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Abstract: Prostate cancer is a disease with a high incidence and mortality rate in men worldwide.
Serum prostate-specific antigens (PSA) are the main circulating biomarker for this disease in clinical
practices. In this work, we present a portable and reusable microfluidic device for PSA quantification.
This device comprises a polymethyl methacrylate microfluidic platform coupled with electrochem-
ical detection. The platinum working microelectrode was positioned in the outflow region of the
microchannel and was modified with carbon nanofibers (CNF)-decorated gold nanoporous (GNP)
structures by the dynamic hydrogen bubble template method, through the simultaneous electrodepo-
sition of metal precursors in the presence of CNF. CNF/GNP structures exhibit attractive properties,
such as a large surface to volume ratio, which increases the antibody’s immobilization capacity and
the electroactive area. CNFs/GNP structures were characterized by scanning electron microscopy, en-
ergy dispersive spectrometry, and cyclic voltammetry. Anti-PSA antibodies and HRP were employed
for the immune-electrochemical reaction. The detection limit for the device was 5 pg mL−1, with a
linear range from 0.01 to 50 ng mL−1. The coefficients of variation within and between assays were
lower than 4.40%, and 6.15%, respectively. Additionally, its clinical performance was tested in serum
from 30 prostate cancer patients. This novel device was a sensitive, selective, portable, and reusable
tool for the serological diagnosis and monitoring of prostate cancer.

Keywords: electrochemical; immunosensor; microfluidic; carbon nanofibers; gold nanoporous;
cancer biomarker

1. Introduction

The design and construction of effective devices for the real-time assessment of
biomarkers to diagnose and monitor diverse diseases has represented an important re-
search topic in the last 10 years. In this sense, microfluidic-based detection systems offer
unique advantages, such as improved sensitivity, minimal reagent requirements and waste
production, reduced costs, and a short analysis time [1]. These platforms make it possible to
obtain miniaturized and portable devices and maintain homogeneous reaction conditions
due to the high surface-to-volume ratio [2]. Currently, the vast range of techniques and
materials used to develop microfluidic devices allow the development of designs with
specific characteristics to fulfill particular application requirements [3–5]. In addition,
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microfluidic systems can be coupled with different detection techniques, with optical and
electrochemical detection being the most commonly used [6–8]. In particular, electrochemi-
cal transducers exhibit superior sensitivity, portability and simplicity. The combination of
these superior properties of electrochemical transducers with microfluidic platforms has
paved the way to develop integrated devices with a wide range of applications in medicine,
biochemistry, agri-food safety, environment security and industry [9–11]. Electrochemical
detection allows interesting one-step electrode modifications, such as the dynamic hydro-
gen bubble template (DHBT) method that generates uniform gold nanopore structures
(GNP), producing a large increase in determination sensitivity. This technique involves the
electrodeposition of gold precursors while H2 bubbles are generated, resulting in a porous
gold structure with highly desirable properties [12,13].

In addition, the DHBT procedure allows the incorporation of different nanomaterials to
enhance the electrochemical surface. In this sense, carbon nanofibers (CNFs) are attractive,
owing to their excellent electrical conductivity, low background current, large surface area,
and high porosity [14]. Moreover, compared to carbon nanotubes, CNFs exhibit superior
chemical stability, and thermal conductivity [15,16]. The inclusion of CNFs/GNP structures
offers a stable surface and a simple way to incorporate recognition elements, generating
a biorecognition platform that grants device specificity [17]. These and other inherent
features make gold porous materials widely used in the design of sensing devices.

