∈ F ′ from w’s list
of acceptable sets of firms.

The profile obtained by this procedure is called the reduced preference
profile with respect to µ and µ̃, and is denoted by P µ,µ̃. When µ̃ = µW ,
the profile is simply called the reduced preference profile with respect
to µ, and is denoted by P µ.

Let us put in words how the reduction procedure works. In Step 1 (a),
for each f ∈ F , if a worker is not in µ(f) but belongs to a subset that is
Blair-preferred to µ(f), the procedure eliminates each subset that contains
this worker from firm f ’s list of acceptable subsets. Step 1 (b) performs an
analogous elimination in each worker’s preference list. In Step 2 (a), for each
f ∈ F , if a worker is not in µ̃(f) and µ̃(f) is Blair-preferred to a subset
that includes this worker, the procedure eliminates each subset that contains
this worker from firm f ’s list of acceptable subsets. Step 2 (b) performs an
analogous elimination in each worker’s preference list. In Step 3, after Step
1 and Step 2 are performed, the procedure eliminates all subsets of agents
needed to make all pairs of agents mutually acceptable.

By Cµ,µ̃
f (W ′) we denote the firm f ’s most preferred subset of W ′ accord-

ing to the preference relation P µ,µ̃
f . Similar notation is used for the choice

sets according to the preference relations P µ,µ̃
w , P µ

f , and P µ
w . Some remarks

on the reduced preference relations are in order.

Remark 1. Let P be a market and assume µ, µ̃ ∈ S(P ). Then the following
statements hold.

7
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(i) µ (f) is the most preferred subset of workers in f ’s reduced preference
relation (i.e. µ (f) = Cµ,µ̃

f (W )) and µ̃(w) is the most preferred subset

of firms in w’s reduced preference relation (i.e. µ̃ (w) = Cµ,µ̃
w (F )).

(ii) µ is the firm–optimal stable matching under P µ,µ̃ and µ̃ is the worker–
optimal stable matching under P µ,µ̃. Furthermore, µ̃ is the firm–pessimal
stable matching under P µ,µ̃ and µ is the worker–pessimal stable match-
ing under P µ,µ̃.

(iii) f is acceptable to w if and only if w is acceptable to f under P µ,µ̃.

The following lemma states that the properties of substitutability and
LAD are preserved by the reduction procedure.

Lemma 1. Let µ, µ̃ ∈ S(P ) and a ∈ F ∪ W . If Pa is substitutable and
satisfies LAD, then the reduced preference relation P µ,µ̃

a is substitutable and
satisfies LAD.

The following example illustrates the reduction procedure for a matching
market.

Example 1. Let (F,W,P ) be a matching market where F = {f1, f2, f3},
W = {w1, w2, w3, w4, w5, w6}, and the preference profile is given by:

Pf1 : w1w2, w1w5, w2w5, w1w3, w4w5, w2w4, w1w4, w3w4, w3w5, w2w3, w1, w4, w3, w
Pf2 : w3w6, w3w5, w5w6, w2w5, w1w3, w2w6, w1w5, w1w2, w2w3, w1w6, w1, w2, w3, w
Pf3 : w2w4, w1w2, w3w4, w2w3, w1w3, w1w4, w1, w2, w3, w4

Pw1 : f3, f1, f2
Pw2 : f2f3, f1f3, f1f2, f1, f2, f3
Pw3 : f1, f2
Pw4 : f1, f3, f2
Pw5 : f2, f3
Pw6 : f1f3, f3, f1

It is easy to check that these preference relations are substitutable and satisfy
LAD. By the DA algorithm, we obtain the two optimal stable matchings:

µF =

(
f1 f2 f3 ∅

w1w2 w3w5 w2w4 w6

)
and µW =

(
f1 f2 f3 ∅

w3w4 w2w5 w1w2 w6

)
.

Now, after the reduction procedure is performed, we obtain the reduced pref-

erence profile with respect to µF , P
µF :11

11Notice that the subsets assigned in the optimal stable matchings are in bold.

8
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P µF

f1
: w1w2, w1w3, w2w4, w1w4,w3w4, w2w3, w1, w4, w3, w2

P µF

f2
: w3w5,w2w5, w2w3, w2, w3, w5

P µF

f3
: w2w4,w1w2, w1w4, w1, w2, w3, w4

P µF
w1

: f3,f1

P µF
w2

: f2f3,f1f3, f1f2, f1, f2, f3
P µF
w3

: f1,f2

P µF
w4

: f1,f3

P µF
w5

: f2

P µF
w6

: ∅
In order to show how each stage of the procedure works, we turn our attention
to preferences Pf1 and Pf2. At Step 1 of the reduction procedure we remove
the following subsets of agents:

Pf1 : w1w2, w1w5, w2w5, w1w3, w4w5, w2w4, w1w4,w3w4, w3w5, w2w3, w1, w4, w3,
Pf2 :���w3w6,w3w5,���w5w6,w2w5, w1w3,���w2w6, w1w5, w1w2, w2w3,���w1w6, w1, w2, w3,

At Step 2 of the reduction procedure we remove the following subsets of agents:

Pf1 : w1w2, w1w5, w2w5, w1w3, w4w5, w2w4, w1w4,w3w4, w3w5, w2w3, w1, w4, w3,
Pf2 : w3w5,w2w5,XXXw1w3,XXXw1w5,XXXw1w2, w2w3,HHw1, w2, w3, w5.

Since f1 is not acceptable for w5 at the original preferences, f1 is not accept-
able for w5 after Steps 1 and 2 are performed. So at Step 3 we remove the
following subsets of agents:

Pf1 : w1w2,���XXXw1w5,���XXXw2w5, w1w3,���XXXw4w5, w2w4, w1w4,w3w4,���XXXw3w5, w2w3, w1, w4, w3,
Pf2 : w3w5,w2w5, w2w3, w2, w3, w5.

In this way we obtain P µF

f1
and P µF

f2
. ♢

The following theorem states that the stability of a matching is preserved
by the reduction procedure and that there are no new stable matchings for
the reduced preference profile. This means that a stable matching in the
original preference profile is in between (according to Blair’s partial order)
of the two stable matchings used to generate the reduced preference profile if
and only if it is also stable in the reduced preference profile.12 An important

12Recall that ⪰F and ⪰W are dual orders only in the set of stable matchings.
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fact about this theorem (and its corollary) is that LAD is not needed to
obtain it.13

Theorem 1. Let µ, µ̃ ∈ S(P ) with µ ⪰F µ̃. Then, µ′ ∈ S(P ) and µ ⪰F

µ′ ⪰F µ̃ if and only if µ′ ∈ S(P µ,µ̃).

Notice that by optimality of µF and µW , any stable matching µ ∈ S(P )
satisfies µF ⪰F µ and µW ⪰W µ. Furthermore, by the polarization of inter-
ests, µ ⪰F µW . Then, µF ⪰F µ ⪰F µW . Thus, as a consequence of Theorem
1 we can state the following corollary.

Corollary 1. S(P ) = S(P µF ).

4. Cycles and Algorithm

In this section, we present the algorithm to compute the full set of many-
to-many stable matchings. First, we introduce its key ingredients: the notion
of a cycle in preferences and its corresponding cyclic matching. From now
on, we assume that the preferences of all agents are substitutable and satisfy
LAD.

