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1 Introduction

In its most straightforward formulation, quantum field theory (QFT) is defined in terms
of a set of field operators acting on Hilbert space. It is well known that in the relativistic
case it can be equivalently defined through correlation functions, i.e., vacuum expectation
values of products of fields [1]. Hence, the vacuum state and its relation to the local oper-
ator content hold the full information of the theory. The step of moving from operators to
numbers turns out to be very fruitful in simplifying the mathematical description and pro-
viding resources for the elaboration of specific models, e.g., the path integral formulation
for Euclidean functions.

– 1 –



J
H
E
P
0
8
(
2
0
2
1
)
0
8
4

Another formulation of QFT is based on the assignation of operator algebras to open
regions of spacetime, rather than field operators at a point [2]. This is conceptually very
natural and can be thought of as a “basis independent” formulation since the same algebras
may be generated by many different sets of fields. One inconvenience is that the mathemat-
ical description gets more complicated, involving the theory of von Neumann algebras. In
this sense, to simplify the description of models in this context, and in analogy to the field
operator description, a natural idea is to assign numbers to these algebras using the vacuum
state. These numbers could only represent statistical measures of vacuum fluctuations for
the different regions.

Among the different possible statistical measures, the entanglement entropy (EE) is
highlighted by its simplicity, powerful properties, and connections with statistical mechan-
ics, as well as its important role in holographic models. EE is a function of the geometry of
the regions — a “statistical correlator” — which can be universally defined for any QFT.
The entropy has ultraviolet divergences, but this is unimportant since a simple combination
of entropies for two non-intersecting regions A,B, called mutual information (MI),

I(A,B) ≡ S(A) + S(B)− S(AB) , (1.1)

is finite and well defined, and arguably contains the full universal information of the entropy.
A natural question is whether the MI function contains enough information to uniquely

determine the models. The answer seems to be positive. For example, it is known that for
a CFT the MI for faraway regions has a series expansion in the distance from where the
conformal dimensions of primary fields may be extracted [3, 4]. The rest of the CFT data,
the coefficient of the three point functions, may be obtained from the MI involving three
or more distant regions [5].

A different but related question is: what are the rules for a function I(A,B) to be ad-
missible as the MI of a QFT? Surprisingly little is known about this important question. A
simple list is the following. We recall that I(A,B) is a function of causally closed,1 spatially
separated regions A,B in Minkowski space. Defining the tripartite information function

I3(A,B,C) = I3(A,C,B) ≡ I(A,B) + I(A,C)− I(A,BC) , (1.2)

calling Λ to a Lorentz transformation, and taking X, Y , as regions with spatial boundary
in a common null plane, we have

I(A,B)≥0, (positivity) (1.3)
B⊆C =⇒ I(A,B)≤I(A,C), (monotonicity) (1.4)

I(A,B)=I(B,A), I3(A,B,C)=I3(B,C,A), (symmetry) (1.5)
I(A,B)=I(ΛA+x,ΛB+x), (Poincaré invariance) (1.6)

lim
|x|→∞

I(A,B+x)=0, (clustering) (1.7)

I(A,X)+I(A,Y )≤I(A,X∩Y )+I(A,X∪Y ). (Markov property) (1.8)
1A region is causally closed (or a “diamond-shaped set”) if it is the set of all points spatial to another

region.
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Positivity and monotonicity are properties of MI as a measure of correlations, mono-
tonicity encoding strong subadditivity of the entropy [6]. The symmetry properties (1.5)
tell that MI is in fact a combination of (undefined) single region functions as in (1.1).
Poincaré invariance and clustering follow the same properties of ordinary correlators. The
Markov property (1.8) expresses strong superadditivity of mutual information when two
regions X,Y have boundary on a null plane. This follows from the Markov property of
entropy in a null plane and strong subadditivity [7]. Given Lorentz invariance and cer-
tain additional (natural) continuity assumptions, the entropy is Markovian on the null
plane [8, 9], so (1.8) is probably an unavoidable consequence of (1.4), (1.5) and (1.6). This
Markov property has been shown to imply unitarity bounds in [7].

Any QFT gives a solution to this set of axioms. But we also have solutions in dimension
d by dimensional reduction from theories in higher dimensions. To eliminate these and fix
d-dimensional QFT we can further impose that for two disjoint regions A,B sharing a
planar boundary with normal η

I(A,B + ε η) ∼ ε−(d−2) , ε→ 0 . (area law) (1.9)

In studying what other properties are needed we can search for solutions to this set of
properties and see if the result is physically sensible. If it is not, the hope is that it
would give us a hint of what is missing. One striking difference with the case of operator
correlations is the two inequalities (1.3), (1.4), instead of an infinite tower of inequalities.
This is more so considering that Rényi entropies of integer index n (the entropy is the limit
n→ 1) do indeed obey an infinite tower of inequalities [10].

It is not easy to obtain solutions in a direct way. A notable example with a purely
geometric solution is given by the holographic EE [11–15]. Another one is the extensive
mutual information model (EMI) [16]. This last model simplifies the symmetry requirement
by imposing

I3(A,B,C) ≡ 0 . (1.10)

According to the definition of I3, eq. (1.2), this implies an extensivity or additivity of
the mutual information as a function of its arguments, and hence the name of the model.
If we further impose conformal invariance there is a unique solution (except for a global
multiplicative constant). This is given by

IEMI(A,B) = 2κ(d)

∫
ΣA

dσA
∫

ΣB
dσB ηµA(xA) ηνB(xB) (∂µ∂ν − gµν∂2) |xA − xB|−2(d−2) ,

(1.11)
where ΣA, ΣB, are any Cauchy surfaces for the causal regions A, B; ηA, ηB, are the unit
normals to these surfaces, and κ(d) is a positive constant. The integrand is a conserved
current in both indices, which guarantees the result to be independent of the Cauchy
surface. In fact, this expression is equivalent to one where the integration is only on the
spatial boundaries ∂A, ∂B, of the regions:

IEMI(A,B) = 2κ(d)

∫
∂A

dσA
∫
∂B

dσB
(nA · nB)(n̄A · n̄B)− (nA · n̄B)(n̄A · nB)

|xA − xB|2(d−2) , (1.12)
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where n̄A and nA are unit vectors orthogonal to the surface and to each other, nA · n̄A =
0.2 For fixed time slices, one can choose nA = nB = t̂ and the integrand reduces to
−(n̄A · n̄B)/|xA − xB|2(d−2).

The EMI model gives physically reasonable results, and has been mainly used to explore
the expected behavior of the EE in different geometric situations [17–21]. In general, the
results are quite similar to the free fermion ones, and the EMI model indeed coincides with
a free massless fermion in d = 2 [22]. Another way to arrive at the EMI formula is to
assume the Rényi twist operators are exponentials of free fields [23]. This automatically
gives the bilinear form on the boundaries as in (1.12) from the expectation values of the
Rényi operators.

In this paper, we investigate if the EMI model gives the mutual information of some
CFT in d ≥ 3. In other words, we test the consistency of imposing eq. (1.10) in QFT. To
understand the possible theory behind (1.12), we use known relations between the behavior
of mutual information at long distances and the operator content of CFTs. We find that
no possible CFT or limit of CFTs is consistent with the extensivity condition. This result
makes manifest that the list of known constraints or axioms satisfied by the MI of spatially
separated regions in QFT is incomplete.

A more detailed list of our findings can be found next.

1.1 Summary of results

In section 2, we show that in case the EMI formula describes the MI of an actual CFT, this
necessarily contains a free fermion. This is done by considering the leading contribution to
the long-distance behavior of the EMI in the case of two boosted spheres, which reveals the
same tensorial structure as in the case of a free fermion. Then, we review the fact that the
EMI indeed coincides with a free fermion in d = 2. Moving to d ≥ 3, we perform various
comparisons between universal coefficients characterizing the EMI and the free fermion
theories and show that these differ for both models, the discrepancy growing with d.

In section 3 we compute the EMI result in the case of two spatially separated and
arbitrarily boosted spheres. For a general CFT, such MI can be written as a linear combi-
nation of the conformal blocks associated to each primary operator in the replica theory,
I(A,B) =

∑
∆,J b∆,JG

d
∆,J(u, v), where u, v are the relevant conformal cross-ratios. Using

the fact that a free fermion controls the leading piece, the EMI is argued to contain a
leading piece associated to such field with ∆ = d− 1 and J = 1. Interestingly, we find that
this is actually the full result for the EMI model, i.e.,

IEMI(A,B) = b
(ferm)
d−1,1G

d
d−1,1(u, v) . (1.13)

In other words, the EMI result for two spheres turns out to coincide with the conformal
block associated to the current operator Jµ = ψ̄γµψ. In passing, we obtain some new
explicit formulas for Gdd−1,1(u, v) for different values of d, some of them not available in the
literature.

2The factor 2 in this formula is conventional, and devised to get the same formula with ∂A = ∂B for
the entropy S(A), with κ(d) as a coefficient.
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In section 4 we test the hypothesis that the EMI may coincide with the free fermion at
long distances for arbitrary regions. Considering rectangular regions for d = 3 fermions in
the lattice, we show that this is not the case. An analytic general-d argument in the same
direction is provided using regions with very thin parallel sides.

In section 5 we use the results of the previous sections to argue that the EMI cannot
describe the MI of any CFT. This follows from the fact that the free fermion present in
the putative CFT describing the EMI decouples — based on standard QFT observations
— from the rest of the theory. This would imply that the long-distance behavior of the
EMI should match the free fermion one for arbitrary regions, which contradicts the results
of the previous section.

In section 6 we consider the possibility that the EMI may correspond to some limit
of CFTs, something that cannot be discarded from our previous analysis. For instance,
if we tried to extract the operator content of the dual holographic theory using the long-
distance result for the MI produced by the Ryu-Takayanagi formula — corresponding to
the large-N limit — we would wrongly conclude that the theory is empty of operators.
Considering the structure of the subleading piece produced by the free fermion in the EMI
expansion for spheres separated a long distance and the possible ways in which this could
be compensated by extra fields, we can prove that — as opposed to the Ryu-Takayanagi
formula — the EMI cannot correspond to a limit of theories either.

In section 7 we make some further comments regarding the interpretation of the EMI
model and the possible ways in which the set of known axioms for the MI in QFT may be
enhanced.

Appendix A contains a calculation of the entanglement entropy universal coefficients
for sphere and strip regions in general dimensions for the EMI model. In appendix B we
provide a proof of the equivalence between the EMI and the conformal block Gdd−1,1(u, v).
Appendix C contains some new formulas for the conformal blocks in the cases corresponding
to conserved currents, ∆ = J + d − 2. Finally, appendix D includes a calculation of the
coefficient appearing in the subleading contribution to the MI of a free fermion for large
separations.

2 EMI contains a free fermion

In this section, we show that, if the EMI is a CFT in general dimensions, this necessarily
contains a free fermion as the lowest dimensional operator. We then review the known fact
that in d = 2 the EMI indeed coincides with the free fermion theory and how this match
does not hold in higher dimensions.

The leading term in the expansion of MI for long separating distance L between A

and B is known to be dominated by the lowest dimensional primary field (or fields) of the
CFT [3]. The general expression for this leading term is

I(A,B) ∼ C(A,B)
(
RARB
L2

)2∆
, (2.1)

where ∆ is the lowest dimension of the theory, RA, RB, are some typical length scales of the
regions, and C(A,B) is a dimensionless coefficient. In general, the form of this coefficient
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depends on the full operator content of the theory. A formula for C(A,B) in terms of the
modular flows of the regions A and B has been recently derived in [7]. For the special
case where the two entangling surfaces are spheres, ∂A = ∂B = Sd−2, this modular flow is
universal and geometric in a CFT [24]. As a consequence of that, a closed expression for
the coefficient is known in the case of spheres. This was first obtained for scalar fields in [4].
Taking RA and RB in (2.1) as their radii, such coefficient is independent of the spheres
orientations in spacetime and reduces to a function of the conformal dimension. We have [4]

Iscal(A,B) = c(∆)
(
RARB
L2

)2∆
+ . . . , where c(∆) ≡

√
π Γ(2∆ + 1)

4 Γ
(
2∆ + 3

2

) . (2.2)

Because the geometric form of the modular flow is independent of the spacetime dimension
d, this coefficient only depends on ∆.

The leading contribution of a fermion field was analyzed for spatial spheres in [25].
The case of spheres of arbitrary orientations in spacetime was computed in [7]. Calling nA,
nB, to the future directed time-like unit vectors normal to the planes of the spheres, and
l to the unit spatial vector in the direction joining the centers of the two spheres, we have
for a spinor primary field

Iferm(A,B) = 2[ d2 ]+1c(∆) [2(nA · l)(nB · l)− (nA · nB)]
(
RARB
L2

)2∆
+ . . . (2.3)

Interestingly, an explicit calculation for the EMI model shows that the same tensorial
structure appears,

IEMI(A,B) =
4(d− 1)(d− 2)πd−1κ(d)

Γ
(
d+1

2

)2 [2(nA ·l)(nB ·l)−(nA ·nB)]
(
RARB
L2

)d−1
+. . . (2.4)

This follows from doing the integrals in (1.12) and expanding for long-distance. We will be
more explicit about this computation in section 3 below, where we compute the full form
of the EMI mutual information for boosted spheres at any distance.