Consequently, several publications report electrochemical systems that incorporate
GNP structures with interesting applications. For instance, Bertotti and co-workers demon-
strated the possibility of determining anti-Plasmodium vivax (MSP119) antibodies in serum
samples using a microfluidic system in which GNP structures were generated on a gold
working electrode in the presence of CNT, reaching detection limits of 15 ng mL−1 [12].
Another recent example is the determination of different analytes using electrodes modified
with GNP structures. Messina and co-workers described the quantification of ethinylestra-
diol in water samples. In this case, the electrochemical sensor was based on an imprinted
electrode modified with GNP structures and graphene [13]. Ansarinejad and co-workers
reported the use of an electrochemical sensor to determine piroxicam and tramadol using a
polypyrrole/CuO nanocomposite-modified nanoporous gold film (NPGF) electrode [18].
Dantas and co-workers described the construction of a disposable gold microelectrode array
with a gold nanoporous structure. This device was used for the electrochemical detection
of inorganic and organic species by square-wave anodic stripping voltammetry [19]. Com-
pared to these systems, our microfluidic device presents a novel and promising composite
for sensing. The presence of CNF in combination with GNP allows us to reach excellent
detection limits and remarkable selectivity by incorporating monoclonal antibodies specific
to PSA (serum prostate-specific antigen).

In this context, an immuno-microfluidic device with a CNF/GNP structure in associa-
tion with a platinum microelectrode constitutes an attractive, sensitive, and specific device
to determine low levels of prostate cancer (PC) biomarkers. This pathology is one of the
most common cancer types suffered by men, with an increasing incidence and mortality
rate worldwide [20,21]. The etiology of PC has not been completely elucidated, although
several factors could be associated with it, including aging, family history, and genetic
mutations [20,22,23].

The Gleason score establishes the proper risk assessment and treatment selection
through tissue biopsy [24]. Other non-invasive procedures are used for diagnosing and
monitoring PC patients, including the Ki67 score, image analysis, and urine and blood
biomarkers determination [25]. PSA is one the most important biomarkers for PC. This
biomarker is a glycoprotein expressed in normal and cancerous prostate tissue. Values
of PSA greater than 4 ng mL−1 are considered as a strong indicator of PC [26]. Serum
PSA levels can change with age as well as non-PC related causes, such as urinary tract
infections and medication [27,28]. The gold standard technique for PC diagnosis is based on
colorimetric immunoassays (ELISA kit) for PSA quantification in serum samples, specific
digital imaging studies (transrectal ultrasound guided prostate biopsy) and clinical medical
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expertise [26]. However, conventional ELISA methods are complicated, time consuming,
expensive and require trained personnel, which restricts their use outside the laboratory,
and therefore their portability. In this sense, a microfluidic immunosensor device that
operates with a small sample and reagent volumes and reduces medical costs can be very
interesting as an analytical tool for PC diagnosis and prognosis.

In this work, we have developed an analytical methodology based on a portable
and reusable device, which stems from an immune-microfluidic system coupled with an
electrochemical system of detection. This device has been fabricated for PSA quantification
and validated in serum samples of healthy and PC donors. On the central channel of the
developed device, a CNFs/GNP nanostructured platinum microelectrode has been placed.

This CNF/GNP composite increases the surface area and enhances biocompatibility.
Nanostructured electrodes were functionalized with monoclonal capture antibodies against
PSA, and captured PSA was quantified by the HRP-labeled antibodies as a sandwich type
immunoassay. The results of this study suggest that this methodology offers a sensitive
and specific method to quantify PSA as a biomarker in PC.

2. Materials and Methods
2.1. Reagents and Instruments

HAuCl4, CNFs (graphitized (iron free) composed of conical platelets, D × L 100 nm
× 20–200 µm), bovine serum albumin (BSA), 3-mercaptopropionic acid (MPA), N-(3-
dimethylaminopropyl)-N-ethylcarbodiimide (ECD), and N-hydroxysuccinimide (NHS)
were acquired from Sigma-Aldrich (St. Louis, MI, USA).

Phosphate buffer saline (PBS pH 7.00), catechol, hydrogen peroxide (H2O2), acetic acid,
and sulfuric acid (H2SO4) were purchased from Merck (Darmstadt, Germany). Enzyme-
linked immunosorbent assay (ELISA kit) for PSA quantification was acquired from Thermo
Fisher Scientific (Waltham, MA, USA). Monoclonal PSA antibodies (C-19) and HRP-
conjugated antibodies were obtained from Santa Cruz (TX, USA). Poly(methyl methacrylate
(PMMA) was purchased from All Acrylic (Sao Paulo, Brazil). Aqueous solutions were
prepared by using purified water from a Milli-Q system.