4.1. Cycles and cyclic matchings

In the one-to-one model, [18] present the notion of a cycle in preferences.14

Their construction can be roughly explained as follows. Consider a one-to-
one matching market (M,W,P ) and a stable matching µ ∈ S(P ). A reduced
preference profile with respect to µ and the worker-optimal stable matching
µW , say P µ,µW , is obtained. The important facts about this reduced profile
are that: (i) µ(f) is f ’s most preferred partner and µW (f) is f ’s least pre-
ferred partner according to P µ,µW

f , for each f ∈ F ; and (ii) µW (w) is w’s most
preferred partner and µ(w) is w’s least preferred partner according to P µ,µW

w ,
for each w ∈ W. A cycle for P µ,µW in the one-to-one model can be seen as
an ordered sequence of worker-firm pairs {(w1, f1), (w2, f2), . . . , (wr, fr)} such
that wi = µ(fi) and wi+1 is fi’s most-preferred worker of W \ {wi} according
to P µ,µW

fi
. Our definition of a cycle generalizes this idea to the many-to-many

environment. Formally,

13In this paper there are only three results in which LAD is not needed: Theorem 1,
Corollary 1, and Lemma 3.

14[18] adapt the notion of rotation presented in [11], and refer to it as a cycle in prefer-
ences.

10
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Definition 2. Let µ, µ̃ ∈ S(P ) with µ ≻F µ̃. A cycle σ for P µ,µ̃ is an
ordered sequence of worker-firm pairs σ = {(w1, f1), (w2, f2), . . . , (wr, fr)}
such that, for i = 1, . . . , r, we have:

(i) wi ∈ µ(fi) \ µ̃(fi),
(ii) Cµ,µ̃

fi
(W \ {wi}) = (µ(fi) \ {wi}) ∪ {wi+1}, with wr+1 = w1, and

(iii) Cµ,µ̃
wi

(µ(wi) ∪ {fi−1}) = (µ(wi) \ {fi}) ∪ {fi−1}, with f0 = fr.

Condition (i) states that worker wi is matched with fi under µ but not under
µ̃. Condition (ii) states that the set obtained from µ(fi) by eliminating worker
wi and adding worker wi+1 is the most Blair-preferred subset of workers
of W \ {wi} that contains wi+1, according to P µ,µ̃

fi
. Condition (iii) mimics

Condition (ii) for the other side of the market: it states that the set obtained
from µ(wi) by eliminating firm fi and adding firm fi−1 is the least Blair-
preferred subset of firms among those that are Blair-preferred to µ(w) and
contains fi−1, according to P µ,µ̃

wi
. Notice that Condition (iii) is not needed in

the one-to-one model.
In the rest of this section, we state four propositions that are essential

to show that the algorithm computes the full set of stable matchings. All
the proofs are relegated to the appendix. The following proposition gives a
necessary and sufficient condition for the existence of a cycle in a reduced
preference profile.

Proposition 1. Let µ, µ̃ ∈ S(P ) with µ ⪰F µ̃. There is a cycle for P µ,µ̃ if
and only if µ ̸= µ̃.

In the one-to-one model, a cycle {(w1, f1), (w2, f2), . . . , (wr, fr)} for P µ,µW

can be used to obtain a new matching from matching µ by breaking the
partnership between firm fi and worker wi and establishing a new partnership
between firm fi and worker wi+1 for each i = 1, . . . , r (modulo r), keeping
all remaining partnerships in µ unaffected. This new matching is called a
cyclic matching. Using our many-to-many version of a cycle, we generalize
the concept of cyclic matching in a straightforward way:

Definition 3. Let µ, µ̃ ∈ S(P ) with µ ≻F µ̃, and let σ = {(w1, f1), (w2, f2), . . . , (w
be a cycle for P µ,µ̃. The cyclic matching µσ under P µ,µ̃ is defined as
follows: for each f ∈ F

11
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



[
µ(f) \ {wi : f = fi}

]⋃{wi+1 : f = fi} if f ∈ σ

µ(f) if f /∈ σ,

and for each w ∈ W , µσ(w) = {f ∈ F : w ∈ µσ(f)}.

For Example 1, we illustrate how to compute a cycle and its corresponding
cyclic matching.
Example 1 (Continued) σ1 = {(w1, f1), (w4, f3)} is a cycle for P µF in
Example 1. To see this, we show that each worker-firm pair in σ1 satisfies
(i), (ii) and (iii) of Definition 2.

(i) By inspection, w1 ∈ µF (f1) \ µW (f1) and w3 ∈ µF (f3) \ µW (f3).

(ii) Cf1(W\{w1}) = CµF

f1
({w2, w3, w4, w5, w6}) = {w2, w4} = (µF (f1) \ {w1})∪

{w2},
Cf3(W\{w4}) = CµF

f3
({w1, w2, w3, w5, w6}) = {w1, w2} = (µF (f3) \ {w4})∪

{w1}.
(iii) CµF

w1
(µF (w1) ∪ {f3}) = CµF

w1
({f1, f3}) = {f3} = (µF (w1) \ {f1}) ∪ {f3},

CµF
w4

(µF (w4) ∪ {f1}) = CµF
w4

({f3, f1}) = {f1} = (µF (w4) \ {f3}) ∪ {f1}.
Now, we compute its associated cyclic matching µσ1. Since f1 and f3 are
firms in σ1, then µσ1(f1) = (µF (f1) \ {w1})∪{w2} = {w2, w4} and µσ1(f3) =

(µF (f3) \ {w4})∪{w1} = {w1, w2}. Thus, µσ1 =

(
f1 f2 f3 ∅

w2w4 w3w5 w1w2 w6

)
.

♢

In the next proposition, we state that each cyclic matching under a re-
duced preference profile is stable for that same reduced preference profile.

Proposition 2. Let µ, µ̃ ∈ S(P ) with µ ≻F µ̃ and let µ′ be a cyclic matching
under P µ,µ̃. Then, µ′ ∈ S(P µ,µ̃).

The following proposition says that, given two Blair-comparable stable
matchings, there is a cyclic matching under the reduced preference profile
with respect to the Blair-preferred one that is, either the least preferred of
the two given stable matchings, or a matching in between the two (with
respect to the unanimous Blair order).

12
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Proposition 3. Let µ, µ′ ∈ S(P ) with µ ≻F µ′. Then, there is a cyclic
matching µσ under P µ such that µ ⪰F µσ ⪰F µ′.

Finally, we state the last proposition before presenting the algorithm. It
says that each stable matching for the original preference profile, different
from the firm-optimal stable matching, is always a cyclic matching under a
reduced preference profile with respect to some other stable matching.

Proposition 4. Let µ′ ∈ S(P ) \ {µF}. Then, there is µ ∈ S(P ) such that
µ′ is a cyclic matching under P µ.