Now, the comparison of the EMI expression with eq. (2.1) shows that the lowest
dimensional primary of the EMI model must have dimension ∆ = (d − 1)/2. Because
of the unitarity bounds [26, 27], this can be only the case of either a scalar field or a
fermion field. Comparing with equations (2.2) and (2.3) we see that the tensor structure
of the contribution is only compatible with a fermion field. This fermion field saturates
the unitarity bound and is a free field of helicity 1/2. We cannot have a contribution of a
scalar field of the same dimension as it would spoil the tensor structure in eq. (2.4).

In order to compare the free fermion with the EMI, it is useful to calibrate the coeffi-
cient κ(d) to exactly match the long-distance free fermion contribution by taking

κ(d) =
2[ d2 ]Γ(d− 2) Γ

(
d+1

2

)2

8πd−3/2Γ
(
d+ 1

2

) , (2.5)

although note that, in principle, the number of free fermionic fields in the EMI could be
any integer.
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2.1 Two dimensions

As it turns out, in d = 2 the EMI model indeed coincides with the free fermion. For the
latter, in the case of two arbitrary regions formed by intervals, whose projections on the
null axis x± = x1 ± x0 are the multi-interval sets A± and B±, we have [22, 28]

Iferm(A,B) = 1
6

[∫
A+

dx+
∫
B+

dy+ 1
(x+ − y+)2 +

∫
A−

dx−
∫
B−

dy− 1
(x− − y−)2

]
. (2.6)

This expression is bilinear in the two regions and gives an extensive MI, I3 ≡ 0. It coincides
with eq. (1.11) for κ(2) = 1/6.

The reason for extensivity in this case can be tracked to bosonization in d = 2 [22].
The Rényi operators in the replicated theory are products of exponentials of the current
for n different decoupled free fermion fields. The free fermion current can be written as
a linear expression in a dual free scalar field. Therefore the correlators of the Rényi twist
operators are correlators of exponentials of free fields. These are exponentials of bilinear
expressions, and upon taking the logarithm, the Rényi entropies turn out to be bilinear in
the two regions. The entropy inherits this same form.

2.2 Not a free fermion for d > 2

In dimensions higher than two, the free fermion does not have extensive mutual information.
This can be seen in several ways by comparing the EMI results for various entangling regions
with the analogous free fermion ones. In this subsection, we perform several comparisons
of that kind and observe that the discrepancy in various charges characterizing the free
fermion and the EMI tends to grow as the spacetime dimension increases. For many of the
comparisons, we normalize the EMI results so that the long-distance coefficient matches
the free fermion one, as in eq. (2.5). We also try with other ratios.

Three dimensions. Let us start with the d = 2 + 1 case. Consider first the mutual
information for two regions with parallel boundaries of size L separated a short distance
r � L. As reviewed in appendix A, this behaves, for any CFT as

I = k(3)L

r
+ . . . (2.7)

where k(3) is a theory-dependent coefficient which matches the universal coefficient in the
entanglement entropy corresponding to a long and thin strip of dimensions L × r. For
the EMI model, the result for the general-dimension version of k(d) appears in eq. (A.5).
Particularizing to d = 3, we have

k
(3)
EMI = 2πκ(3)

(2.5)= 4
15π ' 0.0849 , (2.8)

where in the second equality we fixed the value of κ(3) calibrated so that the long-distance
coefficient for a pair of disks matches the free fermion one — see eq. (2.5) above. For a
Dirac field, the analogous coefficient reads [29]

k
(3)
ferm ' 0.0722 . (2.9)

Hence, we observe that both values are clearly different, the discrepancy being ∼ 15%.
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On the other hand, if one considers the mutual information for two concentric disks of
radii RA < RB, the EMI result obtained in the following section for d = 3 becomes

IEMI = 8π2κ(3)
(RA/RB)2

[1− (RA/RB)2] . (2.10)

As explained in the appendix, when the disks are very close to each other, RA = R− δ/2,
RB = R+ δ/2, δ � R, we can expand this expression to get

IEMI = k
(3)
EMI

2πR
δ
− 2F (3)

EMI , where F
(3)
EMI = 2π2κ(3)

(2.5)= 4
15 ' 0.2667 , (2.11)

is the F -term appearing in the entanglement entropy of a disk region, and the strip coef-
ficient k(3)

EMI appears in the area-law piece. In the case of the Dirac fermion, F (3) is known
analytically and reads [30, 31]

F
(3)
ferm = 1

8

(
2 log 2 + 3

π2 ζ(3)
)
' 0.21896 . (2.12)

Hence, we again observe a considerable difference between models, in this case around
∼ 18%.

Observe that by using the value of κ(3) calibrated with the long distance coefficient
for different charges such as k(3) or F (3), what we are effectively doing is comparing the
quotient of such quantities divided by the long distance coefficient in both models. We
can naturally perform additional comparisons by dividing by other charges. For instance,
comparing the quotients F (3)/k(3) instead, one obtains

F
(3)
EMI

k
(3)
EMI

= π ,
F

(3)
ferm

k
(3)
ferm

' 3.033 , (2.13)

which are much closer, only differing by ∼ 3.5%.
Additional comparisons can be made by considering an entangling region with a corner

of angle θ. In that case, the entanglement entropy contains a logarithmic divergence of the
form [32, 33]

SEE|log = −a(θ) log(R/δ) , (2.14)

where a(θ) is a universal function of the corner opening angle. In the case of the EMI, this
function turns out to be given by [16, 34]

aEMI(θ) = 2κ(3) [1 + (π − θ) cot θ] . (2.15)

For very sharp and almost-smooth corners, a(θ) behaves, on general grounds, as [32]

a(θ → 0) = k(3)

θ
+ . . . , a(θ → π) = σ(π − θ)2 + . . . (2.16)

In this expression, k(3) is the strip coefficient appearing in eq. (2.7), and σ turns out to be
related to the stress-tensor two-point function charge CT 3 as [18, 36]

σ = π2

24CT . (2.17)

3For a general CFT in d dimensions, the tensorial structure of the flat-space stress tensor two-point
function is fully determined by conformal symmetry up to a theory-dependent constant: 〈Tab(x)Tcd(0)〉Rd =
CTIab,cd/|x|2d, where Iab,cd is a fixed dimensionless expression [35].
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Using eq. (2.15), we can then obtain the would-be value of CEMI
T in case this represented an

actual QFT. The result, and the analogous one for a free fermion [35] are given respectively
by

CEMI
T =

16κ(3)
π2

(2.5)= 32
15π2 ' 0.0219 , C ferm

T = 3
16π2 ' 0.019 . (2.18)

These two differ by ∼ 13%. We can also compare the results with F (3) or k(3). For instance,
we have

F
(3)
EMI

CEMI
T

= π4

8 ' 12.1761 , F
(3)
ferm

C ferm
T

= π2

3

(
2 log 2 + 3ζ(3)

π2

)
' 11.5256 , (2.19)

which differ by ∼ 5.3%. We observe that comparing the various charges with the long-
distance coefficient tends to make the agreement with the fermion worse than when com-
paring the other charges amongst each other.

Four dimensions. In this case we can use Solodukhin’s formula for the entanglement
entropy universal term to evaluate the trace-anomaly coefficients a and c [37]. In particular
for entangling surfaces corresponding to spheres and cylinders the relevant terms read,
respectively,

SEE|sphere = −4a log(R/δ) , SEE|cylinder = − c2
L

R
log(R/δ) . (2.20)

For the EMI, simple calculations yield the right expressions appearing in eq. (2.20), where

aEMI = π2κ(4)
(2.5)= 3

70 ' 0.0429 , cEMI =
3π2κ(4)

2
(2.5)= 9

140 ' 0.0643 , so aEMI

cEMI
= 2

3 .
(2.21)

It is an interesting fact that the would-be CFT represented by the EMI lies within the
range of values allowed by the unitarity bounds [26, 27]

1
3 ≤

a

c
≤ 31

18 . (2.22)

Naturally, the free fermion also satisfies the bounds, but one finds in that case [26, 38, 39]

aferm = 11
360 ' 0.0306 cferm = 1

20 = 0.05 aferm

cferm
= 11

18 ' 0.6111 . (2.23)

The discrepancies range from ∼ 8.33% for the ratios a/c to ∼ 29% for the a’s normalized
by the long-distance coefficient.

We can make another comparison using the values of the coefficient characterizing
the mutual information of two parallel regions which are very close to each other — see
appendix A. The result for k(4) for a Dirac fermion is given by [29]

k
(4)
ferm ' 0.0215 . (2.24)

whereas for the EMI we find from eq. (A.5)

k
(4)
EMI = 2πκ(4)

(2.5)= 3
35π ' 0.0273 , (2.25)
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which differ by ∼ 21%. On the other hand, the ratios a/k(4) are a bit closer, namely
aEMI

k
(4)
EMI

= π

2 ' 1.5708 , aferm

k
(4)
ferm

' 1.4199 , (2.26)

which is ∼ 9.6% off.

Five dimensions. Moving to d = 4 + 1, we can consider for instance the strip coefficient
k(5) and the one appearing in the entanglement entropy across a S3, which we denote F (5).
As explained in appendix A, both can be obtained from the mutual information of a pair
of concentric spheres of radii RA = R − δ/2, RB = R + δ/2, δ � R, analogously to lower
dimensions. In this case we have, on general grounds

I = k(5) 2π2R3

δ3 + · · ·+ 2F (5) , (2.27)

where the dots denote subleading divergences. For the EMI, we find

k
(5)
EMI =

π2κ(5)
2

(2.5)= 64
945π2 ' 0.00686 , F

(5)
EMI = π4κ(5)

(2.5)= 128
945 ' 0.135 , (2.28)

so
F

(5)
EMI

k
(5)
EMI

= 2π2 ' 19.7392 . (2.29)

On the other hand, for the fermion, we have [29, 30]

k
(5)
ferm = 0.0052 , F

(5)
ferm = 1

64

[
6 log 2 + 10ζ(3)

π2 + 15ζ(5)
π4

]
' 0.0865 , so F

(5)
ferm

k
(5)
ferm

' 16.636 .

(2.30)
Hence, in this case the differences range from ∼ 15.7% for the quotient F (5)

ferm/k
(5)
ferm to

∼ 35.9% for the F (5)
ferm normalized by the long-distance coefficient.

Six dimensions. In d = 5 + 1 we can consider again the coefficient A(6) which appears
weighting the Euler density in the trace anomaly — see eq. (A.7) below. This we can
compare with the strip one, k(6). From eq. (A.5) and eq. (A.8) we have for the EMI model

k
(6)
EMI = π2

3 κ(6)
(2.5)= 10

231π2 ' 0.00439 , A
(6)
EMI = π4

6 κ(6)
(2.5)= 5

231 ' 0.0216 , (2.31)

so
A

(6)
EMI

k
(6)
EMI

= π2

2 ' 4.9348 . (2.32)

On the other hand, the analogous coefficients for the free fermion can be extracted from
refs. [29] and [40, 41], respectively, and read

k
(6)
ferm ' 0.00325 , A

(6)
ferm = 191

15120 ' 0.0126 so A
(6)
ferm

k
(6)
ferm

' 3.889 . (2.33)

In this case, discrepancies vary from ∼ 26% for the k(6)’s normalized by the long distance
coefficient to ∼ 41.7% for the A(6)’s normalized by the same.
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Seven dimensions. As a final case, we consider d = 6 + 1. Once more, we compare k(7)

and F (7). Using the formulas in the appendix, we have for the EMI

k
(7)
EMI = π3

16κ(7)
(2.5)= 256

5005π3 ' 0.00165 , F
(7)
EMI = π6

12κ(7)
(2.5)= 1024

15015 ' 0.0681 . (2.34)

so
F

(7)
EMI

k
(7)
EMI

= 4π3

3 ' 41.342 . (2.35)

On the other hand, for a free fermion we have [29, 30]

k
(7)
ferm ' 0.0012 , F

(7)
ferm = 1

512

[
20 log 2 + 518ζ(3)

15π2 + 70ζ(5)
π4 + 63ζ(7)

π6

]
' 0.0369 . (2.36)

so
F

(7)
ferm

k
(7)
ferm

' 30.73 . (2.37)

The greatest difference (∼ 45.8%) appears in the F (7)’s normalized by the long distance
coefficient.

All in all, we observe that both models are clearly different for d > 2 and they seem
to increasingly deviate from each other as the number of dimensions grows.

3 Current conformal block equals EMI for spherical regions

In this section we compute the MI for two spatially separated and arbitrarily boosted
spheres for the EMI model. Remarkably, the result turns out to be identical to the one
corresponding to the conformal block Gdd−1,1 associated to the conserved current operator
made out of two free fermions.

In Minkowski space, the configuration space of “boosted” spherical regions is deter-
mined by the tips of their causal developments. Thus, for two spheres, the mutual in-
formation is a function of the four associated spacetime points. Furthermore, conformal
symmetry implies that such dependence can only come through two independent confor-
mally invariant cross ratios, say, u and v — see below for the precise definitions.

In the long-distance regime, an OPE analysis in the replicated theory suggests that
such function should be given in terms of the conformal blocks associated to each primary
operator of the replica theory. The following expansion is implied [42–44],

I(A,B) =
∑
∆,J

b∆,JG
d
∆,J(u, v) . (3.1)

Here, ∆ and J are the scaling dimension and spin of the primary modules in the replica
theory,4 respectively, and the coefficients b∆,J of each contributing conformal block can be
obtained via an analysis along the lines of [3, 4] — this was recently reviewed, generalized
and expressed in a compact form in [7]. In particular, for spheres lying on the same time

4Notice that it might be the case that the operator O∆ is a primary operator in the replica theory but
it is not a primary in the original CFT.
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slice, the sum of the coefficients associated to the leading contribution of a primary operator
in the original CFT takes the simple form

∑
J

b∆,J =
√
π Γ(∆ + 1) dim(R)
4∆+1Γ

(
∆ + 3

2

) , (3.2)

where R is the Lorentz representation of the CFT primary operator that contributes to
I(A,B). For other primary operators in the replica theory, one can either use the analysis
of [7] adapted to such computation or the explicit formulas from [42–44].