Amperometry and cyclic voltammetry (CV) measurements were performed using a
PGSTAT128N potentiostat from Metrohm Autolab (Metrohm, Barendrecht, the Nether-
lands), with NOVA 2.1 electrochemical software. Electrochemical measurements were
carried out using a three-electrode cell (Pt wire as the auxiliary and working electrode, and
Ag wire as the pseudo-reference electrode). Pt (Ø 125 µm) and Ag (Ø 500 µm) wire were
obtained from Puratronic®-Alfa Aesar (Thermo Fisher Scientific, Waltham, MA, USA). Mor-
phology and elemental characterization were achieved by a scanning electron microscope
(SEM) using a LEO 1450 VP, with the energy dispersive spectrometer (EDS) EDAX Genesis
2000 (Oxford, UK). A syringe pump was used to introduce the solutions in the microfluidic
device at a 2 µL min−1 flow rate (Baby Bee Syringe Pump, Bioanalytical Systems, West
Lafayette, IN, USA). Absorbance was measured using a Bio-Rad Benchmark microplate
reader and a Beckman DU 520 general UV/VIS spectrophotometer (Tokyo, Japan). All pH
measurements were made with an Orion Expandable Ion Analyzer Model EA 940 (Orion
Research Inc., Cambridge, MA, USA).

2.2. Microfluidic Device Fabrication

The microfluidic device was designed using CorelDraw 12 software (Corel Corporation-
version 12.0.0.458–2003) and transferred to the PMMA layer by CO2 laser-engraving (100 W
laser machine Work Special 9060, from Visutec, Eisenstadt, Austria). The speed of the
movement of the laser head and power parameters of the CO2 laser were optimized to
achieve channels with the desired sizes (300 µm width and 150 µm depth). The labyrinthine
configuration design consists of two inputs for reagents, samples and carriers, a chamber
for the electrochemical cell, and an outlet for waste, as can be observed in Figure 1.
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Figure 1. Representative scheme of microfluidic immunosensor device for PSA quantification.

The microchannels engravings were made on a 6 cm × 6 cm × 0.5 cm PMMA plate.
After that, drill holes (150 µm Ø and 525 µm Ø for Pt and Ag, respectively) were made in the
chamber arranged for the electrochemical cell (Figure S1). Subsequently, the wires used as
working and auxiliary (Pt 125 µm Ø × 3 mm length), and pseudo-reference (Ag 500 µm Ø
× 3 mm length) electrodes were placed under pressure and sealed by superbonder glue.
Finally, the PMMA plate was washed with Milli-Q water, dried, and thermally sealed onto
a 6 cm × 6 cm × 2 mm PMMA plate in a heat press at 110 ◦C under 590 kPa for 45 min
(Ferragini model HT3020, São Paulo, Brazil). The last step was the tube connection for the
fluid external access from the syringe pump.

2.3. CNFs/GNP Electrode Modification

CNFs were previously pretreated in order to increase the dispersion according to
the methodology described by Marin-Barroso and co-workers [29]. Later, CNFs/GNP
structures were achieved by in situ co-electrodeposition on the Pt working electrode surface
following the DHBT method. Firstly, 1 mL of a 50 µg mL−1 CNF dispersion was added to
1 mmol L−1 HAuCl4 in 0.5 mol L−1 H2SO4 solution and sonicated (50–60 Hz) for 15 min.
Then, the dispersion was introduced to the microfluidic device and cycled, followed by
applying a fixed −3 V potential for 150 s. At this potential, the GNP electrodeposition
and the CNF reduction were achieved simultaneously [29]. Methodological conditions
such as the electrodeposition time, electrodeposition potential and CNF concentration
were optimized (Supplementary Material Figure S2). Finally, the CNFs/GNP-modified
electrodes were washed with Milli-Q water several times, followed by SEM, EDS, and CV
characterization.