4.2. The Algorithm

We are now in a position to present our algorithm. Before that, we briefly
explain it. Given a matching market (F,W,P ), by the DA algorithm we
compute the two optimal stable matchings, µF and µW . If the two optimal
stable matchings are equal, the algorithm stops and the market has only
this stable matching. If they are different, for the firms’ side, we obtain the
reduced preference profile with respect to µF , P

µF . In each of the following
steps, proceed as follows. For each reduced preference profile obtained in the
previous step, we compute the following things: (i) each cycle for this profile;
(ii) for each cycle, its corresponding cyclic matching; and (iii) for each cyclic
matching, the reduced preference profile with respect to this cyclic matching.
The algorithm stops at the step in which all the cyclic matchings computed
are equal to the worker optimal stable matching. Formally,

13
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Input A many-to-many matching market (F,W,P )
Output The set of stable matchings S(P )

Step 1 Find µF and µW (by the DA algorithm)
and set S(P ) := {µF , µW}

IF µF = µW ,
THEN STOP.

ELSE obtain P µF and continue to Step 2.
Step t For each reduced preference profile P µ obtained in Step t− 1,

find all cycles for P µ and for each cycle obtain its cyclic matching
under P µ and include it in S(P ).

IF each cyclic matching obtained in this step is equal to µW ,
THEN STOP.

ELSE for each cyclic matching µ′ ̸= µW , obtain the reduced
preference profile P µ′

and continue to Step t+ 1.

Notice that this algorithm stops in a finite number of steps by the finite-
ness of the market. Now, we present the main result of the paper. It states
that the firms’ optimal stable matching together with all the cyclic matchings
obtained by the algorithm encompass the full set of stable matchings.

Theorem 2. For a market (F,W,P ), the algorithm computes the full set of
stable matchings S(P ).

The following example illustrates the algorithm.

Example 1 (Continued) We apply the algorithm to the market of Example
1. In what follows, we detail each of its steps:
Step 1 By the DA algorithm, we compute the two optimal stable matchings:

µF =

(
f1 f2 f3 ∅

w1w2 w3w5 w2w4 w6

)
, and µW =

(
f1 f2 f3 ∅

w3w4 w2w5 w1w2 w6

)
.

Since µF ̸= µW , we apply the reduction procedure to P to obtain P µF which
we already computed in Example 1.

14
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Step 2 We find all cycles for P µF . There are only two cycles: σ1 =
{(w1, f1), (w4, f3)} and σ2 = {(w2, f1), (w3, f2)}. Their corresponding cyclic
matchings are:

µσ1 =

(
f1 f2 f3 ∅

w2w4 w3w5 w1w2 w6

)
, and µσ2 =

(
f1 f2 f3 ∅

w1w3 w2w5 w2w4 w6

)
.

Since µσ1 ̸= µW , we apply the reduction procedure to P µF to obtain the
reduced preference profile with respect to µσ1, P σ1; and since µσ2 ̸= µW ,
we apply the reduced preference profile with respect to µσ2, P

σ2. These two
profiles are the following:

P σ1
f1

: w2w4,w3w4, w2w3, w4, w3, w2

P σ1
f2

: w3w5,w2w5, w2w3, w2, w3, w5

P σ1
f3

: w1w2, w1, w2

P σ1
w1

: f3

P σ1
w2

: f2f3,f1f3, f1f2, f1, f2, f3
P σ1
w3

: f1,f2

P σ1
w4

: f1, f3
P σ1
w5

: f2

P σ1
w6

: ∅

P σ2
f1

: w1w3, w1w4,w3w4, w1, w

P σ2
f2

: w2w5, w2, w5

P σ2
f3

: w2w4,w1w2, w1w4, w1, w

P σ2
w1

: f3,f1

P σ2
w2

: f2f3,f1f3, f1, f2, f3
P σ2
w3

: f1

P σ2
w4

: f1,f3

P σ2
w5

: f2

P σ2
w6

: ∅
Step 3 Lastly, we find all cycles for P σ1 and P σ2. The only cycle for
P σ1 is σ2 = {(w2, f1), (w3, f2)}. Similarly, the only cycle for P σ2 is σ1 =
{(w1, f1), (w4, f3)}. Their corresponding cyclic matchings are both equal to
µW . Then, the algorithm stops and S(P ) = {µF , µσ1 , µσ2 , µW}. ♢

5. Concluding Remarks

For a many-to-many matching market in which agents’ preferences sat-
isfy substitutability and LAD, we presented an algorithm to compute the
full set of stable matchings. Our approach extends the notion of cycles and
cyclic matchings presented in [18]. Given any stable matching µ, each adja-
cent stable matching µ′ is obtained as a cyclic matching under the reduced
preference profile P µ.15 Even though our results make no use of the lattice
structure of the stable set, our algorithm travels through this lattice from
the firm-optimal to the worker-optimal stable matching, finding all stable
matchings in between.

15Stable matchings µ and µ′ are adjacent if µ ≻F µ′ and there is no other stable matching
µ′′ such that µ ≻F µ′′ ≻F µ′.
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It is known that the complexity of implementation of any algorithm that
evaluates a choice function for substitutable preferences is exponential (a
choice function requires exponential queries to a substitutable preference
relation). However, when preferences are substitutable, computer scientists
usually assume the existence of an artificial oracle to the choice function: in
every iteration of an algorithm, each agent can query the oracle to determine
its favorite subset of opposite sided agents available [see 5, for more details].
With the assumption of an oracle, our algorithm can be run in polynomial
time.

A paper closely related to ours is [14], which claims to compute the full
set of many-to-many stable matchings. An important difference between the
algorithm of [14] and ours is that theirs is based on the one-to-one algorithm
presented by [15]. The DA algorithm must be applied to a reduced preference
profile in each step of the algorithm of [14], while in our algorithm we use the
DA algorithm only twice (to calculate the firm-optimal and worker-optimal
stable matchings in the first step) and afterward, we only seek for cycles in
reduced preference profiles and compute their corresponding cyclic match-
ings. Another difference is that [14] only assume substitutability on agents’
preferences, while we assume in addition LAD.

Next, we provide an example that shows that the algorithm in [14] has an
error (the algorithm does not compute the full set of stable matchings). Be-
fore presenting this example, we roughly explain how their algorithm works.
Let (F,W,P ) be a matching market. By using the DA algorithm, compute
µF and µW and set S⋆(P ) = {µF , µW}. In Step 1, for each pair (f, w) such
that w ∈ µF (f) \ µW (f), (i) compute the w–truncation of Pf and consider
the new preference profile P (f,w) obtained from P by replacing Pf by the
w–truncation of Pf ;

16 (ii) compute, by the DA algorithm, the firm-optimal

stable matching for the new market (F,W,P (f,w)), denoted by µ
(f,w)
F ; (iii) if

Cw′(µF (w
′) ∪ µ

(f,w)
F (w′)) = µ

(f,w)
F (w′) for each w′ ∈ W , then add µ

(f,w)
F to

S⋆(P ). In Step t, for each matching added to S⋆(P ) in Step t − 1, repeat
items (i), (ii), and (iii) of Step 1 for each pair (f, w) such that w is matched to
f under this new matching but not under the original worker-optimal stable
matching. The algorithm stops in the step in which no matching is added to
S⋆(P ). [14] wrongly state that S⋆(P ) = S(P ).

16See Definition 4 in the Appendix.
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Now, we are in a position to present the example17 showing that: (i) the
algorithm of [14] stops before computing all stable matchings, and (ii) our
algorithm computes the full set of stable matchings.

