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Abstract Neutrophils not only play a critical role as a first
line of defense against bacteria and fungi infections but also
contribute to tissue injury associated with autoimmune and
inflammatory diseases. Neutrophils are rapidly and massive-
ly recruited from the circulation into injured tissues display-
ing an impressive arsenal of toxic weapons. Although
effective in their ability to kill pathogens, these weapons
were equally effective to induce tissue damage. Therefore,
the inflammatory activity of neutrophils must be regulated
with exquisite precision and timing, a task mainly achieved
through a complex network of mechanisms, which regulate
neutrophil survival. Neutrophils have the shortest lifespan
among leukocytes and usually die via apoptosis although
new forms of cell death have been characterized over the
last few years. The lifespan of neutrophils can be dramati-
cally modulated by a large variety of agents such as cyto-
kines, pathogens, danger-associated molecular patterns as
well as by pharmacological manipulation. Recent findings
shed light about the complex mechanisms responsible for
the regulation of neutrophil survival in different physiological,

pathological, and pharmacological scenarios. Here, we
provide an updated review on the current knowledge and new
findings in this field and discuss novel strategies that could
be used to drive the resolution of neutrophil-mediated inflam-
matory diseases.
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Introduction

Neutrophils are the most abundant circulating leukocytes in
humans. They are produced in large numbers in the bone
marrow under the control of growth stimulating factor such
as granulocyte-colony stimulating factor (G-CSF), granulo-
cyte macrophage-CSF (GM-CSF), and interleukin-3 (IL-3).
Under steady state conditions, ∼100 billion mature neutro-
phils are generated and released into the peripheral circula-
tion per day in the healthy adult [1, 2]. In contrast with the
cells of the adaptive immunity (i.e., B and T cells) that
require their activation in secondary lymph organs to pro-
liferate and acquire an effector phenotype, neutrophils are
released into the blood as nondividing and fully competent
effector cells [3].

Neutrophils play a major role in the immune response
against bacteria and fungi infection [4]. This is illustrated by
the increased susceptibility to infection and sepsis of
patients with congenital or acquired neutropenia or defects
of neutrophil functions [5]. In fact, all untreated patients
with severe neutropenia (<100/mm3) will develop a serious
infection [6, 7]. Moreover, hereditary deficiencies in neutro-
phil function usually lead to overwhelming bacterial infec-
tion, which is fatal in the absence of specific treatment
[4–7].

Neutrophils ingest and kill microbes through the action of
a large array of antimicrobial weapons, which include
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proteolytic enzymes, antimicrobial proteins, and reactive
oxygen species [4, 7]. These toxic weapons do not discrim-
inate self from nonself. Hence, they induce host tissue
damage in a variety of pathological conditions [8–10]. For
this reason, it is very important that neutrophils be rapidly
and efficiently removed from the circulation when the host
is not challenged by noxious or dangerous stimuli. This
might explain why neutrophils, under steady-state condi-
tions circulating, show the shortest half-life of all the im-
mune cells [11, 12]. This supports the notion that, in order to
ensure neutrophil integrity and minimize the risk of host
tissue injury, neutrophils must be quickly eliminated. This
notion has been recently challenged by experiments per-
formed using in vivo deuterioum-labeled water showing that
the half-life of neutrophils under homeostatic conditions
might reach 90 h [13], an observation that requires further
investigation.

Over the last years, it has become clear that the function of
neutrophils cannot be merely explained in terms of phagocy-
tosis and killing of internalized pathogens. Neutrophils pro-
duce a variety of cytokines and chemokines such as IL-1,
tumor necrosis factor alpha (TNF-α), interleukin-12p70
(IL-12), transforming growth factor beta (TGF-β),
interleukin-8 (CXCL8), growth-related oncogene-alpha, beta
and gamma (CXCL1, CXCL2, and CXCL3), macrophage
inflammatory proteins 1 beta and 3 alpha (CCL4 and
CCL20), and interferon-gamma-inducible protein 10
(CXCL10) [3, 14, 15]. In spite that, on a per-cell basis,
neutrophils produce lower amounts of cytokines than mono-
cytes and macrophages, the very high concentrations that
neutrophils reach in areas of inflammation during the course
of infectious and autoimmune processes suggest that neutro-
phils might play a role in the regulation of the local immune
response [3, 15]. Moreover, there is a growing body of
evidence suggesting that neutrophils are not only able to
promote the course of inflammatory response but also to
suppress the adaptive immune response and participate in
wound healing and tissue repair mechanisms [16–18].

Apoptosis is the predominant cell death pathway in the
neutrophil [19]. The term apoptosis was originally proposed
by Kerr, Wyllie and Currie in 1972 [20] to describe a
morphological pattern of cell death characterized by DNA
fragmentation into nucleosome-length fragments and nuclear
pyknosis, cytoplasmic condensation, membrane blebbing, ex-
posure of phosphatidyl serine on the outer leaflet of the cell
membrane, and the formation of apoptotic bodies that are
efficiently phagocytosed by macrophages or neighboring cells
[12].

Neutrophil apoptosis develops in two major scenarios in
vivo. Under steady-state conditions, resting neutrophils re-
main in the blood for short periods (6–12 h). Then, they
home to the spleen, liver, or back to the bone marrow,
undergo apoptosis, and are phagocytosed by red pulp

macrophages in the spleen, by Kupffer cells in the liver
and by stromal macrophages in the bone marrow [11, 21].
The second scenario is the inflammatory focus. Under the
influence of a variety of inflammatory mediators such as
chemokines, cytokines, pathogen-associated molecular pat-
terns (PAMPs), danger-associated molecular patterns
(DAMPs), or inflammatory lipid mediators, neutrophils leave
the circulation to infiltrate the challenged tissue, where their
lifespan can be increased or decreased by a variety of inflam-
matorymediators [22, 23]. In this scenario, neutrophils phago-
cytose and kill invading pathogens, undergo apoptosis, and
are cleared by tissue macrophages [12].

