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Abstract

In this work we address k-tuple and k-tuple total dominations on

the subclass of circular-arc graphs given by web graphs. For the

non total version, we present a linear time algorithm based on the

regularity of the closed neighborhoods associated with web graphs

which allows the use of modular arithmetic for integer numbers. For

the total version, we derive bounds for this graph class.

1 Preliminaries

Domination in graphs is useful in different applications. There exist

many variations — such as k-tuple domination and k-tuple total dom-

ination, among others— regarding slight differences in their definitions.

These differences make circular-arc graph subclasses adequate and useful

mostly due to their relation to “circular” issues, such as in forming sets of

representatives, in resource allocation in distributed computing systems,
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in coding theory [16], and in testing for circular arrangements of genetic

molecules [10].

We consider finite simple graphs G, where V (G) and E(G) denote its

vertex and edge sets, respectively. The open neighborhood of v ∈ V (G)

is NG(v) = {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood is

NG[v] = NG(v) ∪ {v}. The minimum degree of G is denoted by δ(G) and

is the minimum between the cardinalities of NG(v), for all v ∈ V (G). A

graph G is circular-arc if it has an intersection model consisting of arcs

on a circle, that is, if there is a one-to-one correspondence between the

vertices of G and a family of arcs on a circle such that two distinct vertices

are adjacent in G when the corresponding arcs intersect.

Given a graph G and a positive integer k, D ⊆ V (G) is a k-tuple (to-

tal) dominating set in G if |NG[v] ∩D| ≥ k (|NG(v) ∩D| ≥ k), for every

v ∈ V (G). When k ≤ δ(G) + 1 (k ≤ δ(G)), γ×k(G) (γtk(G)) denotes

the cardinality of a k-tuple (total) dominating set in G of minimum size.

γ×k(G) (γtk(G)) is called the k-tuple (total) dominating number of G. Ob-

serve that γ×1(G) is equal to the well-known dominating number γ(G);

also that γ×k(G) ≤ γtk(G) for every graph G and every positive integer

k. The notions of k-tuple domination and k-tuple total domination were

introduced in [8] and [11], respectively.

For a fixed k, the k-tuple (total) domination problem is to find in a given

graph G, a k-tuple (total) dominating set in G of size γ×k(G) (γtk(G)).

When the input graph is not connected, it is clear from its definition that

the k-tuple (total) domination problem can be addressed on each con-

nected component separately to obtain a minimum k-tuple (total) dom-

inating set for the entire graph as the union of minimum k-tuple (total)

dominating sets on each component. Thus, in the sequel we can consider

that the input graph is always connected.

The decision problems (fixed k) associated with these concepts are in-

dependently known to be NP-hard [12, 13] but polynomial time solvable

in some graph classes (see, for example, [2,7,12,13]). For proper interval

graphs, an efficient algorithm for the 1-tuple domination problem is de-
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veloped in [5], but no valid algorithm seems to be currently available for

the remaining values of k beyond the one given in [12] for strongly chordal

graphs (which is a superclass of proper interval graphs). With a different

approach, a polynomial time algorithm was presented recently in [6] for

the k-tuple total domination problem in proper interval graphs, for each

fixed value of k.

For general circular-arc graphs —which generalize proper interval graphs—

efficient algorithms are presented for 1-tuple domination in [5] and for the

2-tuple domination in a recent work [14]. Efficient algorithms are known

to solve the 1-tuple domination problem [5,9] and the 1-tuple total domi-

nation problem [4], but their complexity are not known for any k greater

than 1. It remains challenging to make a breakthrough in the study of the

tractability of these problems in subclasses of circular-arc graphs. In this

work, we address the subclass given by web graphs. It follows from [16]

that web graphs are circular-arc graphs. For a web graph G, on the

one side the study of k-tuple domination (in fact in [1], k-tuple domina-

tion is referred as k-domination) was already started in [1] by means of

polyhedral arguments, and solved only for the cases k = 2 and k being

the common degree δ(G) of the vertices. For the remaining values of k,

only an upper bound and a lower bound for γ×k(G) were given; these are

k
⌊

n
δ(G)+1

⌋
≤ γ×k(G) ≤ k

⌈
n

δ(G)+1

⌉
, where n = |V (G)|. On the other side,

k-tuple total domination on web graphs had not yet been studied.

In this work, the sets of integer numbers, positive integer numbers and

non negative integer numbers are denoted respectively by Z, Z+ and Z+
0 .

Besides, every numerical interval is an integer interval, i.e., one of the form

[a, b] with a, b ∈ Z and a < b, together with all integer numbers that are

between a and b. Given a, b ∈ Z, the greatest common divisor between a

and b, i.e., the largest positive integer number that divides both a and b,

is denoted by gcd(a, b).
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2 A vertex set partition related to a web graph

Given n,m ∈ Z+ with m ≥ 1 and n ≥ 2m+ 1, a web graph —denoted

by Wm
n — is a graph with V (Wm

n ) = {v1, · · · , vn} and vivj ∈ E(Wm
n )

if and only if j ≡ i ± l (mod n), l ∈ {1, · · · ,m} [15]. It is clear that∣∣NWm
n
[v]

∣∣ = 2m+ 1 for each v ∈ V (Wm
n ). An example is given in Figure

1.