Example 2. Let (F,W,P ) be a one-to-one matching market in which F =
{f1, f2, f3, f4}, W = {w1, w2, w3, w4}, and the preference profile is given by:

Pf1 : w2, w1, w3, w4 Pw1 : f2, f1, f4, f3
Pf2 : w4, w2, w3, w1 Pw2 : f4, f3, f2, f1
Pf3 : w4, w2, w3, w1 Pw3 : f3, f1, f4, f2
Pf4 : w3, w1, w4, w2 Pw4 : f1, f3, f4, f2

Agents’ preferences in a one-to-one matching market satisfy substitutability
and LAD because they are linear orderings among single agents. For this
market, there are three stable matchings:

µF =

(
f1 f2 f3 f4
w1 w2 w4 w3

)
, µ =

(
f1 f2 f3 f4
w3 w1 w4 w2

)
, and

µW =

(
f1 f2 f3 f4
w4 w1 w3 w2

)
.

Following the algorithm of [14], the pairs (f, w) such that w ∈ µF (f)\µW (f)
are: (f1, w1), (f2, w2), (f3, w4) and (f4, w3). For each of these pairs (f, w),
the firm-optimal stable matching for the w–truncation of Pf are:

µ
(f1,w1)
F =

(
f1 f2 f3 f4
w3 w2 w4 w1

)
, µ

(f2,w2)
F =

(
f1 f2 f3 f4
w2 w1 w4 w3

)
,

µ(f3,w4) =

(
f1 f2 f3 f4
w1 w4 w2 w3

)
, and µ(f4,w3) =

(
f1 f2 f3 f4
w1 w3 w4 w2

)
.

Notice that
Cw1(µF (w1) ∪ µ

(f1,w1)
F (w1)) = Cw1({f1, f4}) = {f1} ≠ µ

(f1,w1)
F (w1),

Cw2(µF (w2) ∪ µ
(f2,w2)
F (w2)) = Cw2({f2, f1}) = {f2} ≠ µ

(f2,w2)
F (w2),

Cw4(µF (w4) ∪ µ
(f3,w4)
F (w4)) = Cw4({f3, f2}) = {f3} ≠ µ

(f3,w4)
F (w4), and

Cw3(µF (w3) ∪ µ
(f4,w3)
F (w3)) = Cw3({f4, f2}) = {f4} ≠ µ

(f4,w3)
F (w3).

17This example was provided to one of the authors of this paper by Xuan Zhang.
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Thus, the algorithm does not incorporate any matching to S⋆(P ) and, there-
fore, stops without computing stable matching µ.
Now we show how our algorithm computes all of these three stable matchings.
Once we compute µF and µW by the DA algorithm, the reduced preference
profile P µF is given by:

P µF

f1
: w1, w3, w4 P µF

w1
: f2, f1

P µF

f2
: w2, w1 P µF

w2
: f4, f3, f2

P µF

f3
: w4, w2, w3 P µF

w3
: f3, f1, f4

P µF

f4
: w3, w2 P µF

w4
: f1, f3

It is easy to check that there is only one cycle for P µF , σ1 = {(w1, f1), (w3, f4), (w2,
Its corresponding cyclic matching is µσ1 = µ. Now, the reduced preference
profile P µσ1 is given by:

P µF

f1
: w3, w4 P µF

w1
: f2

P µF

f2
: w1 P µF

w2
: f4

P µF

f3
: w4, w3 P µF

w3
: f3, f1

P µF

f4
: w2 P µF

w4
: f1, f3

Finally, it is easy to check that there is only one cycle for P µσ1 , σ2 =
{(w3, f1), (w4, f3)}. Its corresponding cyclic matching is µσ2 = µW . In this
way, our algorithm computes the full set of stable matchings for the market
(F,W,P ). ♢

It seems that the problem with the algorithm in [14] is that it is ill-posed
in the following way. There are matchings that the algorithm computes
that are not stable in the original preferences. Because of this, the algorithm
dismisses them. But those matchings turn out to be crucial to find new stable
matchings. For instance, in Example 2, the matching µ

(f1,w1)
F is unstable for

the original preferences, and the algorithm in [14] dismisses it. However if we
truncate the preference profile P (f1,w1) with the pair (f4, w1) and obtain the
firm optimal matching for this new truncated profile, we obtain matching µ
which is stable in the original preference profile and is never computed by
the algorithm (as shown in the previous example).

6. Appendix

In order to prove Lemma 1, we first define a w–truncation of preference
Pf and adapt a lemma of [14] to our setting.

18
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Definition 4 (14). We say that the preference Pw
f is the w–truncation of

Pf if:

(i) All sets containing w are unacceptable to f according to Pw
f . That is,

if w ∈ S then ∅Pw
f S.

(ii) The preferences Pf and Pw
f coincide on all sets that do not contain w.

That is, if w /∈ S1 ∪ S2 then S1PfS2 if and only if S1P
w
f S2.

Similarly, we define P f
w as an f–truncation of Pw.

Remark 2. Given a w–truncation of Pf and any subset of workers S, Cf (S\
{w}) = Cw

f (S). Similarly, given a f–truncation of Pw and any subset of firms

S, Cw(S \ {f}) = Cf
w(S).

Lemma 2. Let f ∈ F and w ∈ W with their respective preference relations
Pf and Pw. If Pf is substitutable and satisfies LAD, then Pw

f is substitutable
and satisfies LAD. Similarly, if Pw is substitutable and satisfies LAD, then
P f
w is substitutable and satisfies LAD.

Proof. Let f ∈ F , w ∈ W , and Pf be substitutable and satisfies LAD. Let
Pw
f be the w–truncation of Pf . We only prove that if Pf is substitutable

and satisfies LAD, then Pw
f is substitutable and satisfies LAD. The other

implication is analogous. To see that Pw
f is substitutable, let w̃, w′ ∈ S be

arbitrary and assume that w̃ ∈ Cw
f (S).

18 If w /∈ S, then w̃ ∈ Cw
f (S \ {w′})

because Cw
f (S) = Cf (S), C

w
f (S \ {w′}) = Cf (S \ {w′}), and because of the

substitutability of Pf . If w ∈ S, then we have that Cw
f (S) = Cf (S \ {w});

therefore, by assumption w̃ ∈ Cf (S \{w′}). By the substitutability of Pf , we
have that w̃ ∈ Cf ([S \ {w}] \ {w′}). But, the equality Cf ([S \ {w}] \ {w′}) =
Cw

f (S \ {w′}) implies that w̃ ∈ Cw
f (S \ {w′}). Therefore, Pw

f is substitutable.
To see that Pw

f satisfies LAD, let S ′ and S be two subsets of workers such
that S ′ ⊂ S. Note that, S ′ \{w} ⊂ S \{w}. Then, by Remark 2 and the fact
that Pf satisfies LAD we have,

|Cw
f (S

′)| = |Cf (S
′ \ {w})| ≤ |Cf (S \ {w})| = |Cw

f (S)|.