The apoptotic death of neutrophils contributes to the
resolution of acute inflammation. The major secretory path-
ways are shut down in apoptotic neutrophils. Cell mem-
branes remain intact, thus preventing the extracellular
release of cytotoxic agents and DAMPs and the subsequent
amplification of the inflammatory response. Early in the
course of apoptosis neutrophils show “eat me” signals lead-
ing to their phagocytosis by surrounding macrophages [7,
12]. Phagocytosis of apoptotic neutrophils by macrophages
not only prevents the secondary necrosis of apoptotic neu-
trophils and the release of injurious contents but also turns
macrophages into an alternative or anti-inflammatory profile
by promoting the production of cytokines IL-10 and TGF-β
while suppressing the production of inflammatory cyto-
kines [12, 24]. Interestingly, the systemic administration
of apoptotic cells in murine models of septic shock have
shown to protect mice from endotoxin lethality, suggesting
that passive administration of apoptotic neutrophils could
represent a useful tool for the treatment of inflammatory
diseases [25].

While cell death is usually discussed dichotomously in
terms of apoptosis or necrosis, new forms of cell death have
been characterized over the last years. They include NETo-
sis, autophagic cell death, pyroptosis, necroptosis, and onco-
sis [26]. It is important to note that the analysis of the
mechanisms regulating neutrophil survival and death is not
easy to be performed since the standard tools of molecular
biology such as exogenous gene expression (transfection) or
gene-silencing strategies are very challenging. Moreover,
the use of neutrophil-like human cell lines hardly reflects
the physiology of primary neutrophils while the extrapola-
tion from in vivo murine models should be taken with care
since major differences have been observed when the func-
tion of mouse and human neutrophils were compared. Here,
we provide an updated review of the current knowledge and
emerging issues concerning the mechanisms involved in the
regulation of neutrophil survival under physiological and
pathological conditions and also discuss whether these
mechanisms might be exploited for the development of
novel therapeutic approaches in infectious and inflammatory
diseases.
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The players of neutrophil apoptosis: caspases, death
receptors, and Bcl-2 family

Caspases and IAPs

Caspases are crucial for the initiation, propagation, and
execution of apoptosis. They are activated through two main
pathways: the extrinsic or death receptor pathway and the
intrinsic or mitochondrial pathway. The extrinsic pathway
monitors the extracellular microenvironment, and it is in-
duced by proapoptotic stimuli recognized through specific
cell surface receptors. The intrinsic pathway monitors the
intracellular microenvironment, and it is induced by proa-
poptotic stimuli such as damaged DNA or oxidative stress
resulting in the permeabilization of the outer mitochondrial
membrane [26, 27].

Caspases are cysteine proteases synthesized as inactive
zymogens (procaspases). After activation, caspases cleave
substrates at sites next to the aspartic acid residues. To date,
11 different caspases have been characterized in humans:
caspase-1 to caspase-10 and caspase-14. In the mouse, 10
different caspases were identified: caspase-1, caspase-2,
caspase-3, caspase-6, caspase-7, caspase-8, caspase-9,
caspase-11, caspase-12, and caspase-14. The human
caspase-4 and caspase-5 are functional orthologs of mouse
caspase-11 and caspase-12, whereas caspase-10 is not found
in the mouse [28–30].

According to their functions, caspases are usually classi-
fied as proapoptotic and proinflammatory caspases. Proa-
poptotic caspases include caspase-2, caspase-3, caspase-6,
caspase-7, caspase-8, caspase-9, and caspase-10. They are
mainly involved in mediating cell death signaling transduc-
tion. Proinflammatory caspases include caspase-1, caspase-
4, caspase-5, caspase-11, and caspase-12. They are respon-
sible for the activation of a set of inflammatory cytokines,
which includes IL-1, IL-18, and IL-33 [28, 30]. We focus
our attention on the family of proapoptotic caspases
expressed by the neutrophil (caspase-3, caspase-6, caspase-
7, caspase-8, caspase-9, and caspase-10), which is divided
into two groups, according to their role in the induction of
apoptosis: initiator caspases (caspase-8, caspase-9, and
caspase-10) and effector caspases (caspase-3, caspase-6,
and caspase-7) [28].

The structure of proapoptotic caspases is illustrated in
Fig. 1. All caspases contain an N-terminal prodomain fol-
lowed by a large catalytic subunit of about 20 kDa (p20) and
a small catalytic subunit of about 10 kDa (p10). Initiator
caspases contain large prodomains with protein–protein in-
teraction motifs that belong to the so-called death domain
superfamily: the death effector domain (DED) and the cas-
pase recruitment domain (CARD). Procaspase-8 and pro-
caspase10 possess two tandem DEDs in their prodomain,
while CARD is expressed in caspase-9. These death

domains are 80- to 100-residue-long motifs and are respon-
sible for the recruitment of initiator caspases into death-
inducing signaling complexes (DISCs), resulting in proteo-
lytic autoactivation of caspases and the subsequent induc-
tion of apoptosis [28, 31, 32]. The effector caspases contain
short prodomains and are responsible for the execution step
of apoptosis. They cleave a large variety of cellular sub-
strates leading to the demolition phase of apoptosis. The
substrates of these caspases include enzymes involved in
DNA metabolism, cytoskeletal scaffold proteins, cell cycle
regulators, repair and housekeeping enzymes, signaling
molecules, transcription factors, among others [28, 29]. All
caspases are synthesized as catalytically inactive zymogens
and require proteolytic processing to be activated. The acti-
vation of caspases involves their intramolecular cleavage at
the specific Asp-X bonds leading to the release of the N-
terminal prodomain and the formation of the mature cas-
pase, which involves the assembly of the heterotetramer
p202–p102 [28].