2.4. Antibodies Immobilization

Firstly, 50 mmol L−1 MPA in EtOH:H2O (75:25, v/v) solution was cycled inside the
microfluidic channel for 12 h at 25 ◦C. In this step, the MPA thiol group was covalently
bound to the GNP surface, leaving free carboxylic groups, which were subsequently
activated by 10 mmol L−1 EDC:NHS solution in PBS for 2 h at 25 ◦C. Moreover, the -COOH
groups from the CNFs were also activated. Then, the microfluidic channels were washed
with Milli-Q water several times and dried with N2.

Later, a 5 µg mL−1 anti-PSA monoclonal antibody solution in PBS was cycled for 12 h
at 4 ◦C. Finally, the channels were washed with PBS several times, and stored in the same
buffer at 4 ◦C. The microfluidic device was perfectly stable for at least 1 month.
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2.5. Analytical Procedure for PSA Quantification

The microfluidic device, as well as the ELISA, were applied to the PSA determination
in thirteen human serum samples with the aim of correlating both methodologies. Firstly,
1% BSA in PBS was introduced for 5 min as a blocking treatment to avoid non=specific
bindings, followed by a PBS washing step for 5 min to eliminate the remaining material.
After that, the human serum sample that was previously diluted 100-fold (following the
ELISA protocol) was pumped for 5 min. In this step, the PSA antigen was specifically
recognized by the anti-PSA monoclonal antibody, eliminating all other potential interferents
in the sample matrix.

Then, following the sandwich-type immunoassay procedure, a secondary antibody
labeled with horseradish peroxidase (HRP-anti-PSA) was injected for 5 min. Finally,
1 mmol L−1 catechol/H2O2 in 0.1 mol L−1 acetate buffer (pH 4.75) as the enzymatic
substrate solution was introduced in the microfluidic device, and the quinone (enzymatic
product) was detected at the CNFs/GNP structure at +100 mV.

In order to reuse the microfluidic device before the determination, 0.1 mol L−1 glycine
pH 2 was used as a desorption solution, followed by a PBS washing step. In this step, the
PSA antigen was desorbed from the anti-PSA antibodies, allowing us to perform a new
determination step.

2.6. Serum Sample Collection

All patients gave written informed consent for the biological sample’s extraction to
the Urology and Oncology Departments according to the Virgen de las Nieves University
Hospital Ethical Committee and the Declaration of Helsinki principles. Blood samples were
collected by puncture in a vacuum tube, followed by clotting without additives at room
temperature for 30 min and centrifugation at 1500 g for 10 min. Finally, the supernatant
was frozen at −80 ◦C until use.

2.7. Commercial ELISA Kit

ELISA determinations were performed according to the specific supplier’s instructions
for PSA (Boston, MA, USA). The human-free PSA solid-phase sandwich ELISA kit is based
on measuring the amount of this cancer biomarker bound between a matched antibody pair.
A capture-specific antibody has been pre-coated in the wells of the supplied microplate.
Samples, standards, or controls are then added into these wells and bind to the immobilized
(capture) antibody. The sandwich is formed by the addition of the second antibody HRP
and a substrate solution is added that reacts with the enzyme–antibody–PSA complex to
produce a measurable signal. The intensity of this signal is directly proportional to the
concentration of the PSA biomarker present in the serum sample. The measurement is
photometrically taken at 450 nm.

3. Results and Discussion
3.1. CNFs/GNP Characterization

The CNF/GNP composite was synthesized via DHBT electrodeposition on the Pt
working electrode. The DHBT electrodeposition method is based on the formation of H2
bubbles on the electrode surface by applying a negative potential in an acid medium. The
H2 bubbles block the mass transport of Au ions to the nucleation sites on the electrode.
Consequently, random micropores are formed during metal deposition. The honeycomb-
like dendritic structure provides an improved rough surface area [30].