Now, if we are able to compute the mutual information for boosted spherical regions
in the EMI model, equating such result to the r.h.s. of eq. (3.1) would allow us to extract
the full set of {∆, J} of the primary modules contributing to the mutual information
of the putative CFT corresponding to this model. From the analysis of section 2 we
know that the EMI is dominated at long distances by the contribution coming from a free
fermion. Comparing that result with eq. (3.1), we find that the leading replica operator
that contributes to IEMI(A,B) — through analytic extension from the contribution to the
Renyi entropies to replica number n = 1 — is precisely a conserved current operator made
out of two free fermions in two replicas i, j, i 6= j,

Jµ = ψ̄i γµψj , (3.3)

with ∆ = d− 1 and J = 1. Taking this as our starting point, we would like to find the set
of operators that contribute to IEMI(A,B) via a recursive process in which we consecutively
subtract the various conformal-block contributions to the full expression of the EMI.

In more detail, the idea is the following. We start assuming that IEMI(A,B) has an
expansion as the one given in eq. (3.1), thus

IEMI(A,B) =
∑
∆,J

b∆,JG
d
∆,J(u, v) , (3.4)

for a set {∆, J} to be determined. Since at long distances the leading contribution is
consistent with the conformal block of an operator with ∆ = d − 1 and J = 1, and such
operator can only be associated to the leading contribution of a free fermion, we subtract
such contribution to IEMI(A,B) and repeat the analysis for the remaining expression. This
is, after the first iteration we have

I
(1)
EMI(A,B) ≡ IEMI(A,B)− b(ferm)

d−1,1G
d
d−1,1(u, v) (3.5)

with [44]

b(ferm)
d−1,1 = 2[ d2 ]+1

√
π Γ(d)

4d Γ
(
d+ 1

2

) , (3.6)

which has the expansion

I
(1)
EMI(A,B) =

∑
{∆,J}6={d−1,1}

b∆,JG
d
∆,J(u, v) . (3.7)
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Figure 1. Schematic representation of the geometric setup. We consider two boosted spheres Sd−2
A ,

Sd−2
B , characterized by their causal tips x1,x2 and x3,x4, respectively. The vector joining x1 and
x3 is denoted Ll and the ones connecting the diamond tips of each sphere by 2RAnA and 2RBnB ,
respectively.

Studying the long-distance behavior of (3.5) allows us to deduce the associated values of
{∆, J} for the next-to-leading contributing operator and by reading the associated coeffi-
cient we could deduce to which operator that corresponds to. We repeat the process until
we have exhausted all the operators that contribute to the l.h.s. of (3.4) or until we have zero
remanent. The process will turn out to be surprisingly short, as we will find I(1)

EMI(A,B) = 0.

3.1 EMI for boosted spherical regions

The first step in our program is to compute the EMI for relatively boosted spherical regions.
In such case the EMI formula is given by eq. (1.12) or, equivalently, by eq. (1.12). Thus
for the case of relatively boosted spheres the mutual information can be written as

IEMI(A,B) = 2κ(d)

∫
Sd−2
A

dσA
∫
Sd−2
B

dσB
(nA · nB)(n̄A · n̄B)− (nA · n̄B)(n̄A · nB)

|rA − rB|2(d−2) , (3.8)

where we modified the notation slightly with respect to eq. (1.12) for future convenience.
We describe our geometric setup through the tips of the causal diamonds whose past and
future null cones intersect at the corresponding spheres. We use x1 and x2 to label the
past and future tips of the sphere A, respectively, and analogously with x3 and x4 for the
sphere B. In figure 1, we give a schematic representation of this setup.

Given these four spacetime points, the mutual information will be a function of the
usual conformal invariant cross ratios u, v, which are given by

u ≡ |x1 − x2|2|x3 − x4|2

|x1 − x3|2|x2 − x4|2
, and v ≡ |x1 − x4|2|x2 − x3|2

|x1 − x3|2|x2 − x4|2
. (3.9)

However, for our convenience we will work instead with the conformally independent pa-
rameters

χ1 = |x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

and χ2 = |x1 − x2||x3 − x4|
|x1 − x4||x2 − x3|

, (3.10)
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which are related to u and v via

u = χ2
1, and v = χ2

1
χ2

2
. (3.11)

For the above geometric set up we can write x2 − x1 = 2RAnA, x4 − x3 = 2RBnB, where
RA and RB are the radii of the spheres A and B respectively, and nA and nB are the
future directed unit time-like vectors pointing from the past to the future cone tips of each
sphere. We write the difference x3− x1 = Ll, where L is the distance between the past tip
cones of the spheres and l is a unit space-like vector.

With the above identifications the conformal parameters become

χ1 = 4RARB
L|2RAnA − Ll − 2RBnB|

, and χ2 = 4RARB
|2RAnA − Ll||2RBnB + Ll|

, (3.12)

with ranges χ1 ∈ (0, 1), χ2 ∈ (0,∞) with χ2 > χ1 for spatially separated spheres.
Although we are interested in the above geometric set up, we can simplify our compu-

tation, without loss of generality, by performing a conformal transformation which makes
the centers of the spheres coincide. In that case, the conformal parameters take the values

χ1 = 4RARB
|RAnA −RBnB|2

, and χ2 = 4RARB
|RAnA +RBnB|2

, (3.13)

where we use the relation x3−x1 = RAnA−RBnB = Ll that follows from the equal-center
condition. We parametrize the inner product between nA and nB by a boost parameter β
via

nA · nB ≡ − cosh β , (3.14)

and introduce the parameter 0 ≤ x ≤ 1, defined as

x ≡ 2RARB
R2
A +R2

B

. (3.15)

The parameters χ1 and χ2 can then be written in terms of x and β as

χ1 = 2x
|1− x cosh β| , and χ2 = 2x

(1 + x cosh β) . (3.16)

In this case, χ1 > χ2 and χ2 ∈ (0, 1), χ1 ∈ (0,∞) so essentially the conformal transforma-
tion interchanged the rôles of χ1 and χ2, which is a natural thing for an inversion like the
one we are considering here. Given RA and RB, there is a critical value of β for which χ1 is
ill-defined. From eq. (3.13) one can see that this happens when the tip cones are null-like
separated, RAnA − RBnB = null vector, or in other words, when the causal cones have a
common boundary. Assuming the casual cones obey a strict inclusion relation, then

0 ≤ cosh β < R2
A +R2

B

2RARB
. (3.17)

This in turn is equivalent to say that the cone tips are time-like separated. To describe
such configurations, the absolute value in (3.16) is thus unnecessary.
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We will write down a formula for the EMI in the above set up as a funciton of x and
β. Then, whenever necessary, we will go back and rewrite it in terms of the perhaps more
familiar u and v variables. Points on the spheres A and B will be denoted by rA and rB
respectively. nA and nB are also the future oriented normal vectors to the spheres A and
B respectively. Thus the points on the spheres satisfy

r2
A = R2

A, r2
A = R2

A, and nA · rA = 0 , nB · rB = 0 . (3.18)

Since the spheres are concentric, we can write rA = RAn̄A and rB = RBn̄B where n̄A, n̄B
are the unit vectors normal to each sphere on their respective hyperplanes.

We can choose a coordinate system such that the sphere A lies on the t = constant slice
while the sphere B is boosted along the ẑ direction with the respect to A. We have then

nA = t̂, and nB = cosh βt̂+ sinh βẑ . (3.19)

Given eq. (3.19), we can find the solutions to eq. (3.18) as

rA = RAn̄A = RA
(
|~ΩA|Ω̂A + ΩA,z ẑ

)
, (3.20)

rB = RBn̄B = RB
(
sinh βΩB,z t̂+ |~ΩB|Ω̂B + cosh βΩB,z ẑ

)
. (3.21)

The relative boost partially breaks the spherical symmetry and thus we have separated
the angular variables describing a unit sphere by |~Ω|Ω̂ + Ωz ẑ above. We will integrate first
the sphere A which is the most symmetric one in the above coordinates. To simplify our
computation even further, we rotate the coordinate system such that the new ẑ coincides
with the radial direction of the sphere B. This means that the vectors transform as

rB = RB

(
sinh β cos θB t̂+

√
1 + sinh2 β cos2 θB ẑ

)
,

nB =
(
cosh βt̂− sinh β sinφB Ω̂B + sinh β cosφB ẑ

)
, (3.22)

where we used ΩB,z = cos θB, and the rotation angle φB can be seen, from the orthogonality
condition (3.18), to be given by

cosφB = cosh β cos θB√
1 + sinh2 β cos2 θB

and sinφB = sin θB√
1 + sinh2 β cos2 θB

. (3.23)

Since the sphere A is spherically symmetric, we can use expressions (3.20) and (3.18) for rA
and nA. We are ready now to write down the integral expressing the EMI for two spheres
using (3.8). The main ingredients are

|rA − rB|2 =
∣∣∣R2

A +R2
B − 2RARB

√
1 + sinh2 β cos2 θB cos θA

∣∣∣ , (3.24)

(nA · nB)(n̄A · n̄B)− (nA · n̄B)(n̄A · nB) = − cosh β cos θA√
1 + sinh2 β cos2 θB

, (3.25)

where in equation (3.25) we have ignored terms proportional to Ω̂B · Ω̂A since those inte-
grate to zero. Likewise, we can explicitly integrate the angles Ω̂B and Ω̂A for each sphere
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which entails the replacement∫
Sd−2
A

dσA
∫
Sd−2
B

dσB →
4Rd−2

A Rd−2
B πd−2

Γ
(
d−2

2

)2

∫ π

0
dθA sind−3 θA

∫ π

0
dθB sind−3 θB . (3.26)

Putting everything together, we finally have

IEMI =
8κ(d)R

d−2
A Rd−2

B πd−2

Γ
(
d−2

2

)2

∫ π

0

∫ π

0

dθBdθA sind−3 θB sind−3 θA∣∣∣R2
A +R2

B − 2RARB
√

1 + sinh2 β cos2 θB cos θA
∣∣∣d−2

× cosh β cos θA√
1 + sinh2 β cos2 θB

. (3.27)

We can rewrite the above integral in terms of the parameter x defined in eq. (3.15) and
the function fβ(θ) defined by

fβ(θ) ≡
√

1 + sinh2 β cos2 θ with xfβ(θ) < 1 , (3.28)

which follows from eq. (3.17). Making these replacements, the EMI takes the form

IEMI =
8κ(d)22−dxd−2πd−2

Γ
(
d−2

2

)2 cosh β
∫ π

0

dθB sind−3 θB
fβ (θB)

∫ π

0

dθA sind−3 θA cos θA
(1− xfβ (θB) cos θA)d−2 . (3.29)

The integral over θA can be carried out explicitly, and a convenient expression for it reads

∫ π

0

dθA sind−3 θA cos θA
(1− xfβ (θB) cos θA)d−2 =

√
π Γ
(
d−2

2

)
Γ
(
d−1

2

) (
d− 2
d− 1

)
xfβ (θB)[

1− x2f2
β (θB)

]d/2
× 2F1

[
d

2 , 1,
d+ 1

2 ;−
x2f2

β (θB)
1− x2f2

β (θB)

]
. (3.30)

The final result is thus given as an integral over θB, which we find convenient to express
in terms of the variable ξ ≡ cos θB. Then, the final expression for the mutual information
of two boosted spheres in the EMI model reads5

IEMI = 2γdxd−1 coshβ
∫ 1

0
dξ
(
1−ξ2

) d−4
2

2F1

[
d

2 ,
d−1

2 ,
d+1

2 ;x2
(
1+sinh2βξ2

)]
, (3.32)

where

γd ≡
24κ(d)π

d− 3
2

2d−1Γ
(
d−2

2

)
Γ
(
d−1

2

) (d− 2
d− 1

)
. (3.33)

The result is a function of the cross ratio defined in eq. (3.15) above and of the boost
parameter β introduced in eq. (3.14).

5To arrive at this expression we also use the identity

2F1 (a, b, c; z) = (1− z)−a 2F1

[
a, c− b, c; z

z − 1

]
. (3.31)

– 16 –



J
H
E
P
0
8
(
2
0
2
1
)
0
8
4

For comparison purposes, it is important to write this back in terms of the u and v

parameters. First from (3.16) one can solve for x and cosh β as a function of χ1 and χ2,

1
x

= 1
χ2

+ 1
χ1

and cosh β = 1
χ2
− 1
χ1

. (3.34)

Using (3.11) we can rewrite these in terms of u and v as

x =
√
u

1 +
√
v
, cosh β =

√
v − 1√
u

. (3.35)

Notice that the trivial inequality cosh β > 1 implies
√
v ≥ 1 +

√
u, and the constraints

0 ≤ x ≤ 1 and 0 ≤ x cosh β ≤ 1 are trivial consequences of this relation. In terms of u and
v the final expression for the EMI reads

IEMI = −2γd

( √
u

1 +
√
v

)d−2(1−
√
v

1 +
√
v

)
(3.36)

×
∫ 1

0
dξ
(
1− ξ2

) d−4
2

2F1

[
d

2 ,
d− 1

2 ,
d+ 1

2 ; (1−
√
v)2

ξ2 + u
(
1− ξ2)

(1 +
√
v)2

]
.

Before diving into a detailed analysis of this result, let us study certain limiting cases.