Therefore, Pw
f satisfies LAD. □

18Denote by Cw
f (S) to f ’s most preferred subset of S according to the w–truncation of

Pf .
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Proof of Lemma 1. W.l.o.g. assume that agent a is a firm, say f ∈ F .
Let Pf be a substitutable preference that satisfies LAD. Let W̃f be the set
of workers selected in Step 1 (a), Step 2 (a) or Step 3 of the reduction

procedure for firm f . Take any w ∈ W̃f and consider the w–truncation Pw
f .

By Lemma 2, preference Pw
f is substitutable and satisfies LAD. Now, any

take w′ ∈ W̃f \ {w} and consider the w′–truncation of Pw
f . Again by Lemma

2, the w′–truncation of Pw
f is substitutable and satisfies LAD. Continuing in

the same way for each worker of W̃f not yet considered, we construct the
corresponding truncation of the previously obtained truncated preference.
By Lemma 2, each one of these truncated preferences is substitutable and
satisfies LAD. By the finiteness of the set W̃f , this process will end. Moreover,

by definition of W̃f , the last truncated preference obtained in this process is

P µ,µ̃
f . Therefore, preference P µ,µ̃

f is substitutable and satisfies LAD. □
In order to prove Theorem 1, we first show in Lemma 3 that, under certain

conditions, individual rationality of a matching under the original preference
profile is equivalent to individual rationality under a reduced preference pro-
file. As we said before the statement of Theorem 1, LAD is no required for
this result.

Lemma 3. Let µ, µ̃ ∈ S(P ) with µ ≻F µ̃ and let µ′ be a matching. The
matching µ′ is individually rational under P with µ ⪰F µ′ ⪰F µ̃ and µ̃ ⪰W

µ′ ⪰W µ if and only if µ′ is individually rational under P µ,µ̃.19

Proof. Let µ, µ̃ ∈ S(P ) with µ ≻F µ̃ and let µ′ be a matching.
(=⇒) Assume that the matching µ′ is individually rational under P with
µ ⪰F µ′ ⪰F µ̃ and µ̃ ⪰W µ′ ⪰W µ. We claim that µ′(f) and µ′(w) are not
eliminated in the reduction to obtain P µ,µ̃ for each f ∈ F and w ∈ W . Since
µ ⪰F µ′ ⪰F µ̃, we have µ(f) = Cf (µ(f)∪µ′(f)) and µ′(f) = Cf (µ̃(f)∪µ′(f))
for each f ∈ F . Moreover, since µ̃ ⪰W µ′ ⪰W µ, we have µ̃(w) = Cw(µ

′(w)∪
µ̃(w)) and µ′(w) = Cw(µ

′(w) ∪ µ(w)) for each w ∈ W . Therefore, µ′(f) and
µ′(w) are not eliminated at Step 1, and Step 2 of the reduction procedure.
Let (f, w) be a pair assigned in µ′. Since µ′ is individually rational, the pair
(f, w) is mutually acceptable under P . Moreover, since µ′(f) and µ′(w) were
not eliminated at Step 1, or Step 2, then (f, w) is mutually acceptable under

19Recall that ⪰F and ⪰W are dual orders only in the set of stable matchings, so both
µ ⪰F µ′ ⪰F µ̃ and µ̃ ⪰W µ′ ⪰W µ need to be required.
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P µ,µ̃. Thus, no pair of agents assigned in µ′ is eliminated in Step 3 of the
reduction procedure. Then,

Cµ,µ̃
f (µ′(f)) = Cf (µ

′(f)) = µ′(f)

and
Cµ,µ̃

w (µ′(w)) = Cw(µ
′(w)) = µ′(w).

Therefore, µ′ is an individuality rational matching under P µ,µ̃.
(⇐=) Assume that the matching µ′ is individually rational under P µ,µ̃.
The definition of reduced preference P µ,µ̃ implies that µ ⪰F µ′ ⪰F µ̃ and
µ̃ ⪰W µ′ ⪰W µ. Let f ∈ F. Notice that, by the reduction procedure, if w ∈
Cµ,µ̃

f (µ′(f)) then, w ∈ Cf (µ
′(f)). Since µ′(f) = Cµ,µ̃

f (µ′(f)) ⊆ Cf (µ
′(f)) ⊆

µ′(f), we have that Cf (µ
′(f)) = µ′(f). Similarly, Cw(µ

′(w)) = µ′(w) for each
w ∈ W . Therefore, µ′ is an individually rational matching under P . □

Proof of Theorem 1. Let µ, µ̃ ∈ S(P ) with µ ≻F µ̃.
(⇐=) Let µ′ ∈ S(P µ,µ̃). By Lemma 3, we have that µ′ is individually rational
under P . Assume that µ′ /∈ S(P ). Thus, there is a blocking pair of µ′ under
P, i.e., there is (f, w) ∈ F ×W such that w /∈ µ′(f), w ∈ Cf (µ

′(f) ∪ {w})
and f ∈ Cw(µ

′(w) ∪ {f}).
Claim: neither Cf(µ

′(f) ∪ {w}) nor Cw(µ
′(w) ∪ {f}) is eliminated

in the reduction procedure. First, assume w.l.o.g. that Cf (µ
′(f) ∪ {w})

is eliminated in Step 1 the reduction procedure. There are two cases to
consider:
Case 1: Cf(µ

′(f) ∪ {w}) ⪰̸f µ(f). Thus, there are W ′ and w̃ such that
w̃ ∈ W ′ \ µ(f), w̃ ∈ Cf (µ

′(f) ∪ {w}) and W ′ = Cf (W
′ ∪ µ(f)). Then, if

w̃ ∈ µ′(f), µ′(f) is eliminated in Step 1 of the reduction procedure. There-
fore, µ′(f) ̸= Cµ,µ̃

f (µ′(f)), and µ′ is not individually rational under P µ,µ̃,
contradicting Lemma 3. If w̃ = w, w ∈ Cf (W

′ ∪µ(f)) and, by substitutabil-
ity,

w ∈ Cf (µ(f) ∪ {w}). (2)

Moreover, by definition of Blair’s partial order and (1)

Cw(µ
′(w) ∪ {f}) ⪰w Cw(µ

′(w)). (3)

Since µ′ is individually rational under P µ,µ′
, µ′ is individually rational under

P and µ̃ ⪰W µ′ ⪰W µ by Lemma 3. Then, µ′(w) = Cw(µ
′(w)) ⪰w µ(w)

and, by (3) and transitivity of ⪰w, we have Cw(µ
′(w) ∪ {f}) ⪰w µ(w).
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Thus, Cw(µ
′(w) ∪ {f}) = Cw(µ(w) ∪ Cw(µ

′(w) ∪ {f})). Applying (1), we
have Cw(µ(w) ∪ Cw(µ

′(w) ∪ {f})) = Cw(µ(w) ∪ µ′(w) ∪ {f}). Recall that
(f, w) is a blocking pair for µ′ under P . Hence, f ∈ Cw(µ

′(w) ∪ {f}) =
Cw(µ(w) ∪ µ′(w) ∪ {f}). Since w = w̃ ∈ W ′ \ µ(f), f /∈ µ(w). Thus, by
substitutability, f ∈ Cw(µ(w) ∪ µ′(w) ∪ {f}) implies that

f ∈ Cw(µ(w) ∪ {f}). (4)