The CNF/GNP composite was morphologically characterized by SEM at several
magnifications. Figure 2A shows a characteristically uniform gold nanoporous honeycomb-
like image. Moreover, at higher magnifications, the GNP dendritic structure and the
CNF interspersed in the gold by in situ co-deposition (Figure 2B,C) are observed. The
electrode surface shows structural defects because the carbon nanofibers form a network
with the dendritic gold, as shown in a magnified image (Figure 2D). In addition, fungi-
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like formations with nanoporous gold spheres at the extremities of carbon nanofibers can
be observed.
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Figure 2. SEM micrographs of CNF/GNP composite at different magnifications. Inset: energy
dispersive spectrum. (A) Uniform gold nanoporous honeycomb-like image. (B,C) GNP dendritic
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(E) EDS spectrum.

An EDS spectrum was analyzed to study the elemental composition. Figure 2E (Inset)
shows the characteristic C (0.24 KeV) and Au (2.35, and 9.91 KeV) peaks. In the semi-
quantitative microanalysis, the Au and C concentration was 86% and 14%, respectively.

Cyclic voltammetry (CV) experiments were recorded in a 5 mmol L−1 [Fe(CN)6]−3

solution from +400 to −100 mV at a 75 mV s−1 scan rate. Figure 3A (inset) shows a charac-
teristic sigmoidal curve for the bare platinum microelectrode (green line), in comparison
with the blank bare electrode measurement (black line). Upon electrode modification,
well-defined CV peaks corresponding to a [Fe(CN)6]−3 reversible redox process were
recorded for the GNP/Pt and CNF/GNP/Pt measurement (Figure 3A), in comparison
with the blank CNF/GNP/Pt electrode measurement (pink line). Moreover, an increase in
current was observed for both modified electrodes compared to the bare electrode (green
line). In addition, a shift in the potential towards less positive values was observed for
CNFs/GNP/Pt (blue line) compared to GNP/Pt (red line). The first effect can be mainly
attributed to the excellent electrical conductivity and the increased electroactive surface
area. The second effect is due to the improvement in the electron transfer kinetics due to
the greater number of active sites caused by the numerous defects generated by the carbon
nanofibers interspersed in the gold dendritic porous surface.
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In addition, the study of the scan rate influence on the peak current was performed for
the CNF/GNP/Pt electrode in a 5 mmol L−1 [Fe(CN)6]−3 solution from +400 to −100 mV
(Figure 3B). The experiments were carried out using a 25 to 200 mV s−1 scan rate. A
linear relationship between both anodic and cathodic peak current values and the scan rate
square root was observed, confirming that the [Fe(CN)6]−3 electrochemical behavior at the
CNFs/GNP/Pt composite is a diffusion-controlled process.

3.2. Optimization of Experimental Parameters

Since the parameters of electrodeposition time (Tdep) and potential (Edep) for the
nanocomposite formation on the electrode surface were already optimized in a previous
work [31], this work focused on the optimization of the experimental parameters for
PSA quantification. To do this, a PSA standard solution of 10 ng mL−1 was used for all
optimization experiments.

As the CNF concentration affects the electrochemical response, we evaluated the
electrochemical signal in CNF concentrations ranging from 10 to 100 µg mL−1 (Figure S2A).
It is worth noting that the current was significantly improved when the concentration
increased up to 50 µg mL−1, reaching a plateau at higher concentrations. Therefore,
we confirmed that the CNF concentration of 50 µg mL−1 was optimal for subsequent
experiments.

Additionally, the concentration of the anti-PSA monoclonal antibody used in the
immobilization procedure was optimized (Figure S2B). Several concentrations of the anti-
PSA capturing antibody (1–10 µg mL−1) were covalently immobilized on the CNF/GNP
nanostructure. After measuring the enzymatic reaction, we observed that the optimum
antibody concentration was 5 µg mL−1.