3.1.1 Long distance

Let us consider the long-distance behavior of eq. (3.32) — or equivalently, eq. (3.36). To
this end we need to go back to the disjoint-spheres geometry. In particular, the relation
between the parameters x and cosh β, and χ1 and χ2, which was derived assuming the
causal cones of the spheres to be nested, needs to be modified. The modification entails a
simple interchange between χ1 and χ2. Indeed, for disjoint spheres, (3.34) becomes

1
x

= 1
χ2

+ 1
χ1

and cosh β = 1
χ1
− 1
χ2

, (3.37)

and (3.35) is now

x =
√
u

1 +
√
v
, cosh β = 1−

√
v√

u
, with

√
u ≤ 1−

√
v . (3.38)

To derive the leading behavior of the EMI in such a limit, we would need to study x and
cosh β for L � RA, RB using eqs. (3.37) and (3.12). The relevant leading expressions are
thus (see for instance section (2.2) of [7])

x ∼ 2RARB
L2 , and cosh β ∼ [2(nA · l)(nB · l)− nA · nB] . (3.39)

In the long distance limit x � 1 and cosh β ∼ O(1). As a consequence, the leading
behavior of eq. (3.32) in this regime can be obtained by setting x = 0 in the integrand,
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which makes the hypergeometric function equal to one, and replacing everywhere else the
relations (3.39). This leads to

IEMI
(L�RA,RB)=

25κ(d)π
d− 3

2
(
d−2
d−1

)
2d−1Γ

(
d−2

2

)
Γ
(
d−1

2

) (2RARB
L2

)d−1

× [2(nA · l)(nB · l)− nA · nB]
∫ 1

0
dξ
(
1− ξ2

) d−4
2 . (3.40)

The remaining integral can be trivially done,

∫ 1

0
dξ
(
1− ξ2

) d−4
2 =

√
π

2
Γ
(
d−2

2

)
Γ
(
d−1

2

) , (3.41)

leading to the final result presented in eq. (2.4) which, as mentioned above, agrees —
up to an undetermined overall constant — with the long-distance behavior of the mutual
information dominated by a free fermion.

We can similarly study (3.36) (with an overall minus sign change due to the new
relations (3.35)). In that case, the analogous leading expressions for u and v are

u ∼ 16R2
AR

2
B

L4 +O(L−5) , and v ∼ 1− 8RARB
L2 [2(nA · l)(nB · l)− nA · nB] +O(L−3) .

(3.42)
and plugging these into eq. (3.36) will lead to eq. (2.4).

Since u and v are in general independent variables, we can study other limits. For
instance, we can take u → 0 while leaving v untouched, or take v → 1 with u arbitrary,
among others. Let us mention the u → 0 case with arbitrary v, as it turns out to have
a simple analytic form. Indeed, in this limit the integral in (3.36) can be carried out
explicitly, leading to

∫ 1

0
dξ
(
1− ξ2

) d−4
2

2F1

d
2 ,
d− 1

2 ,
d+ 1

2 ;
(

1−
√
v

1 +
√
v

)2

ξ2


=

4(d− 1)
√
πΓ
(
d−2

2

)
Γ
(
d+1

2

) 2F1

1
2 ,
d

2 ,
d+ 1

2 ;
(

1−
√
v

1 +
√
v

)2
 , (3.43)

and thus the EMI becomes

IEMI
u→0= 4πd−1(d−1)(d−2)

2d−1
(
Γ
(
d+1

2

))2 κ(d)

( √
u

1+
√
v

)d−2(1−
√
v

1+
√
v

)
2F1

1
2 ,
d

2 ,
d+1

2 ;
(

1−
√
v

1+
√
v

)2
 .

(3.44)
Expression (3.44) can be compared directly with the leading contributing conformal

block. For u→ 0 and v arbitrary, this reads [45]

Gdd−1,1(u, v) u→0= u
d−2

2 (1− v) 2F1

[
d

2 ,
d

2 , d; 1− v
]
, (3.45)
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whose functional dependence coincides exactly with (3.44) after the use of some identities.6

Thus, comparing with the expected behavior of IEMI(A,B) at long distances, this is

IEMI(A,B)|u→0 = b(ferm)
d−1,1G

d
d−1,1(u, v)|u→0 , (3.47)

where b(ferm)
d−1,1 was defined in eq. (3.6), we can read off the required value for κ(d). The result

appears in eq. (2.5) above. Already at this point it is puzzling that the u→ 0 limit of (3.36)
agrees exactly with the contribution of the leading conformal block away from v → 1. In
other words, it is surprising to find a perfect agreement away from the usual long-distance
limit.

3.1.2 Zero relative boost

An important limiting case corresponds to cosh β = 1, which describes concentric spheres
lying on the same space-like hyperplane — which we can take to be the t =constant surface.
In that case, we can write down a closed analytic expression for IEMI(A,B) for all d. First,
in that limit, the argument of the hypergeometric function in (3.32) becomes independent
of the integration variable and one finds

IEMI(A,B) = 4πd−1(d− 1)(d− 2)

2d−1Γ
[
d+1

2

]2 κ(d) x
d−1

2F1

[
d

2 ,
d− 1

2 ,
d+ 1

2 ;x2
]
, (3.48)

where x can be determined in terms of the geometric parameters for disjoint spheres on
the same hyperplane, using (3.37) and (3.12). For spheres on the same hyperplane it is
convenient to define the vector that joins the spheres’ centers,

D ≡ Ll +RBnB −RAnA , (3.49)

since now, nA ·D = 0, nB ·D = 0 and nA · nB = −1. Trading L for D, χ1 and χ2 take the
form

χ1 = 4RARB
|D|2 − (RA −RB)2 , χ2 = 4RARB

|D|2 − (RA +RB)2 , (3.50)

one can check using (3.37) that cosh β = 1 as we wanted, and

x = 2RARB
|D|2 −R2

A −R2
B

. (3.51)

Plugging this expression into (3.48) gives us the EMI mutual information as a function of
the physical parameters.

As described at the beginning of the section, we would like to subtract from this ex-
pression the contribution of the conformal block associated to the spin 1 conserved current

6We found the following identity numerically,

4
(

2
1 +
√
v

)d−2(1−
√
v

1 +
√
v

)
2F1

[
1
2 ,
d

2 ,
d+ 1

2 ;
(

1−
√
v

1 +
√
v

)2
]

= (1− v) 2F1

[
d

2 ,
d

2 , d; 1− v
]
. (3.46)

Perhaps this follows from standard hypergeometric identities. Otherwise, it would be interesting to prove
it rigorously.
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made out of free fermions, namely, the term b(ferm)
d−1,1G

d
d−1(u, v). The limit considered above,

cosh β = 1, corresponds in the u and v variables to the case in which
√
u = 1−

√
v , (3.52)

which follows from (3.38). However, it turns out that in the CFT literature these conformal
blocks are often written in terms of yet another set of variables (parameters), {y, z} which
are defined via the relations

u = yz, and v = (1− y)(1− z) . (3.53)

In terms of these variables, the constraint equation (3.52) implies

y = z . (3.54)

This is called the “diagonal limit” of the conformal blocks [46]. In such limit, u and v

become simple functions of z

u(z) = z2 , and v(z) = (1− z)2 . (3.55)

Now, a close formula for a conformal block of arbitrary scaling dimension and spin was
derived in [47]. For ∆ = d− 1 and J = 1 this reads

Gdd−1,1(u(z), v(z)) ≡ Gdd−1,1(z) = 2− z
2z

(
z2

1− z

) d
2

2F1

[
1, d2 ,

d+ 1
2 ; z2

4(z − 1)

]
. (3.56)

Hence, our goal is then to subtract from (3.48) the function

b(ferm)
d−1,1G

d
d−1,1(z) = 2[ d2 ]+1

√
π Γ (d)

4d Γ
(
d+ 1

2

) 2− z
2z

(
z2

1− z

) d
2

2F1

[
1, d2 ,

d+ 1
2 ; z2

4(z − 1)

]
, (3.57)

for which we need to rewrite eq. (3.48) as a function of z. The relation between x and z
can be easily derived from (3.38) and yields

x =
√
u(z)

1 +
√
v(z)

= z

2− z . (3.58)

Plugging this into (3.38) and using the calibrated value of the parameter κ(d) (2.5), we
obtain

IEMI(A,B) = 2[ d2 ]+1
√
π Γ (d)

4d Γ
(
d+ 1

2

) 2− z
2z

(
z2

1− z

) d
2

2F1

[
1, d2 ,

d+ 1
2 ; z2

4(z − 1)

]
, (3.59)

which is identical to b(ferm)
d−1,1G

d
d−1,1(z). This is a rather surprising result. For spherical

regions, the EMI exactly equals the conformal block contribution of a spin 1 conserved
current made out of a free fermion field. In other words, no other operators contribute to
the sum in the r.h.s. of (3.4), and the iterative process mentioned at the beginning of the
section is completed after the very first step.
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3.1.3 General case for particular dimensions

At this point it is obvious that in the most general case we must have the equality

IEMI(A,B) = b(ferm)
d−1,1G

d
d−1,1(u, v) , (3.60)

and indeed, there is an elegant way to prove this equivalence using a smeared representation
of the so-called OPE blocks. The reader interested in seeing such derivation can find it in
appendix B.

It is instructive to write down closed-form expressions for each conformal block by
explicitly computing the integral in (3.32) for the various dimensions. We rewrite the
formula here for convenience

IEMI(A,B) =
2d Γ

[
d−1

2

]
b(ferm)
d−1,1

√
πΓ
[
d−2

2

] xd−1 cosh β

×
∫ 1

0
dξ
(
1− ξ2

) d−4
2

2F1

[
d

2 ,
d− 1

2 ,
d+ 1

2 ;x2
(
1 + sinh2 βξ2

)]
, (3.61)

where we have included explicitly the factor b(ferm)
d−1,1 to facilitate comparison with the con-

formal blocks. Its dependence on the physical parameters RA, RB, L and the unit vectors
nA, nB and l can be obtained from eq. (3.37) and the definitions (3.12). Let us study now
the above expression for d = 3, 4, 5, 6.

Three dimensions. In this case, the integral in eq. (3.61) gives

∫ 1

0

dξ√
1− ξ2 2F1

[
1, 3

2 , 2;x2
(
1 + sinh2 βξ2

)]
= 2
x2

Π
(
− sinh2 β

∣∣∣ sinh2 βx2

1−x2

)
√

1− x2
− π

2 cosh β

 ,
(3.62)

where Π (n|m) is the complete elliptic integral of third kind7 and its second argument
in (3.62) is bounded as

0 ≤ sinh2 βx2

1− x2 ≤ 1 . (3.65)

Hence, the result for the mutual information is

IEMI(A,B) = 16
π
b(ferm)
2,1

[
cosh β√
1− x2

Π
(
− sinh2 β

∣∣∣sinh2 βx2

1− x2

)
− π

2

]
. (3.66)

7We adopt the following conventions for the elliptic integrals used in this paper. The elliptic integral of
first kind K(n), second kind E(m) and third kind Π (n|m) are defined as:

K (n) =
∫ π

2

0

dθ√
1− n sin2 θ

, E (m) =
∫ π

2

0

√
1−m sin2 θ dθ , (3.63)

and

Π (n|m) :=
∫ π

2

0

dθ
(1− n sin2 θ)

√
1−m sin2 θ

. (3.64)
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To compare with the CFT literature it is convenient to write the expression in terms of
the {y, z} variables defined in (3.53). Here we write each term appearing in (3.66) instead.
We have8

sinh2β= 2−y−z−2
√

(1−y)(1−z)
yz

,
sinh2βx2

1−x2 =

(
2−y−z−2

√
(1−y)(1−z)

)2

(y−z)2 ,

coshβ√
1−x2

= yz−y−z
|y−z|

sinhβ . (3.68)

In d = 3 there is no general closed-form expression for the corresponding conformal block
to compare with, although the interested reader can find an integral representation in [45],
which can be shown to be equivalent to (3.68) for ∆ = 2 and J = 1. For comparison
purposes, however, we prefer to turn the series representation of [48] for d = 3 into an
integral representation — see eq. (C.13) below — and numerically compare the results of
both expressions. We find a perfect match.

Four dimensions. In this case, the relevant integral can also be done explicitly and its
answer turns out to be given in terms of elementary functions, namely,

∫ 1

0
dξ 2F1

[
2, 3

2 ,
5
2;x2

(
1 + sinh2 βξ2

)]
= 3

2x3

tanh−1
[

sinhβx√
1−x2

]
sinh β

√
1− x2

− tanh−1 [x cosh β]
cosh β

 .
(3.69)

Therefore, the mutual information is

IEMI(A,B) = 12 b(ferm)
3,1

 cosh β
sinh β

√
1− x2

tanh−1

√sinh2 βx2

1− x2

− tanh−1 [x cosh β]

 .
(3.70)

This result can be expressed more simply in terms of the {y, z} variables. We write the
various pieces explicitly,

tanh−1
[
x
√

1 + cosh2 β

]
= 1

4 log [(1− y)(1− z)] ,

tanh−1

√sinh2 βx2

1− x2

 = 1
2 log

(
2− y − z + |y − z|
2
√

(1− y) (1− z)

)
. (3.71)

Using eq. (3.68), and after some simplifications we get for the mutual information:

IEMI(A,B) = 3b(ferm)
3,1

[
yz − y − z

(y − z) log
(1− z

1− y

)
− log [(1− y)(1− z)]

]
. (3.72)

8For 0 ≤ y, z ≤ 1 the expressions can be written as

sinh2 β =
(√

1− y −
√

1− z
)2

yz
,

sinh2 βx2

1− x2 =
(√

1− y −
√

1− z
)4

(y − z)2 . (3.67)

However, in some applications it is important not to make such assumption since one would need the
expression to be valid in the whole complex plane.
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Indeed, for d = 4, earlier work on conformal blocks provided a general formula for the con-
formal block associated to any operator with arbitrary scaling dimension and spin. Evalu-
ating ∆ = d− 1 and J = 1 in the general formula — see e.g., eq. (7.1) of [49] — one gets

G4
3,1(y, z) = 3

[
yz − y − z

(y − z) log
(1− z

1− y

)
− log [(1− y)(1− z)]

]
, (3.73)

in perfect agreement with our results.