The proteolytic activity of caspases is regulated by IAPs
(inhibitors of apoptosis), a family of proteins that includes
eight members in mammalian: c-IAP-1, c-IAP-2, XIAP (X-
linked IAP), ILP-2, NAIP, ML-IAP, Apollon, and Survivin
[33, 34]. All IAPs express in their amino-terminal region
one to three baculovirus IAP repeat motifs of about 70
amino acids that mediate protein–protein interactions. IAPs
mainly inhibit the initiator caspase-9 and the effector
caspase-3 and caspase-7 [33, 34]. In turn, the activity of
IAPs is inhibited by proapoptotic molecules released by the
mitochondria during the activation of the intrinsic pathway
of apoptosis such as the second-mitochondria-derived acti-
vator of caspases (Smac/Diablo) and the high-temperature
requirement A2 (HtrA2/Omi) [33, 35].

Very little is known about the function of IAPs in neu-
trophils. They express c-IAP-1, c-IAP-2, XIAP, and Survi-
vin. Administration of G-CSF to healthy donors has shown
to enhance cIAP2 levels in peripheral blood neutrophils
[36]. The delayed apoptotic rate of neutrophils in septic
patients, on the other hand, was shown to be associated to
increased levels of XIAP [37]. Survivin is the smallest
member of the IAPs family [38]. Simon and coworkers
reported that the expression of Survivin is high in immature
neutrophils and markedly decreases in mature neutrophils
[39]. Moreover, they reported that mature neutrophils re-
express Survivin after stimulation by G-CSF or GM-CSF as
well as during the course of inflammatory diseases, such as
acute appendicitis, ulcerative colitis, or cystic fibrosis [39,
40]. Of note, inhibition of Survivin expression in mature
neutrophils has shown to prevent the antiapoptotic effect
induced by either GM-CSF or G-CSF. A similar effect was
observed in neutrophils from Survivin null mice [39]. These
observations suggest that beyond the ability of GM-CSF and
G-CSF to increase the ratio between anti- and proapoptotic
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members of the Bcl-2 family, the inhibition of neutrophil
apoptosis induced by these growth factors is strongly de-
pendent on the expression of Survivin. Interestingly, like
most other IAP family proteins, Survivin does not directly
interact with or inhibit caspase activation. The antiapoptotic
function of Survivin appears to depend on its association
with XIAP [38].

IAPs were first thought to be solely involved in the
inhibition of apoptosis. However, a large body of evidence
proved that IAPs also display a variety of functions mainly
attributed to the E3 ubiquitin ligase activity of some IAPs
such as XIAP, cIAP1, and cIAP2. They control MAPK and
NF-kB signaling pathways, regulate signal transduction
downstream of several pattern recognition receptors, and
contribute to the maturation of pro-IL-1β and pro-IL-18
by regulating inflammasome activation [41–43].

Death receptors and the extrinsic pathway of apoptosis

Death receptors are members of the tumor necrosis factor
receptor superfamily characterized by the presence of a
cytoplasmic region of ∼ 80 amino acids called death domain
(DD). This is a protein–protein interaction motif allowing
self-association and induction of apoptosis [44–46]. The
death domain subfamily together with the DED, CARD,
and pyrin domain subfamilies define the DD superfamily,
one of the largest and most studied domain superfamilies
[44].

The death receptors best characterized are Fas
(CD95/APO-1), TNF-receptor 1 (TNF-R1), TNF-related
apoptosis-inducing ligand receptor 1 (TRAIL-R1), and re-
ceptor 2 (TRAIL-R2). Death receptors are activated by their
cognate ligands, which belong to the TNF protein family.
These ligands are mostly trimeric and can be either mem-
brane attached or soluble [44]. Once thought to be primarily
responsible for the induction of apoptosis, it is now clear
that death receptors are also able to promote the activation
of survival pathways in many cell types and tissues and to
induce a variety of functions not related to apoptosis. These
functions include regulation of cell proliferation and differ-
entiation, production of inflammatory cytokines and chemo-
kines and modulation of the immune response. In this
section, we focus on the mechanisms through which death
receptors trigger the activation of initiator caspases 8 and 10
[45–47].

The initial proapoptotic signaling cascade induced by
FasL has been analyzed in several cell types. The binding
of FasL stabilizes Fas trimers at the plasma membrane while
inducing a conformational change enabling the assembly of
a multiprotein complex at the cytosolic tail of the death
receptor, which leads to the activation of the initiator
caspase-8 and caspase-10. In a first step, the DD of Fas
recruit the adaptor protein called Fas-associated death-
domain-containing protein (FADD) via its C-terminal DD.
This adaptor protein also contain a N-terminal death effector
domain (DED), which interacts with the tandem DED in the

Fig. 1 Caspases. a Structure of
initiator and effector apoptotic
caspases. DED Death effector
domain. CARD caspase
recruitment domain. b
Activation of procaspase-
8 leading to the assembly of
the heterotetramer p202–p102
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prodomain of caspase-8 and caspase-10, resulting in the
formation of a ternary DISC, containing Fas, FADD, and
the initiator caspase-8 or caspase-10. Recruitment of
procaspase-8 or procaspase-10 into the DISC triggers the
autoproteolytic cleavage and activation of caspase-8 and
caspase-10, which are released into the cytosol as activated
intiator caspases [26, 45]. Caspase activation by the DISC
can be inhibited by cFLIPs (cellular caspase-8–FLICE-like
inhibitory protein), a family of tandem DED-containing
proteins, which expresses a noncatalytic pseudo-caspase
domain, able to interact with FADD [48].