Furthermore, since w = w̃, w /∈ µ(f). This, together with (2) and (4) imply
that (f, w) is a blocking pair for µ under P . This is a contradiction.
Case 2: Cf(µ

′(f) ∪ {w}) ⪰f µ(f). Since we assume that (f, w) is a
blocking pair for µ′ under P , w ∈ Cf (µ

′(f)∪{w}). By this case’s hypothesis,
w ∈ Cf (µ(f) ∪ Cf (µ

′(f) ∪ {w})). By (1), w ∈ Cf (µ(f) ∪ µ′(f) ∪ {w}) =
Cf (Cf (µ(f) ∪ µ′(f)) ∪ {w}). Since µ ⪰F µ′,

w ∈ Cf (µ(f) ∪ {w}). (5)

Now, we claim that w /∈ µ(f). First, note that f ∈ Cw(µ
′(w) ∪ {f})

and f /∈ µ′(w) implies that Cw(µ
′(w) ∪ {f}) ≻w µ′(w). Second, µ′ ∈ S(P µ,µ̃)

implies, by Lemma 3, µ′ ⪰W µ. Thus, µ′(w) = Cw(µ
′(w) ∪ µ(w)) for each

w ∈ W. Lastly, since f /∈ µ′(w) and assuming that f ∈ µ(w), we conclude
that

µ′(w) = Cw(µ
′(w) ∪ µ(w)) ⪰w Cw(µ

′(w) ∪ {f}) ≻w µ′(w),

and this is a contradiction. Then,

w /∈ µ(f). (6)

Moreover, by the same argument used to obtain (4), f ∈ Cw(µ
′(w) ∪ {f})

implies that
f ∈ Cw(µ(w) ∪ {f}). (7)

Hence, by (5), (6), and (7), (f, w) is a blocking pair for µ under P , and this
is a contradiction. Therefore, by Case 1 and Case 2, Cf (µ

′(f) ∪ {w}) is not
eliminated in Step 1.

Second, assume w.l.o.g. that Cf (µ
′(f) ∪ {w}) is eliminated in Step 2

the reduction procedure. Note that this cannot happen, because Cf (µ
′(f) ∪

{w}) ⪰f µ′(f) ⪰f µ̃(f) for each f ∈ F. By a symmetrical argument, we have
that Cw(µ

′(w) ∪ {f}) can not be eliminated in Step 1 or Step 2 either.
Now, we show that neither Cf (µ

′(f)∪{w}) nor Cw(µ
′(w)∪{f}) is elimi-

nated in Step 3. Assume w.l.o.g. that Cf (µ
′(f)∪{w}) is eliminated in Step 3.
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Thus, there is w̃ ∈ Cf (µ
′(f)∪ {w}) such that w̃ is not acceptable for f after

Steps 1 and 2 are performed. Note that this implies that Cµ,µ′

f ({w̃}) ̸= {w̃}.
By definition of Cf we have Cf (µ

′(f)∪{w}) ⊆ µ′(f)∪{w}. Thus, w̃ ∈ µ′(f)
or w̃ = w. If w̃ ∈ µ′(f), since µ′ is individually rational under P µ,µ̃,
w̃ ∈ µ′(f) = Cµ,µ̃

f (µ′(f)) and, by substitutability, w̃ ∈ Cµ,µ̃
f ({w̃}) ̸= {w̃},

which is absurd. Therefore, w̃ = w. Since (f, w) is a blocking pair of µ′

under P , w ∈ Cf (µ
′(f) ∪ {w}). Since w is not acceptable for f after Step 1

and Step 2, this implies that any set that contains agent w is removed from
f ’s preference list at Step 1 or Step 2. Thus, Cf (µ

′(f)∪{w}) is removed from
f ’s preference list in Step 1 or Step 2, and this is a contradiction. Therefore,
Cf (µ

′(f)∪ {w}) is not eliminated in Step 3. A similar argument proves that
Cw(µ

′(w)∪{f}) is not eliminated either in Step 3. This completes the proof
of the Claim.

In order to finish the proof, since by the Claim neither Cf (µ
′(f) ∪ {w})

nor Cf (µ
′(w) ∪{f}) is eliminated by the reduction procedure, we have that

Cf (µ
′(f)∪{w}) = Cµ,µ̃

f (µ′(f)∪{w}) and Cf (µ
′(w)∪{f}) = Cµ,µ̃

f (µ′(w)∪{f}).
Then, (f, w) is a blocking pair for µ′ under P µ,µ̃, and this is a contradiction.
Therefore, µ′ ∈ S(P ).

(=⇒) Let µ′ ∈ S(P ) with µ ⪰F µ′ ⪰F µ̃. This implies that µ̃ ⪰W µ′ ⪰W µ.
By Lemma 3, we have that µ′ is individually rational in P µ,µ̃. Assume that
µ′ /∈ S(P µ,µ̃). Thus, there is a pair (f, w) ∈ F ×W such that w /∈ µ′(f), w ∈
Cµ,µ̃

f (µ′(f) ∪ {w}) and f ∈ Cµ,µ̃
f (µ′(w) ∪ {f}). By the reduction procedure

w ∈ Cf (µ
′(f)∪{w}) and f ∈ Cf (µ

′(w)∪{f}). Therefore the pair (f, w) blocks
µ′ under P , and this is a contradiction of µ′ ∈ S(P ). Thus, µ′ ∈ S(P µ,µ̃). □

Proof of Proposition 1. (=⇒) This implication is straightforward from Defi-
nition 2, since there is a cycle only if there is a firm f such that µ(f) ̸= µ̃(f)
under P µ,µ̃.
(⇐=) Assume that µ ̸= µ̃. We construct a bipartite oriented the digraph
Dµ,µ̃ with sets of nodes

V1 = {(w, f) ∈ W × F : w ∈ µ(f) \ µ̃(f)}

and
V2 = (F ×W ) \ {(f, w) : (w, f) ∈ V1}.
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Since µ ̸= µ̃, both V1 and V2 are non-empty. The oriented arcs are defined
as follows. There is and arc from (w, f) ∈ V1 to (f ′, w′) ∈ V2 if

f = f ′ and Cµ,µ̃
f (W \ {w}) = (µ(f) \ {w}) ∪ {w′}.

There is an arc from (f ′, w′) ∈ V2 to (w, f) ∈ V1 if

w′ = w and Cµ,µ̃
w (µ(w) ∪ {f ′}) = (µ(w) \ {f}) ∪ {f ′}.

