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Pregnancy challenges immune cells and immunomodulatory circuits of

the mother and the developing fetus to dynamically adapt to each other

in an homeostatic and tolerant environment for fetal growth. This entails

the coordination of multiple cellular processes all devoted to accommo-

date and nourish the fetus while protecting the mother from endogenous

and exogenous threatens. From the earliest stages of pregnancy, several

strategies to efficiently communicate immune and trophoblast cells within

the interface or at a distance were identified and chemokines might act at

on different targets through direct or indirect mechanisms. Here, we

briefly review some mechanisms of T regulatory cell recruitment to the

early maternal–placental interfaces to accomplish immunotolerance and

homeostatic control and we discuss evidence on two locally released poly-

peptides, RANTES (regulated on activation, normal, T-cell expressed, and

secreted) and vasoactive intestinal peptide (VIP), as novel contributors to

the multiplicity of immune tolerant responses and uterine quiescence

requirements.

Introduction

From an immunological standpoint, pregnancy was

proposed to follow a temporal sequence with a pre-

dominantly pro-inflammatory first stage, an immuno-

logically more quiescent, fetal growth promoting

second period, and a final cut to a prominent inflam-

matory environment that precedes labor and deliv-

ery.1 In humans, between weeks 3 and 8 of gestation,

a variety of cellular processes are encompassed to

ensure proper trophoblast growth and invasion, uter-

ine quiescence, vascularization, and tissue remodeling

in an immunotolerant microenvironment. Two major

transition points appear to fully evoke efficient immu-

noregulatory mechanisms, and the first one occurs at

about 8 weeks of gestation in transit to the early

placentation period. This is a crucial step because it

marks the transition from histiotrophic to placental

nutrition,2–6 and meanwhile, the immune system

has succeeded in trophoblast accommodation and

prepares for accompanying fetal growth by turning

off pro-inflammatory signals. The immune signature

of this transition phase is the induction and mainte-

nance of tolerance, which will long for the next

whole period requiring redundant circuits of cell-to-

cell interaction as well as local mediators targeting

multiple cells to sustain suppressor/tolerant microen-

vironment. An integrative view on this stage may

help to get more insight into the mechanisms aris-

ing early after implantation that can compromise
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pregnancy in an all-or-none manner with pregnancy

loss or that can impair its clinical outcome at later

stages as in preeclampsia.1,2,7–10

It has been pointed out that there is no other

adult organ or tissue undergoing such a profound

remodeling and leukocyte invasion with pro-inflam-

matory mediator release over such a short time per-

iod as the early pregnant uterus.11 As expected, a

tight homeostatic control in the successive maternal–
placental interfaces is mostly provided by maternal