The amount of active caspase 8, and perhaps caspase 10,
released into the cytosol seems to determine apoptosis sig-
naling pathways induced downstream DISC. In cells able to
produce large amounts of active caspase-8, it can efficiently
activate effector caspase-3, caspase-6, and caspase-7, there-
by triggering apoptosis directly without the activation of the
intrinsic pathway of apoptosis mediated by truncated Bid.
These cells have been termed type I cells. In contrast, in
cells producing low amounts of active caspase-8, termed
type II cells, the induction of apoptosis triggered by Fas
requires an amplification loop for apoptosis mediated by
truncated Bid, which translocates to the mitochondria and
activates the intrinsic pathway of apoptosis [26, 45]. Neu-
trophils appear to represent type II cells [49]. In fact, the
induction of Fas-mediated neutrophil apoptosis has shown
to accelerate the cleavage of Bid and the release of cyto-
chrome c and Smac/Diablo by the mitochondria [50, 51].
The interplay between the extrinsic and intrinsic pathways
of apoptosis is illustrated in Fig. 2.

A role for Fas in neutrophil apoptosis has been mainly
proposed on the basis of two observations: (a) the expres-
sion of Fas receptor and FasL in neutrophils and (b) the
marked acceleration of apoptosis induced by agonistic anti-
bodies directed to Fas [52, 53]. However, blockade of either
Fas or FasL does not increase neutrophil survival. More-
over, neutrophils from Fas (lpr) or FasL (gld) deficient mice
have shown a normal rate of apoptosis [54]. Together, these
observations suggest that apoptosis of resting neutrophils is
not under the regulation of the Fas/FasL system. However,
suggesting a role for the Fas/FasL system in the apoptosis of
activated neutrophils, Jonsson and coworkers [55] showed
that the course of neutrophilic inflammation in murine ex-
perimental models is regulated by FasL.

The death receptor TNFR1 can not only induce apoptosis
via the recruitment of TRADD and the subsequent activa-
tion of caspase-8, but it can also activate the transcription of
NF-κB, promoting cell survival [26]. The mechanism that
underlies the ability of TNF-α to induce either cell survival
or cell death was clarified by Legler et al. and Micheau and
Tschopp [56, 57]. They reported that activation of TNFR1
by TNF-α leads to the assembly of a membrane-bound
complex containing TNFR1, TRADD, receptor interacting

protein, and TNF receptor-associated factors. This complex,
termed complex I, triggers the activation of NF-κB promot-
ing cell survival. In a second step, TRADD dissociates from
TNFR1 and associates with FADD and caspase-8, to form a
cytoplasmic complex II, which results in the activation of
caspases and cell death. Thus, TNFR1 signaling can results
in cell survival or cell death, depending on the regulated
assembly of complexes I and II [56, 57].

The model described above has been characterized in
many cell types and clearly establish that the proapoptotic
signaling induced by TNFR1 requires a DISC containing
TRADD, FADD, and caspase-8 or caspase-10. Interestingly,
in a recent study, Simon and coworkers have shown that the
induction of apoptosis by TNFR1 in the neutrophil actually
involves a distinct and novel mitochondria-independent ap-
optotic pathway, which does not involve the participation of
caspase-8. The authors reported that TNFR1 ligation does
not induce the activation of caspase 8 or Bid but effectively
stimulates the sequential activation of p38 and class IA
PI3Ks leading to the production of reactive oxygen species
(ROS) and the subsequent activation of effector caspases
[58].

Neutrophils produce TRAIL and express TRAIL recep-
tors [59, 60]. TRAIL is able to interact not only with the two
death receptors TRAIL-R1 and TRAIL-R2 but also with
three decoy receptors devoid of functional DDs, which
modulate the interaction of TRAIL with signaling receptors
[61]. Cassatella and coworkers [62, 63] have shown that
under the influence of interferon-α or interferon-γ neutro-
phils synthesize and store TRAIL. Moreover, upon stimula-
tion by a variety of inflammatory mediators such as TNF-α,
LPS, fMLP, IL-8, and insoluble immune complexes, neu-
trophils release the stored TRAIL. The role of TRAIL in the
regulation of neutrophil survival, however, has not been
clearly defined. TRAIL appears to be involved in the elim-
ination of senescent neutrophils [64]. It has been shown that
the interaction of stromal cell-derived factor 1 with the chemo-
kine receptor CXCR4, which is preferentially expressed on
senescent neutrophils, increases the expression of TRAIL
and TRAIL receptors in the neutrophil, leading to TRAIL-
dependent apoptosis [64]. Moreover, TRAIL appears to
accelerate the apoptotic rate of inflammatory neutrophils
(but not resting neutrophils) promoting the resolution of in-
flammatory reactions [65].

Bcl-2 family and the intrinsic pathway of apoptosis

The intrinsic pathway of apoptosis is regulated by the Bcl-2
family, which controls the integrity of the outer membrane
of the mitochondria [66]. On the basis of both their pro- or
antiapoptotic actions and the BCL-2 Homology (BH)
domains they express, the BCL-2 family of proteins is
classified in three groups. The group of antiapoptotic
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Bcl-2 like proteins includes Bcl-2, Bcl-xL, Bcl-w,
Mcl-1, and A1/Bfl-1. All of them express four BH domains.
The group of proapoptotic Bax-like proteins includes Bax
and Bak, which also express four BH domains. A second
group of proapoptotic proteins, the BH3-only proteins, dis-
plays a unique short motif called the BH3 domain and
include Bid, Bim, Bad, Bmf, Puma, Noxa, Bik, Blk, and
Hrk/DP5 [66–68].