Moreover, to determine the optimal pH for the enzymatic reaction (Figure S2C), the
PSA measurement was tested in a pH range from 3.00 to 7.00. The obtained signal reached
a maximum at pH 4.75, using acetate buffer as a solvent. The pH of the enzymatic reaction
was then reached following buffer employment as the liquid of the reaction.

To find out the optimal flow rate (Figure S2D), several flow rates were evaluated
while measuring the generated current during the immune reaction. Flow rates from 1 to
2.5 µL min−1 had little effect over the immune reaction. However, at a flow rate exceeding
3 µL min−1, the signal was dramatically reduced. Therefore, a flow rate of 2 µL min−1 was
used for the sample, reagent and washing buffer injections.
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3.3. Analytical Performance of the Electrochemical Device

The quantification of the PSA cancer biomarker was performed under the optimized
parameters, and the results were analyzed in comparison with the commercial ELISA kit.
The PSA calibration curve was constructed using 0.01 to 100 ng mL−1 standard solutions.
A linear relationship was observed from 0.01 to 50 ng mL−1, according to the I (nA) = 38.57
+ 8.95 CPSA linear regression equation, with a R = 0.998 (Figure 4A). The commercial ELISA
kit showed a linear relationship from 0.05 to 5 ng mL−1, according to the A (O.D.) = 0.05
+ 0.41 CPSA equation with a R = 0.996 (Figure 4B). The coefficients of variation (CV%) for
the 10 ng mL−1 PSA standard solution were 3.85% and 6.45% (n = 5), and the limits of
detection (LOD) were 5 and 45 pg mL−1 for the microfluidic immunosensor and the ELISA,
respectively (IUPAC recommendations).
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Additionally, the correlation between both techniques was evaluated in several PSA
dilutions. An excellent correlation between both methods was observed, which was
indicated by the 1.01 straight line (Figure 5).
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Moreover, the microfluidic immunosensor precision was evaluated by using the
10 ng mL−1 PSA standard. The within-assay precision was confirmed by five measurements
on the same day. In the between-assay precision, the analyses were repeated for three
consecutive days using different microfluidic devices. CV within-assay and between-
assay values were below 4.40% and 6.15%, and 7.20% and 8.23% for the microfluidic
immunosensor and the commercial ELISA kit, respectively. As can be observed in Table 1,
the commercial ELISA kit requires 270 min for the analysis time, against the 21 min required
by the proposed microfluidic sensor.

Table 1. Comparison of the analytical performance between the commercial ELISA kit and the
microfluidic immunosensor for PSA cancer biomarker.

Method Time
(min)

CV % a

Within-Assay
CV % a

Between-Assay CV% a Linear Range LOD

ELISA 270 7.20 8.23 6.45 0.05–5 b 45 c

MI d 21 4.40 6.15 3.85 0.01–50 b 5 c

a Five replicates (n = 5). b ng mL−1 PSA. c pg mL−1 PSA. d Microfluidic electrochemical immunosensor.

In addition, the stability of the sensor was investigated. For this purpose, the mi-
crofluidic immunosensor was stored at 4 ◦C in PBS for one month. A less than 5% loss of
sensitivity was observed after storage compared to the response immediately after fabrica-
tion. The microfluidic immunosensor can be used for 20 days without a significant loss of
sensitivity and allowed to perform about 15 serum sample analyses in a working day.

In addition, the selectivity against other possible cancer biomarkers in serum samples
(EPCAM, EGFR, CEA and CA 15-3) was evaluated in 10-fold concentrations compared to
PSA. The presence of these potential interference compounds caused less than 2% changes
in the PSA quantification. The strong specificity was attributed to the blocking of non-
specific adsorption (BSA) and the anti-PSA monoclonal antibodies. Finally, the developed
immunosensor was tested in negative and positive control serum samples from PC patients
and compared with the commercial ELISA kit as the gold standard assay (Table 2). The
negative control samples were spiked with PSA in order to study the recovery percentage.

Table 2. Comparison of PSA data between the microfluidic electrochemical immunosensor and
commercial ELISA kit for negative control (spiked) and positive control serum samples.