immune cells, some of them maintained at constant

levels by continuous recruitment, while others

recruited in ‘waves’ to the pregnant uterus. Selective

recruitment and expansion of decidual NK

CD16�CD56bright cells and NK-derived cytokines pro-

vide guiding signals for trophoblast invasion.12–14

Several mechanisms have been proposed to explain

the inability of NK cells to kill the semi-allogeneic

fetal cells, however, nowadays is clear that decidual

NK are potent secretors of angiogenic factors that

induce vasodilatation and spiral artery remodeling,

through specific interactions between activating/

inhibitory receptors and their ligands expressed at

the fetal–maternal interface.15,16

Meanwhile, macrophages display a notable cellu-

lar plasticity to control divergent processes.17–21

Macrophages bearing suppressor/regulatory markers

manage the silent clearance of apoptotic cells and

contribute to wound healing. In contrast, classically

activated macrophages face endogenous and exoge-

nous threatening signals and calibrate the immune

response fate to protect the mother from infections

and excessive tissue injury. Finally, regulatory T-cell

(Tregs) population is essential for preventing a

maternal immune response against paternal antigens

released by trophoblast cells or fetal cells at the

implantation site and the maternal circulation. Tregs

belong to the T-lymphocyte population, and among

them, there are cells with distinct phenotype, cyto-

kine secretion profile, and tissue origin; all of them

displaying suppressive and regulatory properties that

contribute to maintaining the antigen-specific T-cell

tolerance.22–24 Tregs are stimulated through antigen-

specific or non-specific pathways; thus, exerting

their suppressive actions is critical during the peri-

implantation phase of pregnancy. In fact, paternal

antigen-specific Treg cells present at the draining

lymph nodes quickly migrate to the pregnant uterus

where these cells proliferate resulting in the induc-

tion of paternal antigen-specific tolerance at the

early stages of pregnancy.25–28

Tolerogenic responses during early pregnancy are

currently analyzed as a transient and context-depen-

dent suppression of the immune response, whereas

alternative and redundant immune evasion mecha-

nisms are necessarily active throughout gesta-

tion.29,30 Here, we focused on chemokine-mediated

programs for Treg cell recruitment and tolerance

induction to trophoblast antigens, and we discuss evi-

dence on the contribution of locally released vasoac-

tive intestinal peptide (VIP) to an immune tolerant

and quiescent microenvironment.

Chemokines as immune regulators of the maternal

response

The chemokine family (short for chemo-attractant

cytokines) is responsible of several physiological pro-

cesses such as the coordination of normal leukocyte

trafficking, embryonic development, embryonic

growth, wound healing and angiogenesis.

Chemokines and their receptors are classified

according to their structure or expression. In the

first classification, cysteins in conserved positions

distinguish the CXC family (a-chemokines) and the

CC family (b-chemokines), whereas according to

their expression, they are inflammatory, induced upon

T-cell activation and constitutive chemokines that ful-

fill housekeeping functions and/or participate in

constitutive leukocyte trafficking.31–33 The switch

from receptors for constitutive chemokines to recep-

tors for inflammatory chemokines changes the

migratory properties of leukocyte populations.34–36

The high promiscuity of chemokine network not

only implies multiple receptor binding by a single

chemokine but also that one chemokine lacking

might disrupt the entire network at acute inflam-

mation sites and isolated cell subpopulations.37

Chemokine receptors belong to the superfamily of

G-protein-coupled receptors and are named accord-

ing to chemokine structure (CXCR for CXC or CCR

for CC chemokines). They can form homo/heterodi-

mers or heterooligomers whose physiological conse-

quences are under study.37 A number of adaptor

proteins interact with chemokine receptors and

facilitate internalization and signal transduction by

forming a dynamic ‘chemosynapse’ with spatial and

temporal plasticity.38–40 However, the characteriza-

tion and functional impact of such associations at

the maternal–placental interface were not evaluated

so far.
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Selective recruitment of maternal Treg cells to the

early interfaces

Considering the major role of Treg cells in tolerance

induction during the first weeks of gestation, it is

conceivable that the polarizing microenvironment

will determine the chemokine receptor profile on

Treg cells and therefore might direct them to appro-

priate tissue sites for immune suppression. Induced

Treg cells specific for the antigen will upregulate

the expression of chemokine receptors that are also

expressed by effector T cells, and this overlap will

allow Treg cells to localize with effector T cells and

induce the suppression of diverse inflammatory

conditions.32 On the other hand, much evidence

has accumulated on the role of b-chemokines as

peripheral tolerance inducers. Two chemokine-med-

iated programs contributing to maternal–placental
interface generation are discussed next: selective

recruitment of Treg cells and maternal tolerance

induction toward trophoblast antigens.