Let us consider the integer division between n and 2m + 1 and denote

by c the quotient and r the remainder, with 0 ≤ r < 2m + 1; i.e., n =

c(2m+ 1) + r. If we denote µ := gcd (2m+ 1, r), there exist l1 ∈ Z+
0 and

l2 ∈ Z+ such that r = l1µ and 2m+ 1 = l2µ, and thus n = (cl2 + l1)µ.

Besides, let us denote by [i]µ for i, µ ∈ Z+, the set of all integer numbers

that are congruent with i modulo µ. Under this notation and taking into

account the fact that gcd (l2, cl2 + l1) = 1, we can prove the following

lemma and proposition.

Lemma 2.1. The set Si := [i]µ ∩ [1, n] has cardinality n
µ for every i ∈

{1, · · · , µ}.

Example 2.1. For n = 15 and m = 4 we have 2m+ 1 = 9, c = 1, r = 6

and µ = gcd(9, 6) = 3. Sets Si’s are: S1 = [1]3 ∩ [1, 15] = {1, 4, 7, 10, 13},
S2 = [2]3∩[1, 15] = {2, 5, 8, 11, 14} and S3 = [3]3∩[1, 15] = {3, 6, 9, 12, 15}.

Proposition 2.1. For each i ∈ {1, · · · , µ} it holds

Si =
⋃

t∈[0, n/µ−1]

{w ∈ [1, n] : w ≡ i+ t(2m+ 1) (mod n)} .

Proposition 2.1 induces a vertex set ordering of any web graph.

From now on, all sums in the subscripts are taken modulo n and thus,

they are in [1, n]. Consider a web graph Wm
n , for some m and n. To

simplify the notation, in the remainder we omit the subscripts in every

vertex neighborhood of Wm
n , and thus N [v] indicates NWm

n
[v].

From the definition ofWm
n , it is clear thatN [vm+j ] = {vj , vj+1, · · · , vj+2m}

(observe this in Figure 1). In the sequel j refers to vertex vm+j of the web
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Figure 1: The web graph W 4
15.

graph Wm
n , for j ∈ {1, · · · , n}. For instance in Example 2.1, S1 represents

the subset {v5, v8, v11, v14, v2} of the vertex set of W 4
15.

As a corollary of Lemma 2.1 and Proposition 2.1, we can state:

Corollary 2.1. {Si}µi=1 is a partition of V (Wm
n ) into sets of cardinality

n
µ .

3 A linear time algorithm for k-tuple domination

We first observe that under the notation of the previous section, when

G = Wm
n is a web graph with n = c(2m+ 1) (i.e., r = 0), the upper and

lower bounds for γ×k(G) exposed in the preliminaries [1] do coincide and,

as a consequence, they derive the exact value of the k-tuple domination

number, that is γ×k(W
m
n ) = kc for any k with 1 ≤ k ≤ 2m+ 1.

The following result shows that sets Si’s have the same number of ver-

tices in each closed neighborhood.

Lemma 3.1. Let Wm
n be a web graph with 2m + 1 = l2µ for l2 ∈ Z+.

Then for every vertex v ∈ V (Wm
n ) and i ∈ {1, · · · , µ}, |N [v] ∩ Si| = l2.

Proposition 3.1. For every web graph Wm
n , it holds

γ×l2(W
m
n ) =

n

µ
.

As mentioned above, Proposition 2.1 leads us to consider an ordering

in each Si starting from i, in such a way that each element is obtained
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5

Figure 2: N [5] has l2 = 3 vertices of each Si, referring to W 4
15 of Example

2.1.

from the previous one in this ordering as a “circular movement” of 2m+1

positions.

Given Wm
n , i ∈ {1, · · ·µ} and j, q two vertices in Si, we say that q is

1-contiguous to j when q ≡ j + 2m + 1 (mod n). Observe that if q is 1-

contiguous to j, then |N [j] ∪N [q]| is equal to n if c = 1, and to 2(2m+1)

if c ≥ 2. Given i ∈ {1, · · · , µ}, let us consider in Si, the ordering induced

by the 1-contiguous relation. To indicate that ordering, we write ⟨Si⟩.
Example 3.1. ForW 4

15 (see Example 2.1), we can write ⟨S1⟩ = (1, 10, 4, 13, 7),

⟨S2⟩ = (2, 11, 5, 14, 8) and ⟨S3⟩ = (3, 12, 6, 15, 9).

Given m, n, ⟨Si⟩ for some i and α < l2, procedure DOM below returns

an α-tuple dominating set in Wm
n . In each step, it chooses from ⟨Si⟩ a

vertex that is the 1-contiguous vertex to the latest added to D and stops

when each vertex of Wm
n has at least α adjacent vertices that belong to D.