Samples Addition b ELISA Recovery% MI d Recovery%

− a 0 0 - 0 -
− 0.1 0.089 + 0.002 c 89 0.097 + 0.001 97
− 1 1.11 + 0.04 111 1.04 + 0.02 104
− 5 4.91 + 0.07 98.2 5.04 + 0.04 100.8
− 10 9.71 + 0.09 97.1 9.95 + 0.06 99.5
− 25 24.1 + 0.15 96.4 25.3 + 0.07 101.2
− 50 47.7 + 0.21 95.4 49.7 + 0.09 99.4

+ e 0 0.25 + 0.02 - 0.25 + 0.01 -
+ 0 0.98 + 0.04 - 0.97 + 0.03 -
+ 0 1.63 + 0.08 - 1.65 + 0.04 -
+ 0 3.45 + 0.11 - 3.43+ 0.06 -
+ 0 5.15 + 0.16 - 5.18 + 0.09 -

a Control negative samples. b PSA spiked samples (ng mL−1). c Five replicates (n = 5) + SD. d Microfluidic
electrochemical immunosensor. e Positive samples.

In comparison with a previous work [32], our microfluidic immunosensor based on
the CNF/GNP nanocomposite platform for antibody monoclonal immobilization presents
relevant advantages, such as its high surface and biocompatibility, miniaturization and
easy handling, low-cost production, and short time analysis. In another recently pub-
lished work [33], we developed an amperometric microfluidic immunosensor for claudin7
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cancer biomarker determination in circulating extracellular vesicles (EVs) in colorectal
cancer patient’s samples. Claudin7 is a relevant biomarker for colorectal cancer diagnosis
and prognosis. The glass immunosensor consisted of a T-format with a central channel
(60 mm length; 100 µm diameter) and side channels (15 mm length; 70 µm diameter). The
sensor was based on synthesized MIL-125-NH2 particles (Materials Institute Lavoisier,
titanium-oxo clusters and 2-aminoterephtalic acid linker) covalently anchored in the central
channel. This nanomaterial was used as an efficient platform for the monoclonal antibody
immobilization to recognize and capture this biomarker in EV samples. As an added value
of this sensor compared to previous reports, this nanocomposite in the solid reaction phase
is easier to use in the microfluidic device compared with magnetic nanoparticles, since
there is no need for an external magnet. Interestingly, the modifications of the electrode’s
surface did not reduce specificity in all the analyzed samples, showing a perfect correlation
against the ELISA analyses, which indicates high versatility regarding the different kinds of
samples. Further examples include the work of Takita and co-workers [34], who developed
an aptasensor for PC diagnosis. This method was based on an electrochemical sensor
combined with redox-labelled aptamers for PCA3 biomarker detection. This biomarker is
overexpressed in PC patients’ urine. The detection mechanism consists of the increase in
the charge transfer between the redox label and the electrode. This phenomenon is due to
the aptamers recognized by the PCA3 proteins, bringing closer the redox labels (methylene
blue) to the electrode surface.

In addition to the previously described articles, the design and construction of different
sensors for PSA determination in serum samples have been reported. The main analytical
features of these are summarized in Table 3. In this regard, it is essential to highlight that
devices based on microfluidic systems allow the different steps of automation, reducing the
determination process complexity. Moreover, our device’s reusability, portability, and short
analysis time (21 min) facilitate the in situ PSA determination of multiple samples. Regard-
ing the electrode modification, the carbon nanofibers (CNF)-decorated gold nanoporous
(GNP) structures on Pt microelectrodes obtained by the dynamic hydrogen bubble template
method represent a novel and simple strategy for constructing a selective immunoplatform.
Finally, as observed in Table 3, our microfluidic device reached an adequate LOD that
allows the detection of a PSA level that is clinically considered as an indicator of prostate
cancer in serum samples.

Table 3. Comparison of main analytical features of different immunosensors for PSA serum sample
determination reported in the literature.