Depending on the cytokine milieu where Treg

cells are activated, a differential chemokine profile

expression is displayed. Hence, allorecognition of

paternal or trophoblast antigens enhances maternal

leukocyte recruitment and the production of pro-im-

plantatory mediators. In the murine gestation, Treg

cells expressing CCR5 are recruited to the uterus,

playing an essential role in preventing fetal rejection

by the maternal immune system. The accumulation

of CCR5+ Treg cells with high suppressant ability

occurs selectively in the uterus, in contrast to the

systemic expansion of Treg cells that appears to be

alloantigen independent.41

In human pregnancy, Mold et al. demonstrated

that maternal alloantigens promote the development

of tolerogenic fetal Treg cells in utero. Maternal cells

cross the placenta to reside in fetal lymph nodes,

inducing the development of fetal Tregs that sup-

press fetal antimaternal immunity and persist at least

until early adulthood.42–44 Consistently, Tilburgs

et al.45,46 presented evidence of a selective migration

of fetus-specific CD4+CD25bright Treg cells to decidua

basalis and parietalis that suppress fetus-specific and

non-specific responses.

Trophoblast cells not only contribute to iTreg cell

differentiation, but also selectively recruit them.

Migration assays performed in transwell systems

with conditioned media from first trimester tropho-

blast HTR-847 or Swan71 cell lines48 doubled

Foxp3+ cell recruitment compared to the positive

control of human serum. In fact, the frequency of

Foxp3+ cells migrated toward trophoblast cells in

the presence of a bacterial or viral stimulus

increased and CCL4, CCL5, CXCL1, and CXCL8

secretion by trophoblast cells further recruited

iTregs.26 Regarding chemokine production to limit

T-cell access to the maternal–placental interface,

Nancy et al.49 recently reported that genes encod-

ing chemokines responsible for Th1 attraction and

T cytotoxic profiles are subject of epigenetic silenc-

ing in decidual stromal cells.

RANTES contribution to the maternal tolerance

response

Increasing evidence supports that b-chemokines are

inducers of peripheral tolerance as extensively dis-

cussed.50–53 During the maternal–placental cross-

talk, RANTES (regulated on activation, normal, T-cell

expressed, and secreted) contributes to immune

homeostasis displaying different strategies at sys-

temic and local levels. RANTES specifically and dose

dependently suppressed the maternal allogeneic

response to paternal antigens in human mixed

lymphocyte cultures by inducing activated T-cell

apoptosis and Bcl-2 modulation.54 Likewise, an anti-

RANTES antibody blocked the proliferative response

induced by fertile women sera, supporting that

RANTES acts as a novel suppressive factor of the

allogeneic maternal response.54

RANTES is locally released by the pre-implanta-

tion endometrium, and of note, it has the potential

to act in an autocrine manner by a differential

expression of RANTES receptors CCR1, CCR3, and

CCR5.55 In addition, RANTES is produced by human

endometrial T-infiltrated lymphocytes, CD4+ and

CD8+, whose production increased in the presence

of physiological progesterone concentrations.

At the maternal–placental interface, trophoblast

cells constitutively secrete RANTES accompanied by

pro-inflammatory cytokine production such as

TNF-a, low levels of IFN-c and IL-12, nitrite produc-

tion related to uterine quiescence and angiogenesis,

and LIF expression, characteristic of a pro-implanta-

tory microenvironment.12,56

Using an in vitro model of maternal–placental
cross-talk represented by coculture of trophoblast

cell line Swan 71 and maternal PBMCs, RANTES

modulated T effector/Treg balance.57 On one hand,

RANTES-induced apoptosis of potentially deleteri-

ous CD3+ lymphocytes correlating with a signifi-
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cant decrease in the maternal T-cell proliferative

response. Interestingly, Swan 71 cells did not

express CCR5, making them potentially resistant to

RANTES-induced apoptosis and suggesting a possi-

ble mechanism by which RANTES could selectively

induce alloreactive maternal lymphocyte apoptosis

to control an exacerbated alloresponse.57 On the

other hand, RANTES increased the frequency of

Tregs (CD4+CD25+Foxp3+) during the maternal

PBMC–trophoblast interaction and this effect was

prevented by anti-RANTES-neutralizing Ab. Taken

together, evidence support a role for RANTES dur-

ing early implantation through increasing regulatory

T lymphocytes in an adequate pro-inflammatory

microenvironment, inducing apoptosis of maternal

alloactivated T cells and favoring trophoblast sur-

vival and maternal tolerance to fetal antigens.