We take into account Procedure DIV(t, w) which returns the quotient (c)

and the remainder (r) from the Integer Division between two given integer

numbers t and w. Also, Procedure PROC(n,m,i) —based on Proposition

2.1— which returns the set ⟨Si⟩ := (si1, · · · , sin
µ
).

Procedure DOM (n, m, ⟨Si⟩, α)
h = 1

DIV (n, 2m+ 1)

µ = gcd(2m+ 1, r)

D = ∅
While h ≤ α

j = |D|+ 1
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While sij + 2m < n and j ≤ n
µ

D = D ∪ {sij}
j = j + 1

EndWhile

D = D ∪ {sij}
h = h+ 1

EndWhile

EndProcedure

Next we present Algorithm 1 based on procedures DOM and PROC.

Taking into account Lemma 3.1, when Algorithm 1 adds the entire set Si

produced by procedure PROC(n,m,i) to D, it turns out that each vertex

of the input web graph has l2 adjacent vertices of Si. Depending on the

value of k, it uses some sets from S2 up to Sµ and possibly part of the set

S1.

ALGORITHM 1 Min k-tuple dominating set (fixed k) of Wm
n

Require: n,m, k ∈ Z+ with n ≥ 2m+ 1 ≥ k.

Ensure: A minimum k-tuple dominating set D of Wm
n .

DIV(n, 2m+ 1)

µ := gcd(2m+ 1, r)

DIV(2m+ 1, µ) and print quotient l2

PROC(n,m,1)

If k ≤ l2 then D = DOM(n, m, ⟨S1⟩, k)
Else (k > l2)

DIV (k, l2) and print quotient c̃ and remainder r̃

If r̃ = 0 then D = PROC(n,m, 1) ∪ · · · ∪PROC(n,m, c̃)

ElseD = DOM(n,m, ⟨S1⟩, r̃)∪PROC(n,m, 2)∪· · ·∪PROC(n,m, c̃+

1)

EndIf

EndIf

On the one side, ALGORITHM 1 runs in linear (as a function of n)

time. This follows from the facts that PROC(n,m,i) runs in O
(
3n
µ

)
-time
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since, to obtain ⟨Si⟩, it starts in vertex i and makes in each step at most

three operations (addition of 2m+1 to the previous element, comparison

with n and possibly subtraction of n); besides, DOM runs in O (f(n))-

time, where f is a linear function, since the “While” in each h-iteration

is performed at most c (≤ n) times and each h-iteration is performed at

most α (≤ k ≤ 2m+ 1 ≤ n) times.

On the other side, when D is a k-tuple dominating set in Wm
n , we have

(2m+ 1)|D| =
∑
v∈D

|N [v]| =
∑

v∈V (Wm
n )

|N [v] ∩D| ≥ kn,

thus γ×k(W
m
n ) ≥ kn

2m+1 and moreover, γ×k(W
m
n ) ≥

⌈
kn

2m+1

⌉
. Since AL-

GORITHM 1 returns a k-tuple dominating set in Wm
n of size exactly⌈

kn
2m+1

⌉
, we conclude that its output is of minimum size.

In all we can state:

Theorem 3.1. For a positive integer k with k ≤ 2m+1, ALGORITHM

1 returns in linear time a k-tuple dominating set of Wm
n of size

γ×k(W
m
n ) =

⌈
kn

2m+ 1

⌉
.

4 Bounds for the k-tuple total domination num-

ber

As was pointed out in Section 1, γ×k(G) ≤ γtk(G) for every graph G

and positive integer k. Nevertheless, the inequality may be strict. For

instance, for the complete graph K3, 2 = γ×2(K3) < γt2(K3) = 3.

In a recent work [3], the following upper bound for the total k-domination

number in terms of the k-tuple domination number is given for every graph

G: γtk(G) ≤ 2γ×k(G)−k+1. Also, the following lower bound is presented

in the same work, for every graph G: γtk(G) ≥
⌈

kn−|A|
∆(G)−1

⌉
, where A is the

subset of vertices of G with maximum degree ∆(G) [3].

We note that in the case G is a web graph, the set A has cardinality n

and ∆(G) = 2m. It is not difficult to prove that the value of γ×k(W
m
n ) is

a tighter lower bound if and only if 1 ≤ k ≤ 2m+1
2 .
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As a consequence of the work done in the previous sections, we derive

the first bounds for the k-tuple total domination numbers:

Proposition 4.1. For a web graph Wm
n with n ≥ 2m+ 1, it holds

• γtk(W
m
n ) ≤ 2

⌈
kn

2m+1

⌉
− k + 1, for every 1 ≤ k ≤ 2m+ 1,

•
⌈

kn
2m+1

⌉
≤ γtk(W

m
n ) for every 1 ≤ k ≤ 2m+1

2 and

•
⌈
kn−n
2m−1

⌉
≤ γtk(W

m
n ) for every 2m+1

2 < k ≤ 2m+ 1.

Notice that the lower bound
⌈
kn−n
2m−1

⌉
equals the (k−1)-tuple domination

number of the web graph Wm−1
n .
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