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ABSTRACT: As the reader must be already aware, state-of-the-art
protein folding prediction methods have reached a smashing
success in their goal of accurately determining the three-
dimensional structures of proteins. Yet, a solution to simple
problems such as the effects of protein point mutations on their (i)
native conformation; (ii) marginal stability; (iii) ensemble of high-
energy nativelike conformations; and (iv) metamorphism propen-
sity and, hence, their evolvability, remains as an unsolved problem.
As a plausible solution to the latter, some properties of the amide
hydrogen-deuterium exchange, a highly sensitive probe of the
structure, stability, and folding of proteins, are assessed from a new
perspective. The preliminary results indicate that the protein
marginal stability change upon point mutations provides the
necessary and sufficient information to estimate, through a Boltzmann factor, the evolution of the amide hydrogen exchange
protection factors and, consequently, that of the ensemble of folded conformations coexisting with the native state. This work
contributes to our general understanding of the effects of point mutations on proteins and may spur significant progress in our efforts
to develop methods to determine the appearance of new folds and functions accurately.

■ INTRODUCTION

How proteins’ point mutations impact their evolvability is of
paramount importance in biology, from molecular evolution to
structural biology; for example, nuclear magnetic resonance
results reveal that “proteins adopt unstable, high-energy states
that exist for fractions of a second but can have key biological
roles”.1 The long-standing question is how to resolve this
problem without considering epistasis effects explicitly. Before
we embark on unraveling a possible solution to this enigma, it is
worth noting that the term epistasis has been used with various
analogous meanings, although it is commonly defined as a
phenomenon that “... occurs when the combined effect of two or
more mutations differs from the sum of their individual
effects...”.2 We should point out here a remarkable equivalence
between this definition of epistasis with Leibniz and Kant’s
notion of space (and time) devised as “analytic wholes”, i.e., the
one where “...its priority makes it impossible to obtain it by the
additive synthesis of previously existing entities...”.3 Beyond this
philosophical thought, the following question arises, why should
we be interested in epistasis? The main reason is that epistasis
could have a remarkable impact on the evolution of proteins by
either restricting their trajectories or opening new paths to new
sequences that would otherwise have been inaccessible.4−6

However, despite the simplicity of the definition of epistasis and
the colossal progress in the prediction of protein structures, the
answers to simple questions remain elusive because “...there is
currently no means to predict specific epistasis from a protein

sequence or structure...”.2 What if we analyze a far simpler
problem? For example, can point mutation effects be forecast
accurately? Unfortunately, the answer still is no. To determine
the nature of this problem, which includes that of epistasis, we
should start by identifying the molecular origin and the main
factors affecting point mutations. In this regard, it is not enough
to consider the protein sequence nor the mutation-typesit
could also be a post-translational modification7but a precise
determination of the “field” between and around amino acids.
The relevance of the “field” for an accurate description of any
physical problem was highlighted by Einstein and Infeld8 in the
following terms: “A new concept appears in physics, the most
important invention since Newton’s time: the field. It needed
great scientist imagination to realize that it is not the charges nor
the particles, but the field in the space between the charges and
the particles which is essential for the description of physical
phenomena.” Application of this concept on structural biology
started with the pioneer development of all-atom “force-
field”9−13 aimed to predict the three-dimensional structure of
proteins with the only knowledge of the amino-acid sequence
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the protein folding problem.14 However, a definitive solution to
this problem has been elusive since then, e.g., how a sequence
encodes the protein folding remains unknown,15 even though
the protein’s three-dimensional structure can be accurately
determined.16 Consequently, and beyond any doubt, an
accurate determination of point mutation effects is an unsolved
problem still.17,18 Indeed, a large number of methods and
approaches used to predict protein stability upon point
mutation, e.g., by using physical, statistical, or empirical
“force-field”, respectively, or machine learning methods,19,20

show limited performance and suffer from caveats.19,21−25

Therefore, we should focus on the global rather than on the
specific mutation effects.
In contrast to the mutation-specific effects, the global

distribution of the proteins’ stability upon mutations26,27 can
be forecast with acceptable accuracy by a bi-Gaussian function.21