The association between RANTES and pregnancy

complications was evidenced in human and animal

models. In the CBA/J 9 DBA/2 murine model of

pregnancy loss,58 placentas produced high levels of

RANTES, correlating with an exacerbated Th1

response. Furthermore, the deleterious effect was

abrogated after multiple pregnancies, supporting that

allorecognition may also confer beneficial effects.58

An example of this association in human preg-

nancy is the villitis of unknown etiology (VUE), a

destructive inflammatory lesion of villous pla-

centa characterized by the decidual macrophage

activated in an inflammatory profile and T helper-

1 effector profile.59 The transcriptoma of VUE

placentas revealed an increase in a subset of

chemokines and their receptors, including CCL5

and CCR5, accompanied with a systemic derange-

ment of CXC chemokines in maternal and fetal

circulation.59 On the other hand, cocultures of tro-

phoblast cells and PBMCs from women with recur-

rent spontaneous abortions (RSA) displayed an

altered temporal window of RANTES production,

which correlated with a misbalance of the Teffec-

tor/Treg response.57 RSA-PBMCs displayed an exac-

erbated pro-inflammatory and Th1 response after

the interaction with trophoblast cells and a

decrease in Treg frequency with lower levels of

TGF-b and IL-10 secretion.60 Interestingly, a high

frequency of apoptotic trophoblast cells appeared

after trophoblast cells interacts with maternal RSA-

PBMCs and this increase correlated with low levels

of apoptotic maternal CD3+ lymphocytes poten-

tially deleterious to fetal survival.

Vasoactive intestinal peptide: an old actor with

renewed characters at the maternal–placental
interface

As pointed out before, the transition to and mainte-

nance of an anti-inflammatory and immune tolerant

second period clearly depends on redundancy of

immune tolerance circuits where locally released

mediators may have a prominent role. Among them,

VIP is an interesting example that fulfills criteria for

multiple cell target factors synthesized at the mater-

nal interface with suppressant/tolerant activity.

Vasoactive intestinal peptide is a 28-amino acid

peptide that is structurally related to secretin, pituitary

adenylate cyclase–activating polypeptide (PACAP),

glucagon and growth hormone–releasing factor,

among others. It binds to class B members of the G-

protein-coupled receptors superfamily.61 Two sub-

types of VIP receptors named VPAC1 and VPAC2

were described on the basis of their sequence, affin-

ity, expression, and signaling profiles.62 They recog-

nize VIP and PACAP with similar affinity, whereas

other members of class B GPCRs bind VIP with

lower affinity.62 Both VPACs are coupled to Gs/

AMPc/PKA signaling, and they also signal through

PLC, MAPK, and NF-jB inhibition.63–65

First described as a neurotransmitter by Sami Said

and Viktor Mutt in 1970, VIP proved to have potent

immunomodulatory and trophic effects through its

action on VPACs on adult and embryonic tissues. It

has direct and indirect neuromodulatory and neuro-

trophic effects66 and elicits trophic, prosecretory, and

vasodilator effects on exocrine gland cells.67,68 VIP

could contribute to post-implantation uterus quies-

cence because it induces smooth muscle relaxation

of pregnant and nonpregnant uterus69 where a

reduction in prostaglandin synthesis and nitric oxide

synthase stimulation was reported.70

Evidence on VIP anti-inflammatory and tolerogenic

effects was provided by in vitro designs with human71

and murine cells,72 as well as from studies in animal

models of viral disease73 and chronic inflamma-

tion.74–80 Due to its low bioavailability, dendritic cells

transduced with lentiviral vectors expressing VIP were

also used as a strategy to locally deliver the peptide in

inflammation models.81 Likewise, VIP modifies the

inflammatory profile of patient cells in arthritis and

osteoarthritis patients.82,83 VIP induces IL-10 synthe-

sis and reduces IL-12, TNF-a, and inducible nitric

oxide synthase activity in human and murine
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macrophages through both VPACs, thus proposed as