The intrinsic pathway leads to the activation of caspase-9
on the scaffold protein apoptotic protease-activating factor 1
(Apaf-1) when cytochrome c and other proapoptotic pro-
teins are released from the space between the outer and inner
mitochondrial membrane to the cytosol, due to the loss of

integrity of the outer mitochondrial membrane, a process
called mitochondrial outer membrane permeabilization
(MOMP). In the presence of modest levels of dATP or
ATP, cytochrome c released from the mitochondria interacts
with the WD 40 repeat domain of APAF-1. This interaction
opens up the Apaf-1 structure leading to the oligomerization
of Apaf-1 into a large heptameric complex called apopto-
some, which then recruits procaspase-9 via CARD-mediated
interactions between Apaf-1 and caspase-9, resulting in the
cleavage and activation of caspase-9. The intrinsic pathway
can be triggered by a variety of stressors such as DNA
damage, growth factor deprivation, cytoskeleton damage,
endoplasmic reticulum stress, detachment from the cell

Fig. 2 The extrinsic (death
receptor) and intrinsic
(mitochondrial) pathways of
apoptosis. DD death domain,
DED death effector domain.
Cellular caspase-8–FLICE-like
inhibitory protein (c-FLIP)
prevents caspase-8 activation.
Inhibitors of apoptosis (IAPs)
prevent the activation of the
initiator caspase-9 and the
effector caspase-3 and caspase-
7. The two pathways of
apoptosis are interconnected by
truncated Bid (tBid) produced
when Bid is cleaved and
activated by caspase-8. The
activation of the proapoptotic
members of the Bcl-2 family
Bax and Bak involves their
conformational change and
homo-oligomerization on the
outer membrane of the
mitochondria. Cytochrome c is
released from the mitochondria
and together with apoptotic-
protease-activating factor-1
(Apaf-1) form the apoptosome,
which recruits and activates
caspase-9. The demolition
phase of apoptosis is mediated
by effector caspase-3,
caspase-6, and caspase-7
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matrix (anoikis), inhibition of macromolecular synthesis,
chemotherapy drugs, and gamma irradiation [26, 66–68].

The induction of MOMP is mediated by the activation of
the proapoptotic members of the Bcl-2 family Bax and Bak,
which involves their conformational change and homo-
oligomerisation on the outer membrane of the mitochondria
leading to its permeabilization. The induction of MOMP is
antagonized by the antiapoptotic Bcl-2 proteins, which
inhibits the function of Bax and Bak. The antiapoptotic
Bcl-2 proteins are in turn regulated by BH3-only proteins,
which bind to the antiapoptotic Bcl-2 proteins preventing
their interaction with Bax and Bak. Heterodimerization with
and inactivation of prosurvival members of the Bcl-2 family
by BH3-only proteins do not fully explain the proapoptotic
function of these proteins. Some of the BH3-only proteins
appear to be also able to directly bind to Bax and Bak
promoting their activation [66–69].

BH3-only proteins play a critical role in the activation of
the intrinsic pathway of apoptosis by neutralizing prosur-
vival proteins. They are regulated by diverse transcriptional
and posttranslational mechanisms. Full-length BID is inac-
tive until cleaved proteolitically. Bid is cleaved and activat-
ed by caspase-8 after death-receptor activation, and the
truncated Bid can then promote apoptosis by engaging their
prosurvival Bcl-2 like relatives or by binding to the effector
death proteins Bak and Bax [69]. Interestingly, it has been
shown that Bid can also be activated by other proteases such
as granzyme B [70], calpains [71], and cathepsins [72].
Transcription of Bim is induced in response to different
stimuli such as cytokine withdrawal or during endoplasmic
reticulum stress. Bim is also regulated posttranslationally by
sequestration to the microtubule-associated dynein motor
complex from where it is released by UV irradiation. Noxa
and PUMA are transcriptionally upregulated in response to
distinct proapoptotic stimuli [69, 73].

Studies conducted 40 years ago reported that neutrophils
have the particularity to contain few mitochondria with
poorly defined cristae and inner membranes [74, 75]. On
the other hand, it is well known that poisons like cyanides
do not inhibit neutrophil function, suggesting that mitochon-
dria hardly participate in ATP synthesis [76]. These obser-
vations are consistent with the traditional view of neutrophil
as cells that depend on glycolysis for their energy require-
ments, allowing them to act as immune effector cells at
inflammatory sites, where oxygen tensions are low. Never-
theless, more recent studies directed to further analyze the
function of mitochondria in neutrophils showed that these
cells contain a developed network of mitochondria, which
express a transmembrane potential and contain proapoptotic
proteins such as cytochrome c, second-mitochondria-
derived activator of caspases (Smac/Diablo) and high-
temperature requirement A2 (HtrA2/Omi), which can be
released to the cytosol [22, 77, 78]. Even though this

mitochondrial network contains reduced levels of cyto-
chrome c, it appears to play a major role in the control of
neutrophil survival. The intrinsic pathway of apoptosis in
the neutrophil seems to express a low threshold requirement
for cytochrome c, which is compensated by the high cytosolic
expression of Apaf-1 and the large amounts of mitochondrial
proapoptotic proteins Smac/Diablo and HtrA2/Omi, which
can be massively released from the mitochondria into the
cytosol upon activation of the intrinsic pathway [79, 80].