Such changes in the proteins’ stability due to point mutations
can be determined experimentally from the unfolding Gibbs free
energy (ΔGU) between the wild-type (wt) and the mutant (m)
protein, viz., as ΔΔGU = (ΔGU

m − ΔGU
wt).28 Consequently,

considering that point mutations mainly affect the native-state
stability,29 the observed change on the unfolding Gibbs free
energy (ΔΔGU) should represent, fundamentally, the change
(ΔΔG) in the protein marginal stability (ΔG), which refers to
the Gibbs free-energy gap between the native state and the first
unfolded state.7,30,31 Let us provide some pieces of evidence that
support this important conjecture. The proteins’ free energy of
unfolding (ΔGU) spans a wide range of variations, viz., between
5 and 25 kcal/mol,32 revealing the complexity of the “protein
folding problem”.14,33−35 However, its range of variation upon
point mutations (ΔΔGU) is small and well-defined, revealing the
validity of the thermodynamic hypothesis or Anfinsen dogma,14

as explained next. The absolute values of the unfolding Gibbs
free energy changes (|ΔΔGU|)from the histogram of more
than 5200 point mutation data obtained by using urea and
thermal unfolding experiments29are within the following
narrow range of variation: |ΔΔGU| ≤ ∼7.5 kcal/mol. Notably,
this boundary value for |ΔΔGU| conforms with the proteins’
marginal stability upper bound limit, namely, ∼7.4 kcal/mol,31

which (i) is a universal feature of proteins, i.e., obtained
regardless of the fold-class or its amino-acid sequence;31 (ii) is a
consequence of Anfinsen’s dogma validity;31,36 and (iii)
represents a threshold beyond which a conformation will unfold
and become nonfunctional.7,36,37 The latter means that changes
in the Gibbs free-energy gap size (ΔΔG) between the native
state and the first unfolded state cannot be larger than∼7.4 kcal/
mol, e.g., as it occurs for the single mutants of the green
fluorescent protein from Aequorea victoria that loses ∼100% of
the log fluorescence (native function) if ΔΔGU > ∼7.5 kcal/
mol.38 Consequently, assumingΔΔG∼ΔΔGUwith the latter
being experimentally determinedis a reasonable strategy to
obtain a reliable assessment of the change on the protein
marginal stability upon point mutations and, from here, their
effects on the ensemble of folded conformations coexisting with
the native state,36 as shown later.
The gained knowledge on protein (i) stability;21,29,31,37,39−41

(ii) metamorphism, characterized by the existence of two or
more folds with a significant structural difference between
them;37,42−51 and (iii) evolvability, the ability of a biological
system to provide, by mutation and selection, phenotypic
variation, has been enormous.50,52−58 This will enable us to
examine below, in light of evolution, how point mutations could
impact each of those issues.

■ RESULTS AND DISCUSSION

Single-Point Mutation Effects. The unfolding Gibbs free
energy changes upon mutation (ΔΔGU), in kcal/mol, instantly
enable us to determine if they are positive (stabilizing) or
negative (destabilizing) contributions to the protein’s marginal
stability. However, their impact on both the ensemble of folded
conformations in equilibrium with the native state or the
metamorphism propensity cannot be straightforwardly inferred.
To solve this issue, the amide hydrogen exchange (HX) may be
used because it is a sensitive probe to assess changes in the
protein native-state structure.59−66 Indeed, their use could bring
precise information on the structural changes that could occur
upon mutations and, consequently, on their impact on the
protein marginal stability.36 This is possible because the intra-
and intermolecular hydrogen bonds are dependent on the
protein native-state structure and the milieu. A simple example
will be enough to illustrate this methodology. Shirley et al.67

accurately determined the urea and thermal unfolding average
free-energy change (ΔΔGU) on ribonuclease T1 (Rnase T1) for
12-point mutations involving Tyr→ Phe, Ser→ Ala, and Asn→
Ala amino acids, respectively. As a result, the observed
destabilizing average ΔΔGU values were within the following
range of variation:≈−0.5 kcal/mol (for Tyr57→ Phe) to∼−2.9
kcal/mol (for Asn81 → Ala). Before we proceed, let us
remember the following: first, ΔΔG ∼ ΔΔGU will provide us
with the Gibbs free energy change in the protein’s marginal
stability upon point mutation; second, the amide HX protection
factor (Pf) for a protein in their native state, i.e., in the EX2
limit,68 is given by the following equation ΔGHX = RT ln Pf,