Five dimensions. In this case one needs to work a bit harder to find a closed-form
expression. However, the final answer can also be written compactly in terms of Elliptic
integrals of the first, second and third kinds. The relevant integral is∫ 1

0
dξ
√

1− ξ2 2F1

[
2, 5

2 , 3;x2
(
1 + sinh2 β ξ2

)]
(3.74)

= 2
3x4 cosh4 β

[
π cosh β + 2√

1− x2 cosh2 β

{
cosh2 β

sinh2 β

[
E
(

x2 sinh2 β

x2 cosh2 β − 1

)

−K
(

x2 sinh2 β

x2 cosh2 β − 1

)]
−Π

(
sinh2 β

cosh2 β

∣∣∣∣∣ x2 sinh2 β

x2 cosh2 β − 1

)}]
,

where K, E and Π are the elliptic integrals of first, second and third kind — the conventions
are described in eqs. (3.63) and (3.64). Since the above is a rather complicated formula,
we checked that it reduces to the right expression for β → 0. Our formula for the EMI in
d = 5 is therefore

IEMI(A,B) = 128
3π

b(ferm)
4,1

cosh3β

[
π coshβ+ 2√

1−x2 cosh2β
(3.75)

×
{

cosh2β

sinh2β

[
E
(

x2 sinh2β

x2 cosh2β−1

)
−K

(
x2 sinh2β

x2 cosh2β−1

)]
−Π

(
sinh2β

cosh2β

∣∣∣∣∣ x2 sinh2β

x2 cosh2β−1

)}]
,

where the arguments of the Elliptic functions in terms of the {y, z} variables have the form

sinh2 β

cosh2 β
= 2− y − z − 2

√
(1− y)(1− z)

2− y − z − 2
√

(1− y)(1− z) + yz
,

x2 sinh2 β

x2 cosh2 β − 1
= −2− y − z − 2

√
(1− y)(1− z)

4
√

(1− y)(1− z)
. (3.76)

We can rewrite the other terms using the relations

x =
√
y z

1 +
√

(1− y)(1− z)
, and sinh2 β = 2− y − z − 2

√
(1− y)(1− z)

yz
, (3.77)

respectively. Similarly to the d = 3 case, due to the lack of a closed-form expression for
the corresponding conformal block, we numerically compare our result with the ones of
appendix C, finding perfect agreement.
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Six dimensions. Once again, the resulting integral can be carried out explicitly, leading
to ∫ 1

0
dξ
(
1− ξ2

)
2F1

[5
2 , 3,

7
2;x2

(
1 + sinh2 βξ2

)]

= 5
8x5

[1− 2 sinh2 β + x2
(
1− 3 sinh2 β

)
sinh3 β (1− x2)

3
2

tanh−1
[ sinh βx√

1− x2

]

−2tanh−1 [x cosh β]
cosh β − x

(1− x2) sinh2 β

]
. (3.78)

Using relations (3.71), plus

coshβ

1−2sinh2β+x2
(
1−3sinh2β

)
sinh3β (1−x2)

3
2

=−2(y+z−yz)
(
y2(1+z)+z2(1+y)−4yz

)
|y−z|3

,

(3.79)
and

cosh β x
(1− x2) sinh2 β

= yz(y + z − yz)
(y − z)2 , (3.80)

we can write down the expression for the mutual information in terms of the {y, z} variables
explicitly,

IEMI(A,B) = 15 b(ferm)
5,1

[
(yz − y − z)

(
y2(1 + z) + z2(1 + y)− 4yz

)
(y − z)3 log

(1− z
1− y

)

+2yz(yz − y − z)
(y − z)2 − log [(1− y)(1− z)]

]
. (3.81)

The result for the general conformal block for d = 6 was originally derived in [45] — e.g.,
see their eq. (5.14). In the case of interest here, their result for G6

5,1(y, z) reduces to
IEMI(A,B)/b(ferm)

5,1 , in perfect agreement with our general result.

4 Free fermion at long distances for arbitrary regions

As mentioned earlier, for the EMI model the mutual information of two entangling regions
A, B is given, in the long-distance limit, by the expression

IEMI(A,B) = 4(d− 1)(d− 2)κ(d)
vol(A) · vol(B)

r2(d−1) +O(r−2d+1) . (4.1)

Here, κ(d) is the usual constant characteristic of the model, which is therefore completely
independent of the geometry of A and B. The expression analogous to eq. (4.1) for a free
fermion reads [29]

Iferm(A,B) = g(A,B) · vol(A) · vol(B)
r2(d−1) +O(r−2d+1) , (4.2)

where g(A,B) is a number which, in principle, may depend on the geometry of the regions.
Given the match in the scaling, it is natural to wonder whether the free fermion actually
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coincides exactly with the EMI in this regime. Where in this case, the function g(A,B)
would in fact be given by a fixed constant, independent of the geometric details of A and B.

In order to test this possibility, we will compute here the mutual information for
different shapes for a free fermion. From eq. (2.3) we can analytically extract g(A,B) in
the case of two disk regions for the free fermion. We have

g(A,B)|spheres =
2[ d2 ]−1 Γ(d)

(
Γ
(
d+1

2

))2

πd−
3
2 Γ
(
d+ 1

2

) . (4.3)

A useful expression for g(A,B) was obtained in [29] in terms of the resolvent of the
vacuum correlator of the Dirac field restricted to each region, A and B. For the two-
point function C(x, y) ≡ 〈Ψ(x)Ψ(y)†〉, the resolvent is defined as R(β) ≡ [C + β − 1/2]−1.
Then, for regions which are mirror symmetric of themselves with respect to the line which
separates A and B, we have

g(A,B)vol(A) · vol(B) =

(
Γ
(
d
2

))2

4πd
∫ ∞

1/2
dβ(β − 1/2)

×
[
tr
[
RA(β)R2

B(β) +RB(β)R2
A(β)

]
− (β ↔ −β)

]
, (4.4)

where RA(β) ≡
∫
x∈A

∫
y∈AR(β;x, y) denotes sum over the spatial variables belonging to

region A.
Using this formula we compute the coefficient g(A,B) in d = 2 + 1 in the lattice, and

test the possible invariance with the shape of the regions. From eq. (4.3) we have

g(A,B)|d=3
disks = 16

15π2 . (4.5)

This will also allow us to test the precision of our numerical calculations.
The formula (4.4) can be exploited in the lattice as follows. First, let CαβA,ij ≡ 〈ψαi ψ

†
j

β
〉

be the correlator for lattice fermionic fields corresponding to i, j = 1, . . . , NA where NA

is the number of lattice sites of A and where we denoted spinorial indices by α, β = 0, 1.
Then, if we denote by u(λA)β

A,j the eigenvector of CαβA,ij corresponding to a given eigenvalue
λA, we can write∑

j,β

CαβA,iju
(λA)β
A,j = λA u

(λA)α
A,i , CαβA,ij =

∑
λA

λAu
(λA)α
A,i u

(λA)β
A,j

†
. (4.6)

Inserting the second expression in eq. (4.4) and using∫ ∞
1/2

dβ(β − 1/2)
[ 1

(λA + β − 1/2)(λB + β − 1/2)2 + 1
(λB + β − 1/2)(λA + β − 1/2)2

− (β ↔ −β)
]

= f(λA, λB) , (4.7)

where
f(λA, λB) ≡ 1

(λA − λB) log
[
λA(1− λB)
λB(1− λA)

]
, (4.8)
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Disks Squares Rect. (2L×L) Rect. (4L×L) Rect. (6L×L)

g(A,B)× 15π2

16 0.994 0.997 0.938 0.862 0.840

Table 1. Continuum values of the coefficient g(A,B) normalized by the analytic result correspond-
ing to a pair of disks, 16/(15π2), obtained in the lattice for different pairs of identical regions.

we find the formula

g(A,B)vol(A) ·vol(B) = 1
16π2

∑
λA,λB

f(λA,λB)
∣∣∣∣v(λB)
B

†
·v(λA)
A

∣∣∣∣2 , where v
(λA)α
A ≡

∑
i

u
(λA)α
A,i ,

(4.9)
and, for fixed λA and λB, v(λB)

B

†
· v(λA)
A denotes a scalar product between two-component

vectors corresponding to the spinorial indices. In words, given the correlators matrix
corresponding to each region, we first obtain its eigenvalues and eigenvectors. Using the
former we can evaluate the function f(λA, λB) for every pair of eigenvectors. Then, for
each spinorial index α = 0, 1, we sum over the lattice sites of each region in order to obtain
the v(λ),α. Finally, we use eq. (4.9) to evaluate g(A,B).9

The three-dimensional lattice Hamiltonian for the free fermion reads

H = − i2
∑
n,m

[(
ψ†m,nγ

0γ1(ψm+1,n − ψm,n) + ψ†m,nγ
0γ2(ψm,n+1 − ψm,n)

)
− h.c.

]
, (4.10)

and the vacuum-state correlators are given in this case by [29]

C(n,k),(j,l) = 1
2δn,jδkl −

∫ π

−π
dx
∫ π

−π
dy sin(x)γ0γ1 + sin(y)γ0γ2

8π2
√

sin2 x+ sin2 y
ei(x(n−j)+y(k−l)) , (4.11)

where here we used subindices (i, j) to denote coordinates x, y in the square lattice.
The idea is then to consider fixed shapes in the lattice and evaluate g(A,B) as we

increase the number of points. Performing inverse-power-law fits to the data — e.g.,
{1/x3, 1/x2, 1/x, 1}— we can read off the continuum results from the O(1) coefficients. In
table 1 we present the results obtained for identical pairs of disks, squares, and rectangles
of side-lengths: 2L×L, 4L×L and 6L×L, respectively. As we can see, the numerical result
obtained for the disks is very close to the analytic one appearing in eq. (4.3). Interestingly,
the result for a pair of squares is also remarkably similar to the disks result. However, as we
deform the squares and replace them with increasingly thinner rectangles, the coefficient
decreases, clearly differing from the disks result.

In fact, the limit of very thin parallel plates with area A can be treated analytically
in any dimension. In this case, we have a limit of translational invariance in the direction
parallel to the plates. Consequently, the eigenvectors of the correlator decompose as

uλA(x) ∼ A−1/2 ei
~k‖~x‖φ

λ,~k‖
(x⊥) . (4.12)

9The analogous expression for the long-distance coefficient of the MI for scalar fields was obtained in [50].
For fermions, the same formula (4.9) applies in the lattice without correction for fermion doubling. The
reason is that the eigenvectors are averaged over position and this eliminates the doubling modes which
have large momentum ∼ π in the Brillouin zone.
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Upon averaging over the region all vectors with ~k‖ 6= 0 do not contribute. Only the constant
eigenvectors in the parallel directions contribute. On these, the correlator has the same
effect as the correlator of a d = 2 dimensional field, since the integration imposes zero
parallel momentum in the parallel direction,∫

dd−2x‖C(~x) =
∫

dd−2x‖

∫ ddp
(2π)d

e−ipx

i/p
γ0 =

∫ d2p

(2π)2
e−ipx

i/p
γ0 = C2(x1) , (4.13)

where, however, the spinorial representation is still of dimension 2[ d2 ]. The problem then
collapses to a two dimensional problem of the mutual information of 2[ d2 ]−1 fermions for
well separated intervals. Each d = 2 fermion has g(A,B) = 1/3. We then obtain from (4.4)

g(A,B)|plates =

(
Γ
(
d
2

))2
2[ d2 ]−1

3πd−2 . (4.14)

Therefore, in any dimensions we have

g(A,B)|plates
g(A,B)|spheres

=
πΓ
(
d
2

)
Γ
(
d+ 1

2

)
3 2d−1

(
Γ
(
d+1

2

))3 . (4.15)

To compare with the numerical calculation above for rectangles, this gives for d = 3 a ratio
of ∼ 0.771. The results in table 1 asymptotically approach this value as the rectangles
become thinner. The ratio (4.15) is always less than 1 and decreases with dimension.

Hence, we conclude that the long-distance limit of the free fermion mutual information
differs from the EMI one, as the latter depends on the geometry of the entangling regions
exclusively through the product of volumes, whereas the former includes an additional
shape-dependent function.

5 Is the EMI the mutual information of a CFT?

We have seen that the conjectural EMI theory must contain a fermion with dimension
(d − 1)/2 as a lowest-dimensional operator. We have also shown that the long-distance
leading term of the free fermion and EMI models do not coincide, while the EMI gives
exactly the leading conformal block to the MI of the free fermion for spheres. We now
show this is not compatible with the EMI model being the MI of a fixed CFT.