Neutrophils constitutively express the proapoptotic pro-
teins of the Bcl-2 family Bax, Bak, Bad, Bid, and Bik [81,
82]. Bax plays an important role in neutrophil apoptosis. In
spite of the fact that Bax−/− and Bak−/− mice have neutrophil
counts similar to control mice, Bak and Bax double-deficient
mice show a marked neutrophilia [83]. These observations
suggest that Bax and Bak display a redundant function on
neutrophil survival. However, Henson and coworkers showed
that neutrophils from Bax-null mice display a delayed spon-
taneous apoptosis compared with their littermate controls,
suggesting a non-redundant role for Bax in the control of
neutrophil survival [84]. Consistent with this view, Dibbert
and coworkers [85] reported that the delayed neutrophil apo-
ptosis usually found in inflammatory diseases is associated to
a reduced expression of Bax. Moreover, they reported that
antiapoptotic colony-stimulating factors G-CSF and GM-CSF
reduce the expression of Bax in the neutrophil and also that
Bax-deficient neutrophils produced in vitro by antisense oli-
godeoxynucleotides display a delayed rate of apoptosis, thus
providing a direct evidence for the proapoptotic role for Bax
[85]. In agreement with these observations, it was reported
that the induction of apoptosis by either TNF-α or Mycobac-
terium tuberculosis results in an increased Bax/Bcl-XL ratio
[86, 87]. On the other hand, spontaneous apoptosis of neutro-
phils has shown to be associated with translocation of Bax and
Bid to the mitochondria and truncation of Bid, with subse-
quent release of Smac/Diablo and Omi/HtrA2 into the cytosol,
being all these changes prevented by G-CSF [78, 88].

The proapoptotic protein Bad plays an important role in
the control of neutrophil survival [89, 90]. The function of
Bad is inhibited via PI3K-dependent phosphorylation and
stimuli able to delay apoptosis such as GM-CSF, IL-8, C5a,
LPS, and CpG-DNA have shown to inhibit the proapoptotic
activity of Bad by inducing phosphorylation of Bad at Ser112

and Ser136, leading to the accumulation of Bad in the cytosol
[89, 91]. In contrast, the proapoptotic stimulus nicotinic acid
induced dephosphorylation of Bad enabling its interaction
with the antiapoptotic members of the Bcl-2 family [92]. On
the other hand, supporting a role for Bim in the control of
neutrophil survival, it has been reported that Bim null mice
have higher neutrophil counts compared with control mice
[93]. Moreover, in vitro assays indicated that Bim deficiency
renders neutrophils resistant to cytokine withdrawal and
cytotoxic drugs [94].
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The antiapoptotic proteins Mcl-1 and A1/Bfl-1 are
expressed in the neutrophil [80, 95–97]. Bcl-2 has been
detected neither in resting nor in activated neutrophils, while
the expression of Bcl-XL at the protein level is a matter of
debate [80, 95]. The antiapoptotic protein Mcl-1 plays a
major role in the control of neutrophil survival [97]. Com-
pared with other Bcl-2 family members Mcl-1 exhibits an
extremely high turnover rate, which is well suited for the
effective control of neutrophil survival. Promotion of neu-
trophil survival by Mcl-1 appears to involve heterodimerisa-
tion with and inhibition of proapoptotic proteins Bim and
Bak in the mitochondrial outer membrane [98]. Mice con-
ditionally lacking Mcl-1 expression in neutrophils display a
severe defect in neutrophil survival; in fact, neutrophil
counts were reduced by more than 80 % in blood, spleen,
and peritoneal exudates [99]. Moreover, a large number of
studies have shown that Mcl-1 levels decline as neutrophils
undergo apoptosis [100] and also that the reduction of Mcl-1
is faster in the presence of proapoptotic agents such as
TNF-α [100], nicotinic acid [92], Trichomonas vaginalis
[101], Viscum album agglutinin-I [102], sodium salicylate
[103], and cyclin-dependent kinase inhibitors [104]. In con-
trast, neutrophil treatment with antiapoptotic agents such as
GM-CSF [100, 105, 106], LB4 [107], IL-15 [108], cyclic
AMP [109], respiratory syncytial virus [110], and hypoxia
[111] results in the enhancement of Mcl-1 expression. With
regards to the role of A1/Bfl-1, it was reported that neutro-
phils develop normally in A1-deficient mice; however, they
are refractory to the antiapoptotic effect induced by LPS or
transendothelial migration and show an acceleration rate of
spontaneous apoptosis when cultured in vitro [112]. A role for
A1/Bfl-1 in the regulation of neutrophil apoptosis is also
supported by observations made in human neutrophils show-
ing that the mRNA for A1/Bfl-1 is upregulated by survival
factors such as LPS and G-CSF [95].

Some special features of neutrophil apoptosis

Although the mechanisms involved in the regulation and
execution of apoptosis in the neutrophil have many similar-
ities with those described in other cell types, the apoptotic
death of neutrophils show some peculiarities. Upon stimu-
lation, neutrophils produce huge amounts of ROS due to the
activation of the enzyme NADPH oxidase [7]. A large body
of evidence suggests that ROS promote neutrophil apopto-
sis; however, the interplay between ROS and the traditional
pathways of apoptosis is not clearly defined.

Chronic granulomatous disease (CGD) is an inherited
immunodeficiency characterized by the inability of phago-
cytes to activate the respiratory burst due to a defect in the
enzyme NADPH oxidase [113]. Neutrophils from CGD
patients display a delayed rate of spontaneous apoptosis,

suggesting that ROS stimulates the apoptosis of resting
neutrophils [114]. Consistent with this notion, it has been
shown that hypoxia, hydrogen peroxide scavengers, and the
pharmacological inhibition of NADPH oxidase delay the
spontaneous rate of neutrophil apoptosis [115]. Not only
resting but also activated neutrophils appear to be sensitive
to the proapoptotic action of ROS. Activation of neutrophils
by Escherichia coli [116], M. tuberculosis [87], Entamoeba
histolytica [117], and immune complexes also resulted in
the acceleration of apoptosis [118].