It is easy to see that there is an oriented cycle in the digraphDµ,µ̃ if and only if
there is a cycle for preference P µ,µ̃. In fact, if {(w1, f1), (f1, w2), (w2, f2), (f2, w3),
. . . , (wr, fr), (fr, w1)} is a cycle for Dµ,µ̃, then {w1, f1, w2, f2, . . . , wr, fr} is a
cycle for P µ,µ̃. Assume that there is no cycle for P µ,µ̃. Then, there is no cycle
in digraph Dµ,µ̃. Let p be a maximal path in Dµ,µ̃. There are two cases to
consider:
Case 1: the terminal node (w, f) of p belongs to V1. Then w ∈ µ(f)\
µ̃(f) and there is no w′ ∈ W such that w′ /∈ µ(f) \ µ̃(f) and w′ ∈ C

Pµ,µ̃
f

(W \
{w}). Therefore, Cµ,µ̃

f (W \ {w}) ⊊ Cµ,µ̃
f (W ) = µ(f). By LAD,

|Cµ,µ̃
f (W \ {w})| < |µ(f)|. (8)

Moreover, since w ∈ µ(f) \ µ̃(f), we have µ̃(f) ⊆ W \ {w}. Thus, µ̃(f) =
Cµ,µ̃

f (µ̃(f)) ⊆ C
Pµ,µ̃
f

(W \ {w}) and, by LAD,

|µ̃(f)| ≤ |Cµ,µ̃
f (W \ {w})|. (9)

By the Rural Hospitals Theorem,20 |µ(f)| = |µ̃(f)|. This, together with (8)
and (9) implies that |µ̃(f)| ≤ |Cµ,µ̃

f (W \ {w})| < |µ(f)| = |µ̃(f)|, which is
absurd.
Case 2: the terminal node (f ′, w) of p belongs to V2. Then, f ′ /∈
µ(w)\µ̃(w). First, we claim that |Cµ,µ̃

w (µ(w)∪{f ′})| = |µ(w)|. Since Cµ,µ̃
w (F ) =

µ̃(w) by Remark 1 (i) and µ(w) ∪ {f ′} ⊆ F, by LAD it follows that

|µ̃(w)| ≥ |Cµ,µ̃
w (µ(w) ∪ {f ′})|. (10)

20The Rural Hospitals Theorem states that, under substitutability and LAD, each agent
is matched with the same number of partners in every stable matching. That is, |µ(a)| =
|µ′(a)| for each µ, µ′ ∈ S(P ) and for each a ∈ F ∪W [see 1, for more details].
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Furthermore, by LAD and individual rationality of µ,

|Cµ,µ̃
w (µ(w) ∪ {f ′})| ≥ |Cµ,µ̃

w (µ(w))| = |µ(w)|. (11)

Assume |Cµ,µ̃
w (µ(w) ∪ {f ′})| > |µ(w)|. By (11) and (10), it follows that

|µ̃(w)| > |µ(w)|. This contradicts the Rural Hospitals Theorem. Therefore,
|Cµ,µ̃

w (µ(w) ∪ {f ′})| = |µ(w)|, and the proof of the claim is completed. Now,
we have two subcases to consider:
Subcase 2.1: f ′ ∈ Cµ,µ̃

w (µ(w) ∪ {f ′}). As |Cµ,µ̃
w (µ(w) ∪ {f ′})| = |µ(w)|,

there is f ∈ µ(w) such that

Cµ,µ̃
w (µ(w) ∪ {f ′}) = (µ(w) \ {f}) ∪ {f ′}. (12)

Furthermore, f /∈ µ̃(w). To see this, notice that if f ∈ µ̃(w) = Cµ,µ̃
w (F ) then,

by substitutability, f ∈ Cµ,µ̃
w (µ(w) ∪ {f ′}), contradicting (12). Therefore,

f ∈ µ(w) \ µ̃(w) and (12) imply that there is an arc from (f ′, w) ∈ V2 to
(w, f) ∈ V1. This contradicts that (f

′, w) is a terminal node of p.
Subcase 2.2: f ′ /∈ Cµ,µ̃

w (µ(w) ∪ {f ′}). First, assume that f ′ /∈ Cw(µ(w)∪
{f ′}). Since (f ′, w) is the terminal node of path p, there are (w′, f ′) ∈ V1

and an arc from (w′, f ′) to (f ′, w). Also, f ′ /∈ µ(w), implying that Cw(µ(w)∪
{f ′}) = µ(w). Thus, by Step 2 (b) of the reduction procedure, {f ′} is
eliminated from w’s preference list. Thus, by Step 3 of the reduction pro-
cedure, all subsets of workers containing w are eliminated from preference
list of f ′ as well. This contradicts that (f ′, w) ∈ V2. Second, assume that
f ′ ∈ Cw(µ(w)∪{f ′}). Since f ′ /∈ µ(w) and Cw(µ(w)∪{f ′}) ̸= µ(w), then {f ′}
is not eliminated on Step 2 (b) of the reduction procedure. Moreover, Step 3
of the reduction procedure neither eliminates f ′ nor w from each other’s pref-
erence lists, because (f ′, w) ∈ V2. Then, C

µ,µ̃
w (µ(w)∪{f ′}) = Cw(µ(w)∪{f ′}),

implying that f ′ ∈ Cµ,µ̃
w (µ(w)∪{f ′}), contradicting this subcase’s hypothesis.

Therefore, by Cases 1 and 2, path p has no terminal node so it is a cycle
in digraph Dµ,µ̃. As a consequence, a cycle for P µ,µ̃ must also exist. □

Proof of Proposition 2. Let µ′ be a cyclic matching under P µ,µ̃. Let σ
be the cycle associated with µ′. First, we prove that µ′ is an individually
rational matching under P µ,µ̃. If a ∈ F ∪ W with a /∈ σ, we have that
µ′(a) = µ(a). Then, by the individual rationality of µ under P µ,µ̃ we have
that Cµ,µ̃

a (µ′(a)) = µ′(a). If f ∈ σ, there is w′ ∈ σ such that µ′(f) = Cµ,µ̃
f (W \

{w′}). Thus, Cµ,µ̃
f (µ′(f)) = Cµ,µ̃

f (Cµ,µ̃
f (W \ {w′})) = Cµ,µ̃

f (W \ {w′}) = µ′(f).
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If w ∈ σ, there is f ∈ µ(w) and f ′ ∈ σ such that µ′(w) = (µ(w)\{f})∪{f ′}.
Then, Cµ,µ̃

w (µ′(w)) = Cµ,µ̃
w ((µ(w) \ {f}) ∪ {f ′}). By definition of a cycle,

Cµ,µ̃
w ((µ(w) \ {f}) ∪ {f ′}) = Cµ,µ̃

w (Cµ,µ̃
w (µ(w) ∪ {f ′})) = Cµ,µ̃

w (µ(w) ∪ {f ′}) =
µ′(w). Therefore, µ′ is individually rational under P µ,µ̃.

Second, assume that there is a blocking pair (f, w) for µ′ under P µ,µ̃. We
claim that both f and w belong to σ. Furthermore, w immediately precedes
f in cycle σ. In order to see this, first assume that f /∈ σ. Thus, by the
definition of cyclic matching, µ′(f) = µ(f) and since, by Remark 1 (i), µ′(f)
is the most preferred subset of workers in P µ,µ̃

f , there is no w′ /∈ µ′(f) such

that w′ ∈ Cµ,µ̃
f (µ′(f)∪ {w′}). When w′ = w, this contradicts that (f, w) is a

blocking pair for µ′. Therefore, f ∈ σ.
Also, as (f, w) is a blocking pair for µ′, w ∈ Cµ,µ̃

f (µ′(f) ∪ {w}). By the

definition of cycle, there is w′ such that Cµ,µ̃
f (W \ {w′}) = µ′(f) and thus

w ∈ Cµ,µ̃
f (Cµ,µ̃

f (W \ {w′}) ∪ {w}) which in turn, by (1), becomes

w ∈ Cµ,µ̃
f ((W \ {w′}) ∪ {w}). (13)

To see that w immediately precedes f in cycle σ, i.e. w = w′, assume that
w ̸= w′. Then, w ∈ W \ {w′} and, therefore, (13) implies w ∈ Cµ,µ̃

f (W \
{w′}) = µ′(f). Thus, w ∈ µ′(f), which contradicts (f, w) being a blocking
pair for µ′. Hence, w = w′. This completes our claim.