a regulatory/suppressant macrophage phenotype

inducer.17,65,76 Dendritic cells are also targeted by VIP

to differentiate into a tolerogenic profile that produce

high levels of IL-10 and induce antigen-specific Treg

cells.80 Regarding T cells, VIP reduces Th17/Th1 and

Th1/Th2 ratios,84 induces Foxp3+ regulatory T cells85

and, in the presence of TGF-b, VIP can differentiate

murine CD4+T cells to a distinctive Th17 cell pheno-

type that generates IL-17 but not IL-6 or IL-21.86 It

has also emerged as a putative physiological inhibitor

of the calcineurin–NFAT pathway, a master regulator

of immune responses, and lack of the VIP gene results

in inflammation and smooth muscle contraction.87

VIP is not synthesized by human or murine macro-

phages, and a limited peptide expression was found in

CD4+ T cells after antigen stimulation.88,89

Vasoactive intestinal peptide at the early maternal

–placental interface

Vasoactive intestinal peptide levels raise in murine

maternal–placental interface with higher expression in

decidual tissue and a peak at gestational days 9–12 that

mark the transition to the placentation period.90–93

This period corresponds to murine pregnancy midges-

tation at the end of the most vulnerable period for

intrauterine development when embryonic develop-

mental events can be approximately compared with

days 22–32 of human pregnancy.90 VIP stimulates

neural differentiation of mouse embryo: VIP from

maternal sources enhanced post-implantation embryo

growth at day E9 and its blockade in pregnant mice on

days 9.5–11.5 but not afterward induced growth retar-

dation andmicrocephaly.91,92,94 The temporal window

of maternal VIP expression precedes the appearance of

embryonic VIP at day 14.5 in murine peripheral ner-

vous system.95 Thus, an apparent paradox arises:

embryo growth regulation by VIP occurs at early post-

implantation stage when VIP sources are only available

in maternal tissues. Accordingly, offspring of VIP-defi-

cient mothers exhibit developmental delays and

lower birth weight thanWTmice or offspring vip (+/+),

vip (+/�), or vip (�/�) born to wild-type mothers, high-

lighting the role of maternal rather than fetal VIP in

early neural development.96

In pregnant women, localization of VIP in decid-

ual face of full-term placentas has been reported.97

It was shown to localize in the trophoblast (syncy-

tium and extravillous cytotrophoblast cells) of first

trimester and term placenta.98 Extravillous cytotrop-

hoblastic cells and some decidual cells (negative for

cytokeratin) were also weakly stained for VIP. Inter-

estingly, VIP dose dependently stimulated progester-

one secretion from human primary cultured

trophoblast cells and JEK-3 cells, where it also stim-

ulated hCG production.98,99 Moreover, arterial and

venous concentrations of VIP in human umbilical

cord were more than twofold the concentration in

peripheral venous blood pointing to a predominant

local action profile.100

Cumulative evidence on human and murine preg-

nancy supports an immunomodulatory role of VIP at

early stages: It increased CD4+CD25+Foxp3+ Treg

cells and LIF expression in implantation site explants

of normal mice at day 9.101 Consistent with a tro-

phic and suppressant effect of the peptide at these

early stages, lower levels of decidual VIP expression

were found in viable implantation sites of predia-

betic non-obese diabetic (NOD) mice, a high resorp-

tion rate mouse strain related to an inflammatory

background.101 However, VPAC receptors were nor-

mally expressed in NOD mice implantation sites at

gestational day 9 and VIP could induce Foxp3 and

LIF expression pointing to the integrity of VPAC sig-

naling.101 A predominant suppressant phenotype

was observed in peritoneal macrophages from early

pregnant mice, and VIP contributes to this pheno-

type switch with reduced nitric oxide and enhanced

IL-10 production.102

In experimental coculture designs with human

cells, VIP showed trophic effects and modulated the

immune/trophoblast cell interaction.103,104 First tri-

mester human Swan-71 trophoblast cells express

VPACs and synthesize VIP, which stimulated tropho-

blast cell proliferation. Furthermore, VIP induced a

tolerogenic phenotype in human peripheral blood T

cells when they were cocultured with trophoblast

cells.103 It significantly decreased T-bet expression,

reduced MCP-1 and nitrite production in cocultures

of fertile women PBMCs with trophoblast cells, while

it increased the frequency of CD4+CD25+Foxp3+
cells, TFGb expression, and IL-10 secretion. VIP also

induced LIF production. In fact, VIP and progesterone

increased the frequency of CD4+ LIF+ cells from fer-

tile women in response to paternal and trophoblast

antigens in vitro.104 PBMCs from these women also

showed a significant frequency of VIP-producer CD4

lymphocytes after the interaction with trophoblast

cells.60 Finally, as reported in murine models, we

observed human Treg cell induction by VIP in the

presence of Swan-71 trophoblast cells through a
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TGF-b-dependent pathway. Moreover, in this in vitro

design, VIP enhanced inducible Treg cell migration

toward trophoblast cells (manuscript in preparation).

Finally, in the context of redundant circuits

required for tolerance induction and maintenance, it

is plausible that VIP could trigger additional tolero-

genic programs. Noteworthy, VIP can selectively

upregulate galectin-1 expression during the differen-

tiation or maturation of mouse dendritic cells,105 an

observation that further supports the well-known

central immunoregulatory role of galectins in the

post-implantation period,5,106–108 a subject that has

been updated by Dr Rabinovich in this issue. Briefly,

Gal1 is evolutionarily conserved and abundantly

expressed in the placenta and female reproductive

tract of various species.109,110 Mice lacking Gal1

(Lgals1�/�) showed higher rates of fetal loss com-

pared to their wild-type counterpart in allogeneic,

and the administration of recombinant Gal1 pre-

vents fetal loss and restores tolerance in vivo.107 This

lectin is mainly expressed in invasive extravillous

trophoblast cells of human first trimester and

term placenta, and it is regulated by progesterone

and pro-inflammatory cytokines thus limiting T-cell

viability, dampening the secretion of Th1-type cyto-

kines, and favoring the expansion of CD4+CD25
+FoxP3+ Treg cells. In addition, using coculture

experiments without exogenous addition of rhGal1

that trophoblast cells negatively regulate T-cell

survival via Gal1-mediated mechanisms. Pro-inflam-

matory cytokines such as TNF-a and IL-2 consider-

ably upregulate Gal1 in the human JEG-3

choriocarcinoma cell line, as a homeostatic mecha-

nism to favor the resolution of exacerbated T-cell

responses.106

Conclusions and perspective

During the first weeks of pregnancy, embryo accom-

modation and nutrition occur within a strict homeo-

static control. The endovascular route of trophoblast

invasion requires constant vasodilator activity, and

the more recently described trophoblast endoglandu-

lar route provides embryo nutrition by endometrial

gland secretion, both entailing intense tissue remod-

eling pathways.1–6 The encountering of specifically

and timely recruited immune cells with locally

released immunomodulatory factors in a trophoblast

orchestrated manner underlies the control of mater-

nal immune homeostasis at these early stages.

Redundant circuits for tolerance induction and

maintenance are mandatory, thus multiplicity in

cells targeted by locally released immunomodulators

seems to be crucial and VIP and RANTES may play

that role. The contribution of various VIP sources

namely neural, immune, smooth muscle, and

trophoblastic at the maternal–placental interface

may reflect its complementary immune tolerant,

uterine quiescent, and trophic effects.
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