The mechanisms through which ROS stimulate neutro-
phil apoptosis remain poorly defined. ROS might stimulate
apoptosis by inducing ligand-independent death receptor
signaling via clustering of preformed DISC components in
lipid rafts [119]. Alternatively, ROS might also promote
apoptosis by interfering with the activation of survival path-
ways mediated by NF-κB and MAPKs [120]. On the other
hand, and uncovering a new pathway in the regulation of
neutrophil function, Honda and coworkers [121] have re-
cently reported that the kinase Btk negatively regulates both
the production of ROS and apoptosis in human neutrophils.

Recently, Rossi and coworkers and Leitch et al. [104,
122, 123] have shown that inhibitors of cyclin-dependent
kinases (CDK) such as R-roscovitine effectively trigger
caspase-dependent neutrophil apoptosis, antagonize surviv-
al effects induced by several antiapoptotic agents, and mark-
edly improve the resolution of inflammatory diseases in
different experimental models. These observations indicate
that CDK activity is necessary and fundamental to neutro-
phil survival and identify a new potential target for the
treatment of a variety of inflammatory diseases. These
results are very interesting and unexpected because neutro-
phils are terminally differentiated cells and the main func-
tion of CDK is the regulation of the cell cycle. Although the
mechanisms through which CDK inhibitors stimulate neu-
trophil apoptosis remain to be clearly defined, the proapop-
totic activity of CDK inhibitors appears to be related to their
ability to reduce the expression of the antiapoptotic protein
Mcl-1. In fact, providing insight into the mechanisms by
which these compounds downregulate Mcl-expression,
Rossi and coworkers [124] have recently shown that CDK
induce the phosphorylation of RNA polimerase II in the
neutrophil and that the inhibition of this process by CDK
inhibitors compromise neutrophil-transcriptional activity
resulting in a diminished expression of Mcl-1.

Cassatella and coworkers [125] have recently shown that
the cell cycle regulatory protein called proliferating cell nu-
clear antigen (PCNA) is expressed by neutrophils and plays
an important role in the control of neutrophil survival. They
showed that neutrophils, despite their inability to proliferate,
express high levels of PCNA exclusively in the cytosol.
Interestingly, PCNA was shown to be constitutively associ-
ated with procaspase-3, procaspase-8, and procaspase-9
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presumably to prevent their activation. In fact, peptides de-
rived from the cyclin-dependent kinase inhibitor p21, which
compete with procaspases to interact with PCNA, effectively
induced neutrophil apoptosis. The authors also reported that
the expression of PCNA diminished during apoptosis and
increased after in vitro and in vivo exposure to the survival
factor G-CSF. Moreover, providing a direct evidence for a
prosurvival effect of PCNA, using neutrophils differentiated
from PLB985 cells, they showed that PCNA overexpression
rendered neutrophils more resistant to proapoptotic stimuli
while the inhibition of PCNA expression by small-interfering
RNA sensitized neutrophils to apoptosis [125]. Together,
these novel and unexpected observations identify PCNA as
a key regulator of neutrophil survival and suggest that it
might represent an interesting target for therapeutic interven-
tions directed to ameliorate the course of inflammatory dis-
eases [23].

The ability to phagocyte bacteria and fungi represents
one of the most prominent features of neutrophils. Phago-
cytosis has been shown to modulate neutrophil survival. The
uptake of target cells opsonized by either complement or
IgG results in the induction of neutrophil apoptosis. A
similar effect was observed after phagocytosis of a variety
of pathogens such as Staphylococcus aureus, E. coli, M.
tuberculosis, and Streptococcus pyogenes [82, 126]. The
link between phagocytosis and apoptosis appears to involve
the production of ROS. In fact, blocking of ROS generation
prevented the induction of apoptosis [87]. Moreover, neu-
trophils isolated from CGD patients showed a reduced in-
crease in the apoptotic rate after phagocytosis [126, 127].
The mechanisms through which ROS promote apoptosis
have not been well defined; however, they seem to act
upstream of initiator caspases because ROS inhibition
resulted in the inhibition of caspase-3 activation [87]. Inter-
estingly, phagocytosis of pathogens not always leads to
neutrophil apoptosis. For certain pathogens able to survival
within neutrophils such as Neisseria gonorrhoeae [128],
Francisella tularensis [129], and Paracoccidioides brasi-
liensis [130], it was shown that phagocytosis actually delays
apoptosis.

Nonconventional pathways of neutrophil death

NETosis

Zychlinsky and coworkers reported in 2004 that activated
neutrophils produce neutrophil extracellular traps (NETs)
[131]. These structures containing highly decondensed
chromatin associated with nuclear histones, and many gran-
ular proteins are released into the extracellular space where
they can trap and kill bacteria and fungi [131–134]. The
production of NETs results from a unique form of cell death

called NETosis characterized by the loss of intracellular
membranes before the integrity of the plasma membrane is
compromised [132]. In vitro studies directed to determine
the morphological changes during the course of NETosis
showed that, during the first hour postactivation, the neutro-
phil nucleus loses their lobules, the chromatin decondenses,
and the inner and outer nuclear membranes detach from
each other. After 1 h, the cell lost its nuclear envelope, and
simultaneously, the granules found in the cytosol lost their
membranes leading to the nucleoplasm and cytoplasm to
form a homogeneous mass. This pathway of neutrophil
death is thus characterized by a number of specific morpho-
logical changes different from those observed in apoptotic
and necrotic neutrophils, such as disintegration of the nu-
clear envelope, mixing of cytoplasmic and nuclear materi-
als, and loss of internal membranes and cytoplasmic
organelles [133, 134], hence defining a novel cell death
pathway. Interestingly, Simon and coworkers [135] reported
that neutrophils can also produce NETs using mitochondrial
DNA instead of nucleus DNA.