Assay Type Platform Detection
Technique Dynamic Range LOD Ref

Immunomagnetic
assay Microfluidic device Amperometry 10 pg mL−1 to

1500 pg mL−1 2 pg mL−1 [32]

Label-free
immunosensing Ab/Ag2S/BiOBr/AgBr/Ag/ITO Photo-

electrochemistry
0.001 to
50 ng mL−1 0.25 pg mL−1 [35]

Label-free
immunosensing Ab/mucilage-GNPs-SNPs/GCE DPV 0.1 pg mL−1 to

100 ng mL−1 0.078 pg mL−1 [36]

Label-free
immunosensing

anti-
PSA/AuNPs/PANI/MWCNTs-
COOH/GCE

DPV 1.66 pg·mL−1 to
1.3 ng·mL−1 0.5 pg·mL−1 [37]

Sandwich-type
immunoassay Ab/Fe3O4/MWCNT/GCE DPV 2.5 pg mL−1 to

100 ng mL−1 0.39 pg mL−1 [38]

Label-free
immunosensing Ab-Cs-rGO/AuNRs-FTO DPV 0.1 to 150 ng mL−1 16 pg mL−1 [39]
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Table 3. Cont.

Assay Type Platform Detection
Technique Dynamic Range LOD Ref

Sandwich-type
immunoassay

Ab/AuNPs-ATPGO/GCE and
d-Ti3C2TX MXene@AuNPs as label
of Ab2

DPV 0.01 to 1.0
pg mL−1

3 × 103

pg mL−1 [40]

Sandwich-type
immunoassay

Ab/CHIT-MOF/GCE and QDs as
label of Ab2

DPV 1 pg mL−1 to
100 ng mL−1 0.45 pg mL−1 [41]

Label-free
immunosensing

Ab/AuNPs/CS–GR–IL–Fc
cry/SPCE DPV 1.0 × 10−7 to 1.0 ×

10−1 ng mL−1
4.8 × 10−5

pg mL−1 [42]

Sandwich-type
immunoassay

Ab/AuNPs/GCE and
MOF-235/MB
as label of Ab2

DPV 10 to 1200
pg·mL−1 3 pg·mL−1 [43]

Sandwich-type
immunoassay

Microfluidic device with
Ab/CNFs/GNP/Pt electrode Amperometry 0.01 to 50 ng mL−1 5 pg mL−1 This

work

ITO: iridium tin oxide, PANI: polyaniline, Cs: chitosan, FTO: fluorine-doped tin oxide electrodes, ATPGO: ATP-
functionalized graphene oxide, MXene: known as metal carbides/carbonitrides; d-Ti3C2TX MXene@AuNPs:
delaminated MXene-gold nanoparticles, Ab2: secondary antibody, CS–GR–IL–Fc cry: 3D porous cryogel of
chitosan, graphene, ionic liquid and ferrocene, MOF: metal organic framework, MB: methylene blue.

4. Conclusions

We present a microfluidic immunosensor coupled with electrochemical detection
based on a novel CNF/GNP nanocomposite platform for specific monoclonal antibody
anti-PSA immobilization. This sensor was applied to the quantification of PSA biomarkers
in serum samples. The analytical parameters such as linear range, precision and LOD, as
well as the overall assay time required (21 min), were significantly improved according to
the commercial ELISA kit (270 min) frequently used in clinical diagnosis. This sensor was
tested using PC patients’ serum samples and validated against a commercial ELISA kit,
showing an excellent correlation between both methods. The use of specific monoclonal
antibodies as recognition biomolecules avoids potential cross reactivity in such a complex
matrix and can be successfully applied to PSA detection in real human serum samples with
high accuracy. Finally, our electrochemical method provides a truthful and useful analytical
tool that can be easily used for PC diagnosis and prognosis in combination with digital
rectal examination and imaging studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13030390/s1, Figure S1. Design of the electrochemical cell
and microscopy photo; Figure S2. Optimization of Experimental Parameters. (A) CNF concentration,
(B) PSA antibody concentration, (C) pH, and (D) Flow rate.
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