First, recall that if a QFT contains a field ψ with the two-point function of a free field,
then this field has to be free, that is, all its correlators satisfy Wick’s theorem [1]. The
key of the argument is that the two-point correlator satisfies a local equation. In conse-
quence, the field operator itself must satisfy the free equation of motion. For example, for
a field having the two-point function of the free fermion field, writing u(x) = γµ∂µψ(x),
we get 〈0|u†(x)u(y)|0〉 = 0. From this, the smeared operator uα =

∫
dxα(x)u(x), satisfies

|uα|0〉|2 = 0 =⇒ uα|0〉 = 0, and since no local operator can annihilate the vacuum,
γµ∂µψ(x) = u(x) = 0. For a field satisfying the free equation of motion, the usual de-
composition into positive and negative frequencies can be done, and the usual numeric
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commutator (anti-commutator) follows [1]. The c-number commutator implies Wick’s the-
orem. This determines all correlators of the field with itself. Further, in the Hilbert space
generated by acting with the field polynomials on the vacuum, the only other field oper-
ators that are mutually local (commuting or anticommuting at spacelike distances) with
ψ are polynomials on ψ and its derivatives [51]. This means that the free field decouples
from the rest of the theory and we have a tensor product of theories and Hilbert spaces

TEMI = T1 ⊗ Tψ , HEMI = H1 ⊗Hψ . (5.1)

As a consequence of this decoupling, it is not difficult to see that the EMI mutual
information cannot correspond to a CFT. First, the leading long-distance contribution for
any shapes is dominated by the leading primary operator contribution to the OPE of the
Rényi operators, which here is a free fermion field. The coefficient of this contribution
depends on the modular flow of the regions acting on the fermion field. This modular flow
is not universal for non-spherical regions and depends on the operator content of the full
theory. However, as the fermion field decouples, the modular flow acting on the fermion
field has to be the same as the flow of the free fermion theory. This gives the same coefficient
for the long-distance contribution for the EMI and the free fermion for any shapes. This
contradicts the results of section 4.

Another important consequence of this decoupling is that eq. (5.1) would imply

IEMI(A,B) = I1(A,B) + Iψ(A,B) , (5.2)

and therefore
IEMI(A,B) ≥ Iψ(A,B) (5.3)

for any A, B. The coefficient of the EMI model has to be adjusted to match the long-
distance contribution of the free fermion for balls since I1(A,B) falls to zero faster at large
distances. However, with this calibration, (5.3) is not violated for the contributions to the
mutual information we have studied so far. Then, it does not give a different argument for
the impossibility of the EMI model.

Another startling feature of EMI as a MI of a CFT is that for two spheres it consists
entirely of a single conformal block of spin 1 and dimension d− 1. This same feature holds
for a free fermion in d = 2. In that case, it is the result of a precise cancellation between the
contributions of different primary fields in the replicated theory. We turn now to analyze
whether this is possible for d > 2.

6 Can EMI represent a limit of CFTs?

No fixed QFT can have a MI described by the EMI model for d > 2. However, this
result by itself does not imply that the EMI model has no physical meaning. To see this in
perspective, we could think of applying the same ideas to extract the QFT from the mutual
information for holographic EE [11]. The bulk minimal area in AdS is known to provide
a formula for the entropy whose MI satisfies all the axioms (1.3)–(1.9), plus conformal
invariance. However, if we try to bootstrap the holographic formula to obtain information
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on the operator content, we immediately encounter a problem: the long-distance MI is
trivial since there are phase transitions that make it vanish for a long enough distance.
A naive application of the same principles we have applied to the EMI model would lead
to the conclusion that there are no operators in the theory, and that the Ryu-Takayanagi
formula is inconsistent. Of course, as it is well known, the area term represents only the
leading N2 term in the holographic entropy, and there are subleading N0 terms that do
not vanish at large distances. They are given by the mutual information of free fields in the
bulk entangling wedges [15]. Therefore, from the knowledge of the Ryu-Takayanagi term
alone we cannot infer the physical validity of the model as the EE of a QFT comparing
with the expected result for a fixed QFT.

This highlights a difference in the nature of the analysis of the validity of an entropy (or
mutual information) function as compared to, e.g., checking the validity of a system of cor-
relation functions. The reason is precisely that entropy is a quantity that can be defined uni-
versally for any QFT. There are several ways in which an entropy function satisfying (1.3)–
(1.9) can be obtained from valid QFTs but which do not represent the entropies of any
QFT. In particular, the system of requirements (1.3)–(1.9) do not fix a normalization of the
entropy, and this is related to the fact that any linear combination with positive coefficients
of entropies of two theories will also satisfy the requirements. This is justified by the fact
that entropies for a tensor product of theories are the sum of the corresponding entropies.
Moreover, if we have a set of QFTs determined by a parameter, we can take limits on this
parameter and the limit of the entropy will also satisfy the requirements. This parameter
may be a coupling constant or some other parameter like the number N of colors, as in
large-N models. Therefore, there may be many solutions to the constraints that do not rep-
resent actual QFTs but specific limits of QFTs. The holographic EE is one of these limits.

A natural question is if the EMI model represents some limit of CFTs. The main argu-
ment of the preceding section relies on the coefficient of long-distance mutual information
for regions of arbitrary shape. These coefficients depend on the modular flow of the theory,
which is not universal for nonspherical regions and depends on the full operator content.
Then, with our present rather incomplete knowledge about modular Hamiltonians, it is
not clear that the argument still holds for limits of theories. In taking this limit, we cannot
discard from the outset having a set of fermions taking a free limit while the modular flow
producing significant persistent differences in the coefficient with respect to the decoupled
free fermion field.

However, we will answer the question of whether or not the EMI is a limit of QFT’s
in the negative. To do so, we turn attention again to spheres, where the modular flow is
universal.

6.1 Further analysis of the free fermion MI for spheres

As the EMI contains a free fermion (as a limit), it must contain other contributions of the
same field. In the long-distance limit, the leading such contribution comes, in the replica
trick, from the field ψ in one copy and the derivative ∂ψ in another copy. Let us determine
this operator with more precision.
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The OPE of a twist operator for the Rényi entropy of integer order n for a sphere is
of the form

τ (n) =
∑

C(n)
α Oα , (6.1)

where the sum is over all local operators in the n-replicated theory, α are Lorentz indices,
and the coefficients depend only on the theory and the geometric features of the sphere.
Namely, the tensor structure of C(n)

α can only depend on the time-like unit vector nµ
determining the orientation of the sphere in space-time, and gµν . The leading long-distance
term comes from the two copy operator (to simplify the notation we call 1, 2 the two copies,
which can be any pair of copies of the n replicas)

V µ = ψ̄1γ
µψ2 − ψ̄2γ

µψ1 . (6.2)

This gives a contribution ∼ nµV
µ to τ (n). The minus sign in (6.2) comes from charge-

conjugation invariance. Other Dirac matrix structures do not contribute because of parity
invariance or because they form antisymmetric tensors whose contraction with products of
nµ or the metric vanishes [7, 25].

The above operator has dimension d − 1. The next operator comes from adding a
derivative to the fermion bilinear, with dimension d. The descendant field

∂αV
µ = (∂αψ̄1)γµψ2 + ψ̄1γ

µ∂αψ2 − (∂αψ̄2)γµψ1 − ψ̄2γ
µ∂αψ1 , (6.3)

is already included in the first conformal block studied in section 3. We recall that this
conformal block contribution to the mutual information exactly coincides with the EMI
for spheres. Then, we consider other bilinear operators with a single derivative that forms
independent primary operators. Again, charge conjugation, parity, and the fact that this
operator cannot have an antisymmetric structure to give a non-vanishing contribution
leaves as the only possibility the two-copy operator

Vαµ = 1
2
[
(∂αψ̄1)γµψ2 − ψ̄1γµ∂αψ2 + (∂αψ̄2)γµψ1 − ψ̄2γµ∂αψ1 + (α↔ µ)

]
. (6.4)

Notice this operator is traceless due to the Dirac equation. It is a primary field of spin
2 (symmetric traceless two index tensor) of dimension d. For the free fermion, no other
contribution of dimension less or equal to d is possible if d > 2. For d = 2 we have the
contribution of four fermions in four copies, with dimension 2(d − 1) = 2. In d = 2 this
contribution exactly cancels the one from (6.4) because the full result coincides with the
first conformal block. This will not be possible for d > 2.

The two-point function has the form10

〈Vµν(0)Vαβ(x)〉 ∝ |x|−2d Pµν,δ1δ2I
δ1γ1(x̂)Iδ2γ2(x̂)Pγ1γ2,αβ , (6.5)

where P = P 2 is the projector on the symmetric traceless tensors

Pµ1µ2,ν1ν2 = 1
2

(
gµ1ν1gµ2ν2 + gµ1ν2gµ2ν1 −

2
d
gµ1µ2gν1ν2

)
, (6.6)

10The general structure of correlators of primary fields in a CFT consists of tensor products of the I
tensor projected on the adequate symmetry representation. Only one projector is enough in (6.5) since P
commutes with the tensor product of the I.
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and I, I2 = 1, is the tensor
Iµν(x̂) = gµν − 2x̂µx̂ν . (6.7)

The contribution to the Rényi operators for each sphere is then proportional to oper-
ators of the form nµnνVµν , summed over all possible pairs of copies. The contribution to
the mutual information to the lowest order has the same tensor structure of the correlation
between these operators

∆I(A,B) ∝ nµAn
ν
A 〈Vµν(0)Vαβ(L l̂)〉nαBn

β
B . (6.8)

The coefficient can be computed by the method of [7]. We relegate to appendix D the
details of this calculation. We get

∆I(A,B) = −
√
π Γ(d+ 1) 2[ d2 ]−1

Γ
(
d+ 3

2

) RdAR
d
B

L2d

[
(2(nA · l)(nB · l)− (nA · nB))2 − 1

d

]
. (6.9)

Let us analyze whether this contribution to the free fermion can be canceled by some
other contribution coming from additional fields. The lowest-dimensional contribution by
a primary field of dimension ∆ of the theory, different from the fermion, comes from the
field in two copies and gives a dependence L−4∆. Then we must have ∆ ≤ d/2. Because of
the unitarity bound, this leaves us with a scalar, a spin 1/2 fermion, or a helicity one field
(a completely antisymmetric field of d/2 indices). This last possibility only exists for even
dimensions, and, for ∆ = d/2 saturates the unitarity bound. Then it must be a free field.

In fact, the tensor structure of the contribution (6.9) exactly matches the leading
term of a helicity-1 field in any even dimensions and does not match the scalar or fermion
contribution [7]. This eliminates the scalar and fermion as possibilities. However, in odd
dimensions, there is no such conformal primary of dimension d/2 and helicity equal to 1.
The only possibility to eliminate this contribution from the free fermion in the EMI model
in odd dimensions would be to obtain it from descendant fields of a scalar. The contribution
of the derivative of a free scalar could be present without the contribution of the scalar itself
if the theory is generated by polynomials of ∂µφ. In this case, the theory is not conformally
invariant and only scale invariant. The derivatives of the free scalar form the subalgebra
stable under φ→ φ+ const. The contributions for spheres can be analyzed with the same
methods. The contribution coming from fields ∂µφ1∂νφ2 in two copies does not have the
correct tensor structure. This is because, apart from a contribution independent from the
orientation of the spheres, produced by ∂µφ1∂

µφ2, the tensor structure must be of the form

nµAn
ν
A 〈∂µφ1(rA)∂νφ2(rA)∂αφ1(rB)∂βφ2(rB)〉nαBn

β
B ∼

1
L2d (d (nA · l)(nB · l)− (nA · nB))2 .

(6.10)
This eliminates the possibility that the EMI can be produced by a limit of QFTs in odd
dimensions.

For even dimensions, as the term (6.9) comes with a negative coefficient, we can cancel
it by the contribution, with the adequate proportion, of a free helicity h = 1 field, which
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has the same tensor structure [7]

Ih=1(A,B) ∼
√
π Γ(d+ 1) Γ(d− 1)

Γ
(
d+ 3

2

) (
Γ
(
d
2

))2
RdAR

d
B

L2d

[
(2(nA · l)(nB · l)− (nA · nB))2 − 1

d

]
, (6.11)

This would imply
IEMI = Ifermion + b Ih=1 + · · · , (6.12)

where b is the ratio (with positive sign) between the coefficients of (6.9) and (6.11),

b = 2[ d2 ]−1

(
Γ
(
d
2

))2

Γ(d− 1) . (6.13)

In (6.12) we have again normalized the EMI to have the long-distance MI of the
single Dirac fermion for spheres. Now, as the ellipsis in (6.12) represent other positive
contributions to the MI of the spheres, we can check what happens for nearly-touching
spheres, where we can extract the coefficient k of the area term. From (6.12) we should have

kEMI ≥ kfermion + b kh=1 . (6.14)

For d = 4, using the results of section (2.2), and the ones for a Maxwell field kMaxwell =
0.0110 [52], we get a left hand side 0.0273 and for the right hand side 0.0325. This is
incompatible with (6.14). For higher even dimensions the number of field components in

the totally antisymmetric field of d/2 indices (the h = 1 field) is

 d

d/2

, from which

2

 d− 1
d/2 + 1

 are constraints. Half the rest of the components give momentum variables

in the Hamiltonian formalism. The value of the k for this field is then (see the similar
calculation for a Maxwell field in [52])

kh=1 = 1
2

 d

d/2

− 2

 d− 1
d/2 + 1

 kscalar . (6.15)

For dimension ≥ 6 we can use the very good approximations [29]

kscalar ∼
Γ
(
d−2

2

)
2d+2π(d−2)/2 , kfermion = 2[ d2 ] kscalar . (6.16)

Plugging this into (6.14) we see that for d = 6 the left hand side is 0.00438 while the right
hand side is 0.00459. Then the inequality does not hold for d = 6. However, it still holds
for higher dimensions. This shows the mismatch between the EMI and the fermion for
spheres cannot be remedied by adding other fields for d = 6. For higher even dimensions
the analysis should be extended further in the MI expansion. We will not attempt it here.