68

where ΔGHX represents the Gibbs free-energy change for the
opening/closing equilibrium,64,68 R is the gas constant, and T is
the absolute temperature. Because our interest focuses on a
particular region of the conformational space, namely, in the
Boltzmann ensemble of folded states in equilibrium with the
native state, the following relation ΔGHX ∼ ΔG should hold.36

Consequently, upon a point mutation, the following relations
ΔΔGHXm,wt∼ΔΔG = (ΔGm−ΔGwt) = RT ln (Pf,m/Pf,wt), where
Pf,m and Pf,wt are the corresponding protection factors for the
mutant (m) and the wild-type (wt) protein, respectively, should
also hold. Therefore, ifΔΔG∼−2.9 kcal/mol, then Pf,m∼ Pf,wt×
10−2, where Pf,wt represents the resistance of the amide HX in the
wild-type native state relative to that of the highest free-energy
conformation in the ensemble of folded states.36 In other words,
because Asn81 → Ala is a destabilizing mutation, it will leave a
native state for the mutant (m) that is ∼100 times less resistant
to the amide HX than that of the wild-type protein (wt).
Therefore, the point mutations change not only the stability of
the native state29 but also the structural dispersion in the
ensemble of folded conformations coexisting with it. This
conjecture is in line with convincing theoretical simulations of
the HX mechanism on proteins.69,70 Indeed, such simulations
show that sizeable structural differencesin the ensemble of
folded conformations relative to the native stateare not only
likely but necessary for accurately analyzing the observed amide
HX. From this point of view, it is reasonable to assume that a
point mutation will introduce structural/energetic fluctuations
in the ensemble of native folds in equilibrium with the native
state (see Figure 1). The latter would be of great impact on
protein evolution since the existing piece of evidence shows that
small changes in protein structure are essential to their
function.1 If the protein were a metamorphic onean attribute
encoded in its amino-acid sequencea point mutation could
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modify, a priori, its metamorphism propensity. Regardless of
this, the appearance of fluctuations in the ensemble of native
folds, a change in the milieu or both, could allow redistribution
of their folded state ratio36,37determined by its Boltzmann
factorsand, hence, could benefit/impair the thermodynamic
equilibrium between highly dissimilar (metamorphic) folded
states. This could be of paramount importance to identify critical
amino acids for the ariseor disappearanceof metamorphism
in proteins such as in the study of the appearance of new folds
and functions upon a mutation.49,50 In addition to all the above,
the protein evolvability should also be affected by point
mutation because it is well known that stability promotes
it.53,54,71,72

Mutation Effects in Light of Evolution. We are now in
good condition to determine how a series of point mutations will
affect the protein’s marginal-stability change. To solve this, let us
frame the problem within the protein space model where “...if
evolution by natural selection is to occur, functional proteins
must form a continuous network, which can be traversed by unit
mutational steps without passing through nonfunctional
intermediates...”.73 Implicit in this modeling is that any
functional protein that pertains to the protein space obeys
Anfinsen’s dogma.36,37 Then, a walk in that protein space
enables us to determine, after j consecutive point mutation steps,
the following relations of interest:

∑Δ − Δ + ΔΔ

= Δ − Δ

= ΔΔ
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the following relationship, in terms of the observableΔΔGU
j , can

be obtained:

∼ βΔΔeP Pf j f wt
G

, ,
j

U
(3)

with β = 1/RT, and Pf,j and Pf,wt are the corresponding protection
factors for the protein after j point mutation steps and the wild-
type (wt) native state, respectively (as shown in Figure 1 for j =
1). In other words, eq 3 represents, after navigating the protein
space as an abstract model of evolution, the changes on both the
wild-type protein native-state stability (ΔΔGU

j ) and the
ensemble of folded conformations coexisting with it (Pf,j). It is
worth noting that the results in eq 1−3 are valid even if there are
k out of j mutations (with k < j − 1) leading to nonfunctional
proteins, e.g., when a mutation leads to a free-energy change
(ΔΔG) larger than amarginal stability upper bound threshold of
∼7.4 kcal/mol.31,36 Consideration of this problem is relevant for
two reasons: first, because most of the point mutations are
destabilizing29,55,72,74 and second because the evolutionary
trajectories in the protein sequence space are assumed to be
reversible although the genotypic irreversibly should not be
dismissed.75

Let us assume that the ancestor and target protein sequences,
respectively, are kept fixed during the evolutive process, as in the
word game.73 In this game, one word changes into another by
replacing one letter at a time, e.g., transforming the word “NCSI”
to “IRNL”,76 where each letter represents an amino acid in the
single-letter code. Then, according to eq 3, turning “NCSI” into
“IRNL”will lead to the same result, in terms of Pf, j, whatever the
mutational trajectories linking these two words are. That is
feasible becauseΔΔGj asΔΔGU

j is a state function. Thus, nature
follows any evolutive path if there is no penalty for doing so. In
actual applications, the latter means that some trajectories could
have a small (or null) chance of realization.77 The word game
also enables us to rationalize the complexity of the protein
evolution analysis, e.g., in terms of either evolutionary
trajectories or marginal stability changes. Let us briefly discuss
the pros and cons of each of these approaches.
On the one hand, an analysis of the protein evolution in terms

of the evolutionary trajectories implies knowing with precision,
in each step, the letter to be mutated (amino-acid identity), the
background where the mutation occurs (sequence and milieu),
and the epistasis effects that could take place. An accurate
solution to this problem is a daunting task,78 although of great
practical relevance, e.g., how to turn a protein to exhibit the
desired functionas it happens on directed evolution
applications.54,72 A solution to this problem is exacerbated by
the fact that neutral mutations, aside from epistasis effects, also
need to be considered because they may play a critical role in the
transition from one amino acid to another.53,71,79−81 In other
words, neutral mutations (which are invisible to natural
selection) may compensate for the effects of destabilizing
mutations though beneficial from the functional point of
view.72,80,81

Figure 1. Easy charts of the single-point mutation effects in terms of the
protection factor (Pf), representing the resistance of the amide HX in
the native state relative to that of the highest free-energy conformation
in the ensemble of folded states, and the protein marginal-stability
change (ΔΔG). (A) Protection factor change for the mutant (Pf,m)
differs, from one of the wild-types, by a Boltzmann factor that is a
function of ΔΔG. (B) Changes in the ensemble of conformations
coexisting with the native state enable, e.g., upon a slight change in the
milieu, the appearance of alternate native states, as for the metamorphic
proteins and, hence, the occurrence of new functions.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01407
ACS Omega XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/acsomega.2c01407?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01407?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01407?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01407?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01407?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


On the other hand, if protein stability is an essential factor for
evolution,74,82 then it is reasonable to think about the whole
(marginal-stability evolution) rather than the parts (evolu-
tionary-trajectories) because the former involves the latter and,
consequently, all factors affecting protein evolutionincluding
specific, nonspecific, or “high-order” epistasis effects.4,5,78,83 Yet,
we should keep in mind that Leibniz and Kant’s notion of space
(and time),3 devised as “analytic wholes”, highlights that the
whole is more than the sum of the parts, although this does not
imply the irrelevance of the latter. Indeed, as noted above for the
directed evolution applications, if our interest focuses on
understanding why nature adopts one among all possible
evolutionary trajectories,78 detailed consideration of the
epistasis effects would be unavoidable.

■ CONCLUSIONS
The above analysis stresses the importance of the protein
marginal-stability change analysis upon point mutations not
solely because it appears as one of the main factors governing
protein evolution but also because it provides a straightforward
path to estimatewithout considering epistasis effects explic-
itlythe fluctuations that may occur in the Boltzmann
ensemble of folded conformations in equilibrium with its native
state and, hence, their possible impact on the progress toward
new architectures and functions.
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