To finish our proof, notice that by definition of cyclic matching and the
fact that w = w′ ∈ σ, there is f ′ such that

Cµ,µ̃
w (µ(w) ∪ {f ′}) = (µ(w) \ {f}) ∪ {f ′} = µ′(w). (14)

Since µ(w) ∪ {f ′} = µ′(w) ∪ {f}, using (14) and f /∈ µ′(w) (that follows
from (f, w) being a blocking pair for µ′) we have that f /∈ Cµ,µ̃

w (µ′(w)∪{f}).
But then again we contradict that (f, w) is a blocking pair for µ′. Hence,
µ′ ∈ S

(
P µ,µ̃

)
. □

Proof of Proposition 3. Let µ, µ′ ∈ S(P ) with µ ≻F µ′. Consider the reduced
preference profile P µ,µ′

. By Proposition 1, there is a cycle σ for P µ,µ′
. Let

µσ be its corresponding cyclic matching under P µ,µ′
. By Proposition 2, µσ ∈

S(P µ,µ′
) and, consequently, µσ ⪰F µ′ by Lemma 1. Furthermore, µ ⪰F µσ

follows straightforward from the fact that µσ ∈ S(P µ) and that µ is the firm-
optimal stable matching for P µ. □
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Lemma 4. Let µ, µ̃ ∈ S(P ) with µ ⪰F µ̃. If µ̃ is a cyclic matching under
P µ,µ̃, then µ̃ is a cyclic matching under P µ.

Proof. Let µ, µ̃ ∈ S(P ) with µ ⪰F µ̃ and let µ̃ be a cyclic matching under
P µ,µ̃. By Theorem 1, µ̃ ∈ S(P µ). Let σ = {(w1, f1), (w2, f2), . . . , (wr, fr)}
be the cycle associated with µ̃. We only need to prove that σ is a cycle for
P µ. First, notice that for each (wi, fi) ∈ σ, wi ∈ µ(fi) \ µ̃(fi) implies that
wi ∈ µ(fi) \ µW (fi). Otherwise, wi ∈ µW (fi) and wi ∈ µ(fi) = Cµ

fi
(µ(fi) ∪

µ̃(fi) ∪ µW (fi)) imply, by substitutability, that wi ∈ Cµ
fi
(µ̃(fi) ∪ µW (fi)) =

µ̃(fi), a contradiction. Second, by definition of cycle for P µ,µ̃ and Definition
3, µ̃(fi) = Cµ,µ̃

fi
(W \ {wi}) = (µ(fi) \ {wi}) ∪ {wi+1}. By Proposition 2, µ̃

is individually rational under P µ,µ̃. By Lemma 3, µ̃ is individually rational
under P µ. Thus, Cµ

fi
(µ̃(fi)) = µ̃(fi). Hence,

Cµ
fi
(µ̃(fi)) = (µ(fi) \ {wi}) ∪ {wi+1}. (15)

Lastly, again by definition of cycle for P µ,µ̃, we have

Cµ,µ̃
wi

(µ(wi) ∪ {fi−1}) = (µ(wi) \ {fi}) ∪ {fi−1} = µ̃(wi).

Now, we prove that Cµ,µ̃
wi

(µ(wi) ∪ {fi−1}) = Cµ
wi
(µ(wi) ∪ {fi−1}). By the

reduction procedure, we have that Cµ,µ̃
wi

(µ(wi)∪{fi−1}) ⊆ Cµ
wi
(µ(wi)∪{fi−1}).

Now, assume that Cµ
wi
(µ(wi) ∪ {fi−1}) ̸= Cµ,µ̃

wi
(µ(wi) ∪ {fi−1}). This implies

that Cµ
wi
(µ(wi) ∪ {fi−1}) is eliminated in the reduction procedure to obtain

P µ,µ̃. Since µ ∈ S(P µ,µ̃), then the only possibility is that the firm selected by
the reduction procedure to eliminate from Cµ

wi
(µ(wi)∪ {fi−1}) be fi−1. This

contradicts that µ̃ is individually rational under P µ,µ̃, because fi−1 ∈ µ̃(wi).
□
Proof of Proposition 4. Let µ′ ∈ S(P ) \ {µF} and consider the reduced
preference profile P µF ,µ′

. If µ′ is a cyclic matching under P µF ,µ′
, then by

Lemma 4 µ′ is a cyclic matching under P µF and the proof is complete. If not,
by Proposition 3 there is a cyclic matching under P µF ,µ′

, say µ1, such that
µ1 ≻F µ′. By Lemma 1 and Proposition 2, µ1 ∈ S(P ), so we can consider the
reduced preference profile P µ1,µ′

. If µ′ is a cyclic matching under P µ1,µ′
, then

by Lemma 4 µ′ is a cyclic matching under P µ1 , and the proof is complete. If
not, continue this process until, by the finiteness of S(P ), there is µk ∈ S(P )
such that µ′ is a cyclic matching under P µk,µ

′
, then by Lemma 4 µ′ is a

cyclic matching under P µk . □
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Proof of Theorem 2. Let (F,W,P ) be a matching market. First, notice
that by Proposition 1, for each reduced profile obtained in Step t− 1, there
is at least a cycle. Proposition 2 and Theorem 1 show that each cyclic
matching obtained by the algorithm belongs to S(P ). To see that each stable
matching is computed by the algorithm, assume that it is not the case for
µ ∈ S(P )\{µF}. By Proposition 4, there is another µ′ ∈ S(P ) such that µ is
a cyclic matching under P µ′

(remember that, as µ is a cyclic matching under
P µ′

, µ′ ≻F µ). Thus, µ′ is not computed by the algorithm either (otherwise,
if µ′ is computed by the algorithm in Step t, µ necessarily is computed in
Step t + 1). Thus, again by Proposition 4, there is another µ′′ ∈ S(P ) such
that µ′ is a cyclic matching under P µ′′

with µ′′ ≻F µ′ and µ′′ is not computed
by the algorithm either. Continuing this line of reasoning, by the finiteness
of the set S(P ), we eventually reach µF and conclude that the algorithm
cannot compute it either, which is absurd. □
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Cycles to compute the full set of many-to-many stable matchings

Agust́ın G. Bonifacio, Noelia Juarez, Pablo Neme and Jorge Oviedo

We generalize the notion of “cycle in preferences” to a many-to-many matching mod

with substitutable preferences that fulfill the law of aggregate demand.

We use cycles in preferences to compute the full set of stable matchings in su

many-to-many matching model.

We present an example showing that the algorithm presented by [?] has an error a

provide some intuition on why it fails.

1


	Cycles to compute the full set of many-to-many stable matchings