In conclusion, there is no way in which the EMI result could be the mutual information
for a CFT, even considered as a limit of theories. This is because this limit of theories
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must contain a field (or many fields) with the two-point function of the free fermion. In
that case, the next-to-leading-order term (6.9) for the mutual information must also be
present, disregarding the particular limit of theories, because it depends only on the two-
point function and the universal form of the modular flow for spheres. The EMI does not
contain such a term, and no such term could be canceled by other possible contributions.

7 Discussion

In this paper, we have shown that the EMI model is not compatible with the mutual
information of a QFT (for d > 2). This means that I3 ≡ 0 is inconsistent in relativistic
QFT for d > 2. Moreover, this shows that the known set of constraints for the mutual
information in QFT is incomplete. Below we make some further comments on this result
interpreted in terms of twist operators, the relation with the pinching property of the MI
of free fields, and with reflection positivity inequalities satisfied by correlation functions.

Coherent twist operators. In the task of constructing viable entropy functions, a
natural route would be to have an ansatz for the behavior of the Rényi twist operators.
The simplest candidate would be to produce them out of free fields. This is, in fact, the
way in which formulas analogous to the EMI model were proposed in [23]. Suppose we
conjecture twist operators with the form of coherent operators

τ
(n)
A = ei

∫
A

dxα(n)
A (x)φ(n)(x) , (7.1)

where φ(n)(x) is some generic Gaussian field (free or generalized free field), and α
(n)
A (x)

is a function with support in the causal region A and determined by the geometry of A.
For example, it may have support only in the boundary of A, or in any Cauchy surface
of A. In this latter case, it has to be conserved for different Cauchy surfaces. Under this
assumption, we get for the mutual information a bilinear expression

I(A,B) = lim
n→1

(n− 1)−1 log
(
〈τ (n)
A τ

(n)
B 〉

〈τ (n)
A 〉〈τ

(n)
B 〉

)
=
∫
A

dx
∫
B

dy αA(x)αB(y)G(x− y) , (7.2)

for some geometric functions αA, αB, and where G(x− y) is some two-point function. This
form of the entropy immediately gives I3(A,B,C) = 0 for disjoint regions. Hence, this prop-
erty seems naturally associated to twist operators which are exponentials of Gaussian fields.

However, in most cases for the functions α(n)
A and the free fields φ(n), the result for

I(A,B) is not monotonic. In fact, the only monotonic possibility for a MI with the struc-
ture (7.2) is the EMI function [16], with the precise form (1.11) or equivalently (1.12).
In consequence, monotonicity imposes to the ansatz (7.1) a precise form, where the twist
operators are exponentials of the flux of a current (local charge operator)

τ
(n)
A ∼ ei

∫
ΣA

dσ J(n)
µ ηµA , (7.3)

but where the conserved current operator J (n)
µ must be Gaussian. For d = 2 this is the

case of the Dirac current by bosonization. For d > 2, this implies J (n)
µ is a generalized free
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field (GFF). It is direct that evaluating the logarithm of the expectation values of these
type of twist operators we get the expression (1.11) for the MI of the EMI model,

IEMI(A,B) ∝
〈(∫

ΣA
dσ Jµ ηµA

)(∫
ΣB

dσ Jµ ηµB
)〉

. (7.4)

This has an interesting consequence. If we inquire whether the EMI model determines
a QFT the answer is yes, but with the expression of IEMI(A,B) not corresponding to the
mutual information, but rather to a correlation function of fluxes of GFF current. The
Hilbert space and operator content can then be recovered in the usual way a QFT can be
recovered from the correlation functions, and the result is the theory of the GFF current.

However, we have seen that the EMI cannot be interpreted as a MI for d > 2. Re-
covering a QFT from the mutual information is very different (and more uncertain) than
recovering it from correlation functions. For d = 2, a free current can be recovered from the
EMI interpreted as correlators, but, presumably, the fermion theory should be recovered
interpreting it as a MI. The MI of a theory of a free current is a very different function
from the one of the fermion [53].

Therefore, the Rényi twist operators cannot be coherent operators for d > 2. For a
free fermion theory, the twist fields can indeed be expressed as exponentials of fluxes of
currents [22],

τ
(n)
A = e

i
∫

ΣA
dσ ηµ

(∑(n−1)/2
k=−(n−1)/2

2πk
n
Jµ(k)

)
, (7.5)

where Jµ(k) are mutually independent currents for free Dirac fields in the replica space. These
currents are however not free fields for d > 2; the expectation values of these operators
give determinants and not exponentials of quadratic forms. This can be seen as the origin
of the difference between the free fermion and the EMI model for d > 2.

Pinching property. The expression (7.3) for the twist operators, with J (n)
µ a generalized

free field current, clashes directly with another expected property of the entropy. This is
called the pinching property [7]. We have not listed it among the general properties of the
entropy in the introduction because it expresses a relation of a property of the MI with
properties of the QFT, rather than constraints on the MI function itself. This property is
as follows.

Consider the null future horizon H of the causal set A corresponding to a sphere of
radius R. This null surface is parametrized by the angular direction ~Ω determining a null
ray, and an affine parameter s ∈ (0, R) along the null segments. We take s = R as the
position of the spherical base of the null surface and s = 0 as the tip of the cone. Let us
consider the causal region A(δ, ε) determined by its future horizon:

H −
{

(~Ω, s) / |~Ω− ~Ω0| < ε, s > δ
}
. (7.6)

This results from cutting from H a segment of a pencil of null generator around a fixed,
but arbitrary, direction ~Ω0. In the limit δ → 0, that is, when the cut on the null surface
reaches the tip of the cone, the region A(δ, ε) collapses to a null surface, and the causal
region does not have any space-time volume. In the limit ε → 0, the region converges to
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the full spherical region. We consider the mutual information I(A(δ, ε), B) for any fixed
region B. The question is about the limit δ, ε→ 0 of this mutual information.

For interacting CFTs, including GFF, the correlation functions are too singular to
obtain operators when smearing field operators on a null surface. Then the limit δ → 0
eliminates the algebra, and we have the pinching property [7]

lim
ε→0

lim
δ→0

I(A(δ, ε), B) = 0 . (7.7)

For a free theory — in the sense of being the theory of a field satisfying a local linear
equation of motion, not a GFF — the algebra of operators can be localized on the null
surface, and we have

lim
ε→0

lim
δ→0

I(A(δ, ε), B) = I(A,B) . (7.8)

When an interacting theory has a free sector, the limit is non zero, but still

lim
ε→0

lim
δ→0

I(A(δ, ε), B) � I(A,B) . (7.9)

It is easy to see that the EMI model gives a non-pinching entropy function, satisfying
eq. (7.8) just like the MI of free fields because the EMI is an integral over the boundary of the
regions. The MI of a replicated theory is just the number of replicas times the mutual infor-
mation of the theory. According to the ansatz (7.3) for the description of the twist operators
of the EMI model, the algebra of this replicated EMI theory would contain a generalized
free current. This must lead to discontinuities under pinching for this replicated model and
hence contradicting the form of the mutual information of the EMI model. The only allowed
operator content for continuity under pinching are free fields and their Wick polynomials.

New entropy inequalities? In this paper, we showed that the known properties of the
entropy in QFT are not enough to allow for a complete description of the space of possible
entropy functions. An important question is then what further properties are missing. A
natural surmise is that there should be additional unknown inequalities. Indeed, operator
correlations obey infinitely many inequalities and are precisely these inequalities the ones
that allow for the reconstruction of the Hilbert space scalar product and the quantum
theory. The Rényi entropies of integer order n ≥ 2, as they are produced by expectation
values of twist operators, also satisfy this infinite set of inequalities. In real time, these
operator inequalities — equivalent to the reflection positive inequalities in imaginary time
— are called wedge reflection positivity, Rindler positivity, or CRT positivity (for charge-
reflection-time inversion) [10, 54, 55].

For the Rényi entropies, taking a series of regions Ai, i = 1, · · · ,m, contained in the
right wedge x1−|x0| > 0, and defining the reflection x̄ = (−x0,−x1, x2, · · · , xd−1) carrying
the right wedge into the left one, we have

det
(
{e(n−1)In(Ai,Āj)}mi,j=1

)
≥ 0 . (7.10)

The In(A,B) = Sn(A) + Sn(B) − Sn(AB) are the Rényi mutual informations. If we take
all regions Ai to be equal except for infinitesimal differences, we get an infinite series of
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inequalities involving derivatives of the Rényi entropies of arbitrarily large order. If we
naively think in taking the limit n → 1 in these inequalities we get an infinite set of
polynomial inequalities for the mutual information

det
(
{I(Ai, Āj) + I(Ai+1, Āj+1)− I(Ai, Āj+1)− I(Ai+1, Āj)}i,j=1,··· ,m−1

)
≥ 0 . (7.11)

However, this set of inequalities for the entropy, does not hold in general theories and
regions. An example is the holographic EE [54]. The reason is simply that it is not
possible to analytically continue the inequalities down to n = 1.

The present investigation suggests that inequalities generalizing the reflection positivity
inequalities for operators is not the right idea to get the correct additional constraints. In
fact, somewhat ironically, the EMI model, which obeys all the known constraints for a MI in
QFT, and is not the MI of any QFT, also obeys the infinite series of inequalities (7.11). The
reason is that the EMI comes from the expectation value of operators, as shown by eq. (7.4).

A natural expectation is that there are more inequalities following a different line, and
generalizing strong subadditivity (SSA) rather than operator inequalities. In this same
direction, it has recently been shown that SSA leads to unitarity bounds for fields with
the tensor structure of free conformal primaries [7]. In this case, certain SSA inequalities
are saturated for the conformal dimension at which the field becomes free. For fields with
other tensor structures, it may well be the case that other inequalities generalizing SSA
are needed to do the job of producing the unitarity bounds.
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A EE universal coefficients for spheres and strips for the EMI

From the results presented in section 3, we can extract two universal characteristic coef-
ficients appearing in the entanglement entropy of the EMI model for general dimensions.
These correspond, respectively, to the “strip coefficient” — characterizing entangling re-
gions which are very large in all directions but one — and the one corresponding to spherical
entangling surfaces.

Whenever we have an entangling region A which is large in all directions, with a total
area ofA in such directions, and a small transversal dimension of length r, the entanglement
entropy universal term takes the form

SEE|univ = −k(d) A
rd−1 + . . . (A.1)

where the dots denote subleading contributions. This coefficient is known analytically
in general dimensions e.g., for holographic theories dual to Einstein gravity [12] and for
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free scalars and fermions [29] in terms of the two-dimensional entropic c-function c(L) ≡
L · (dSEE/dL).

The coefficient k(d) can be extracted using the mutual information as follows. The idea
is to consider two parallel entangling regions with the same shape as the one corresponding
to the large dimensions of A in the previous paragraph, separated a distance r. In that
case, we have

I = k(d) A
rd−1 + . . . (A.2)

For the EMI model, we can then exploit the calculation for two concentric spheres
presented in section 3 to obtain k(d). In order to do that, we take the final expression in
eq. (3.48) for unboosted spheres and rewrite it in terms of the radii RA, RB. Then, we
consider

RA = R− δ/2 , RB = R+ δ/2 , δ � R , (A.3)

which puts the spheres very close to each other. Then, the result takes the form expected
from eq. (A.2),

I = k(d)A(Sd−2)
δd−1 + . . . where A(Sd−2) ≡ 2π

d−1
2 Rd−2

Γ
(
d−1

2

) , (A.4)

is the area of the Sd−2. Doing this, we find for the EMI

k
(d)
EMI =

2π
d−2

2 Γ
(
d−2

2

)
Γ(d− 2) κ(d) . (A.5)

When putting the two concentric spheres very close together, we are in practice using
mutual information as a geometric regulator of entanglement entropy — see [17, 56] for
more on this approach. Hence, in addition to the leading area-law-like piece in eq. (A.4),
we can also extract the universal characteristic coefficients appearing in the logarithmic
(even d) and constant (odd d) coefficients. In general we will have11

I = k(d) A
rd−1 + · · ·+ 2

 (−1)
d
2−14A(d) log(R/δ) (even d) ,

(−1)
d−1

2 F (d) (odd d) .
(A.6)

In this expression, A coincides with the trace-anomaly coefficient controlling the Euler
density Ed for even dimensional theories [58]

〈T aa 〉 =
∑
i

BiIi − (−1)
d
2 2A(d)Ed , (A.7)

and (−1)
d−1

2 F (d) equals the free energy of the corresponding CFT when put on a round
Sd [59].

For the EMI model, the expansion eq. (A.4) contains the terms expected from eq. (A.6)
and we identify

F
(d)
EMI = 2πd−1

Γ(d− 2)κ(d) , A
(d)
EMI = πd−2

Γ(d− 2)κ(d) . (A.8)
11Our conventions agree with those of [57], for instance.
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B OPE blocks and the EMI

In this appendix, we are interested in studying the conformal block associated to a con-
served current Jµ with ∆ = d− 1 and J = 1 and find in this the EMI formula for disjoint
spheres. One can find parts of the material presented in this appendix in section 2 of [60]
and section 3 of [61]. For a recent review of the shadow operator formalism and the original
literature, see [62] and references therein.