NETosis is activated by a variety of proinflammatory
stimuli (LPS, IL-8, and TNF-α) and pathogens [134, 136];
however, the mechanisms underlying the induction of
NETosis remain unclear. Reactive oxygen species appear
to be important mediators for NET production. Neutrophils
from patients with CGD, who lack NADPH activity, are
unable to release NETs in response to inflammatory stimuli,
while pharmacological inhibition of NADPH oxidase in
neutrophils isolated from healthy donors also results in the
inhibition of NET release [133, 134, 136] .

A significant advance in the field of NETosis has been
the appreciation that histone hypercitrullination mediates
chromatin decondensation and NET formation [137]. Neu-
trophils express high levels of peptidylarginine deiminase 4
(PAD4), which catalyzes histone citrullination. Wand and
coworkers have shown that hypercitrullination of histones
by PAD4 mediates chromatin decondensation in the neutro-
phil, a prominent hallmark of NETosis. Chemical inhibition
of PAD4 impairs chromatin decondensation and NET produc-
tion in response to inflammatory stimuli, while neutrophils
isolated from PAD4-deficient mice fail to citrullinate histones,
decondense chromatin, and generate NETs [137–139]. To-
gether, these observations indicate a critical role for PAD4 in
the induction of NETosis.

The production of NETs has been mainly investigated in
studies performed in vitro. As mentioned above, these stud-
ies revealed that NETs are released as neutrophils die
through a process requiring hours [133, 134]. Contrasting
with this view and using live-imaging microscope techni-
ques, Yipp et al. [140] have recently reported that during S.
aureus skin infection neutrophils rapidly produce NETs.
Moreover, they showed that neutrophils undergoing NET
formation remain alive and were able to crawl through the
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infected tissue and phagocytose bacteria. In spite that
NETosing neutrophils adopt unusual cell morphology these
observations indicate that they remain functional. Intriguingly,
even after loss of their own DNA, anuclear neutrophils were
still able to chase and phagocytose bacteria [140, 141].

Autophagic cell death

The term autophagic cell death is usually employed to
indicate instances of cell death associated to a massive
cytoplasmic vacuolization [26]. However, it should be em-
phasized that this morphological signature does not imply
that autophagy would actually be responsible for the induc-
tion of cell death. In fact, autophagy represents an evolu-
tionary conserved catabolic process involved in the
clearance of damaged organelles and proteins enabling cells
to recycle intracellular components. Despite that autophagy
is actually able in some circumstances to induce cell death, it
usually represents a cytoprotective response activated by
stressed cells in the attempt to prevent or delay cell death
[26, 142, 143].

Few studies have focused on the autophagic processes in
neutrophils [82]. Phagocytosis of E. coli, zymosan or IgG-
coated particles has shown to result in the recruitment of
LC3, an E3 ubiquitin ligase-like enzyme required for
autophagy, at neutrophil phagosomes [144, 145]. This sug-
gests a link between phagocytosis and the autophagic ma-
chinery. Not only phagocytosis but also activation of
neutrophils by PMA or Toll-like receptor ligands results in
vacuole formation and LC3 recruitment [144, 145]. More-
over, death induced by Sialic acid-binding immunoglobulin-
like lectins 9 (Siglec-9) in inflammatory neutrophils, but not
in resting cells, was shown to be largely caspase indepen-
dent, and it was characterized by cytoplasmic vacuolization
and other nonapoptotic morphologic features, suggesting
that cell death might be induced by autophagy [146]. Inter-
estingly, and highlighting the complexity of the mechanisms
responsible for the induction of neutrophil death, Simon and
coworkers have recently reported that neutrophils exposed
to inflammatory cytokines undergo an authopagic-related
form of programmed necrosis, after ligation of CD44, the
receptor for hyaluronan [147].

In the last few years, other forms of cell death have been
characterized [26]. Necroptosis represents a type of
programmed necrosis induced by classic apoptotic stimuli,
such as the death receptor ligands Fas and TNF-α, when
apoptosis is inhibited by caspase inhibitors or through muta-
tions in caspase-8 or FADD. The morphological features of
necroptosis—organelle swelling, permeabilization of the
plasma membrane, mitochondrial dysfunction, and lack of
nuclear fragmentation—are clearly different from those
shown by apoptotic cells [26, 148]. Pyroptosis represents a
form of cell death induced by caspase-1 activation.

Pyroptotic cells can exhibit apoptotic and/or necrotic mor-
phological features [149]. Other types of cell death recently
characterized include anoikis, entosis, parthanatos, among
others [26]. However, no studies have yet analyzed whether
neutrophils or neutrophil precursors undergo these forms of
cell death.

Conclusions

Recent findings shed light on the complex mechanisms
responsible for the regulation of neutrophil survival in dif-
ferent physiologic and pathologic scenarios. These findings
have significant implications for the development of new
therapeutic approaches applied to the treatment of inflam-
matory and infectious diseases. In fact, in the last few years,
new therapeutic targets have been defined such as Bcl-2
family members, cyclin-dependent kinases, the cell cycle
regulatory protein, and different signaling pathways. Based
on the identification and characterization of these new tar-
gets, promising strategies in the fight against inflammatory
diseases have been successfully tested in experimental mod-
els. Moving to clinical trials require a better understanding
of the molecular networks involved in the regulation of
neutrophil survival in order to fully exploit the plasticity of
neutrophil death programs for therapeutic proposals.
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