In conformal field theories the set of quasiprimary operators and their descendents
represents a complete basis of operators. Thus, when other operators are located away
from points x and 0 the product of say Oi(x) and Oj(0) inside an arbitrary correlator can
be expressed as

Oi(x)Oj(0) =
∑
k

Cijk|x|∆k−∆i−∆j (1 + b1x
µ∂µ + b2x

µxν∂µ∂ν + · · ·)Ok(0) , (B.1)

where ∆i, ∆j and ∆k are the scaling dimensions of their associated quasiprimary operators
and the coefficients Cijk are dynamical parameters of the theory. We wrote the above ex-
pansion for scalar operators Oi, Oj and Ok, there are similar expansions for operators with
arbitrary spin. In (B.1), the coefficients bn depend only on the ∆i, ∆j , ∆k and thus are de-
termined by the kinematics of the conformal symmetry. The contribution that comes from
a particular primary and its descendents is known as the OPE block, and we denote it by

Bijk (x, 0) = |x|∆k (1 + b1x
µ∂µ + b2x

µxν∂µ∂ν + · · ·)Ok(0) . (B.2)

In particular, Bijk (x, 0) becomes independent of ∆i and ∆j when Oi, Oj have equal scaling
dimension, ∆i = ∆j , thus in that case we denote it Bk(x, 0). Hereafter, we will restrict to
this situation for simplicity.

In Lorentzian signature, when x1, x2 are time-like separated, one can use the following
integral representation for the OPE block

Bk(x1, x2) = ck

∫
D(x1,x2)

ddξ
( |x1 − ξ||x2 − ξ|

|x1 − x2|

)∆k−d
Ok(ξ) . (B.3)

This expression can be derived from the shadow operator formalism [60, 62]. In (B.3), ck
is an arbitrary constant to be determined, and the space-time integral is taken over the
causal diamond whose future and past causal tips are x1 and x2 respectively and denote
it as D(x1, x2). This formula can be written in a more compact form, in terms of the
conformal Killing vector Kµ that preserves the causal diamond as

Bk(x1, x2) = ck

(2π)∆k−d

∫
D(x1,x2)

ddξ |K|∆k−dOk(ξ) , (B.4)

where
Kµ∂µ = − 2π

(x1 − x2)2

[
(x2 − ξ)2(xµ1 − ξµ)− (x1 − ξ)2(xµ2 − ξµ)

]
∂µ , (B.5)

and
|K| = 2π |x1 − ξ||x2 − ξ|

|x1 − x2|
. (B.6)
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Indeed, (B.4) has a natural generalization for the OPE block of a spin J symmetric quasipri-
mary operator Oµ1µ2···µJ

k [61] which reads

Bk,J(x1, x2) = ck

(2π)∆k−d

∫
D(x1,x2)

ddξ |K|∆k−d−JKµ1 · · ·KµJOk, µ1···µJ (ξ) . (B.7)

The above expression can be further simplified for cases in which the operator Ok, µ1···µJ (ξ)
corresponds to a traceless conserved spin J operator. In that case ∆k = J + d− 2 and we
can construct the conserved current Jµ

Jµ ≡ Kµ2 · · ·KµJOk, µµ2···µJ (ξ) , (B.8)

where conservation of Jµ follows from the fact that Kµ is a conformal Killing vector, and
that Ok, µµ2···µJ (ξ) is conserved and traceless. This results in the expression

Bk,J(x1, x2) = ck

(2π)J−2

∫
D(x1,x2)

ddξ K
µJµ
|K|2

. (B.9)

The space-time integral over the causal cone can be foliated with surfaces of constant |K|
so that ddξ = dd−1Σ|K|dλ, where dd−1Σ is the area element induced on the constant |K|
surface and λ is a flow parameter in the direction of Kµ. In these coordinates, one realizes
that the integral

∫
dd−1Σ · · · is independent of λ (by the conservation equation) and thus,

one gets an overall divergent factor
∫

dλ which can be absorbed into the coefficient ck by
ck → c̃k. Using the conservation of Jµ once more, one can show that the resulting integral
over Σ is indeed independent of the surface — it is not any more subject to be a constant
|K| surface; see [61] for a more detailed explanation on this. This results in

Bk,J(x1, x2) = c̃k

(2π)J−2

∫
ΣA

dd−1Σ nµAJµ , (B.10)

where ΣA is an arbitrary space-like surface with boundary on the sphere at the rim of the
causal cone ∂ΣA = Sd−1

A . On the other hand, the conformal block associated to a spin J

symmetric operator can be rewritten as the following correlator

Gd∆k,J
(u, v) = 〈Bk,J(x1, x2)Bk,J(x3, x4)〉 , (B.11)

in terms of the associated OPE blocks. This formula comes from the usual partial wave
decomposition of a four point correlator and formulas (B.1) and (B.2). Thus, when such op-
erator is conserved and traceless, one can use equation (B.10) in the above formula and get

Gdd−2+J,J(u, v) = c̃2
k

(2π)2(J−2)

∫
ΣA

dd−1ΣA nµA

∫
ΣB

dd−1ΣB nνB〈Jµ(ξ)Jν(ξ′)〉 , (B.12)

where Jµ is given by (B.8). Furthermore, in the particular case of J = 1, Jµ becomes a
quasiprimary conserved current operator since Jµ = Ok, µ, and its two-point function is
fixed by conformal invariance to be

〈Jµ(ξ)Jν(ξ′)〉 = 1
|ξ − ξ′|2(d−1)

(
ηµν −

2(ξ − ξ′)µ(ξ − ξ′)ν
|ξ − ξ′|2

)
. (B.13)
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The above expression is obtained from the vector-vector correlator with ∆k = d− 1. Fur-
ther, (B.13) can be rewritten as

〈Jµ(ξ)Jν(ξ′)〉 = − 1
2(d− 1)(d− 2)

(
∂µ∂ν − gµν∂2

) 1
|ξ − ξ′|2(d−2) , (B.14)

where gµν is the Minkowski metric. Finally, plugging (B.14) into (B.12) results in a formula
for the conformal block of a spin 1 conserved current that is identically proportional to the
EMI formula as given in eq. (1.11).

C Conformal blocks for conserved currents

The authors of [48] presented a general polynomial formula for the conformal blocks in any
dimension as a function of its spin J and conformal dimension ∆.12 The expression has
the form

Gd∆,J(u, v) =
∞∑
n=0
|z|∆+n∑

j

An,j
C
d−2

2
j (cosϕ)

C
d−2

2
j (1)

, An,j ≥ 0 , (C.1)

where we expressed the u and v cross ratios in terms of the complex coordinates z = |z|eiϕ

with z̄ = z∗ via
u ≡ zz̄, v ≡ (1− z)(1− z̄) . (C.2)

C
d−2

2
j (cos θ) are the Gegenbauer polynomials and the j sum is over all the descendants of

the primary operator ∆ and thus it takes values

j = J + n, J + n− 2, . . . ,max (J − n, J + nmod 2) , (C.3)

for each n. The coefficients An,j are some universal functions of ∆, J and d that are fixed by
conformal symmetry. These coefficients obey some recursion relations that can be solved
explicitly [48]. In this section, we are interested in obtaining closed-form expressions for
the simpler case in which the operator in question is a conserved current, and therefore its
conformal dimension obeys

∆ = J + d− 2 , J = 0, 1, 2, . . . (C.4)

In this case, it was found in [48], that only the maximal allowed spin j = J + n has a
nonzero coefficient. Such coefficient is given by

An,J+n =
(J + d−2

2 )n(J + d− 2)n
n!(2J + d− 2)n

, (C.5)

where (x)n = Γ(x+ n)/Γ(x) are the Pochhammer coefficients. This fact simplifies consid-
erably the formula (C.1), which reduces to

Gdd−2+J,J(u, v) =
∞∑
n=0
|z|d−2+J+n (J + d−2

2 )n(J + d− 2)n
n!(2J + d− 2)n

C
d−2

2
J+n(cosϕ)

C
d−2

2
J+n(1)

. (C.6)

12We thank Dalimil Mazáč for point out this reference to us.
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The angular variable is given by
cosϕ = z + z̄

2|z| . (C.7)

In particular, it is easy to check that for ϕ = 0, which corresponds to the diagonal limit of
the conformal blocks (z = z̄) the above expression reduces to

Gdd−2+J,J(z) = zd−2+J
2F1

[
J + d− 2

2 , J + d− 2, 2J + d− 2, z
]
, (C.8)

where we identified the Hypergeometric function in the series expansion of (C.6). This
expression is indeed equivalent to the general expression for the diagonal limit of conformal
blocks found in [46] with ∆ = J + d− 2.

We would like to write down a similar integral representation to the one we obtained
for the J = 1 conformal block. In this case, it would be convenient to use the following
integral representation of the Gegenbauer polynomials

C
d−2

2
J+n(cosϕ) = Γ (J + n+ d− 2)

2d−3n!
(
Γ
(
d−2

2

))2

∫ π

0
dθ sind−3 θ (cosϕ+ i sinϕ cos θ)J+n . (C.9)

The normalization coefficient is simply

C
d−2

2
J+n(1) = Γ (J + n+ d− 2)

2d−3n!
(
Γ
(
d−2

2

))2

√
π Γ
(
d−2

2

)
Γ
(
d−1

2

) . (C.10)

Plugging this into (C.6) and interchanging the integral with the convergent sum, one gets

Gdd−2+J,J(u, v) =
Γ
(
d−1

2

)
√
π Γ
(
d−2

2

) |z|d−2
∫ π

0
dθ sind−3 θ |z|J (cosϕ+ i sinϕ cos θ)J

×
∞∑
n=0
|z|n (cosϕ+ i sinϕ cos θ)n

(J + d−2
2 )n(J + d− 2)n

n!(2J + d− 2)n
, (C.11)

where once again we recognize the sum over n in the second line of the above equation as
the series representation of a hypergeometric function, which leads to

Gdd−2+J,J(u, v) =
2d−2 Γ

(
d−1

2

)
√
π Γ
(
d−2

2

) |z|d−2
∫ π/2

0
ds sind−3 s cosd−3 s

(
z cos2 s+ z̄ sin2 s

)J
× 2F1

[
J + d− 2

2 , J + d− 2, 2J + d− 2; z cos2 s+ z̄ sin2 s

]
.

We have additionally re-expressed the integral in terms of z and z̄ and changed the integra-
tion variable t→ s/2. Finally, we can get an integral with a bigger resemblance with (3.61)
by doing cos s→ ξ. In this way, we arrive at our final formula:

Gdd−2+J,J(u, v) =
2d−2 Γ

(
d−1

2

)
√
π Γ
(
d−2

2

) |z|d−2
∫ 1

0
dξ
(
1− ξ2

) d−4
2 ξd−3

(
z ξ2 + z̄ (1− ξ2)

)J
× 2F1

[
J + d− 2

2 , J + d− 2, 2J + d− 2; z ξ2 + z̄ (1− ξ2)
]
. (C.12)
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To express it in terms of u and v, one would need to invert the relations (C.2) and plug them
into the above formula. However, in these variables, the explicit formula is not particularly
illuminating.

Finally, for J = 1 the above expression becomes

Gdd−2+J,J(u, v) =
2d−2 Γ

(
d−1

2

)
√
π Γ
(
d−2

2

) |z|d−2
∫ 1

0
dξ
(
1− ξ2

) d−4
2 ξd−3

(
z ξ2 + z̄ (1− ξ2)

)

× 2F1

[
d

2 , d− 1, d; z ξ2 + z̄ (1− ξ2)
]
. (C.13)

Unfortunately, it is not easy to analytically compare the above formula with (3.61). Nev-
ertheless, we checked numerically that indeed (C.13) is equivalent to (3.61), when written
in the same variables. This completes our checks of the formulas presented in section 3.1.3
particularly for d = 3 and d = 5.

D Coefficient of the first subleading term in the MI for a free fermion

Here we want to compute the contribution of the two-copy primary Vµν of eq. (6.4) to the
mutual information of a free fermion. Using the signature (−1, 1, · · · , 1) and normalizing
the fermion field such that

〈ψ(0)ψ̄(x)〉 = i
/x

|x|d
, (D.1)

the proportionality constant in the correlator (6.5) is −4 d tr(1).
The contribution to the mutual information is of the form

∆I(A,B) = γ nµAn
ν
A 〈Vµν(0)Vαβ(L l̂)〉nαBn

β
B

= −4d tr(1) γ
L2d

(
(2(nA · l)(nB · l)− (nA · nB))2 − 1

d

)
, (D.2)

where we seek to obtain the coefficient γ.
Following [7], this coefficient can be computed using the modular flow of spheres. We

have

γnαAn
α ′
A nβB n

β ′

B 〈Vαα′(rA)Vδδ′(r1)〉〈Vββ′(rB)Vηη′(r2)〉 (D.3)

=
∫ ∞
−∞

ds π

4cosh2(πs)
〈(∂δψ̄(s,A))γδ′ψ− ψ̄(s,A)γδ′∂δψ+(∂δψ̄)γδ′ψ(s,A)− ψ̄γδ′∂δψ(s,A)〉(r1)

×〈(∂ηψ̄(s,B))γη′ψ− ψ̄(s,B)γη′∂ηψ+(∂ηψ̄)γη′ψ(s,B)− ψ̄γη′∂ηψ(s,B)〉(r2) , r2
1,2→∞ .

This formula gives the coefficient for any shape of A,B in terms of the modular evolved
fields ψ(s,A), ψ(s,B). For a sphere with n in the time direction the modular flow is given by
the conformal transformation (see [2])

y0(x, τ) = N(τ)−1R

(
x0R cosh(2πτ) + 1

2(R2 − x2) sinh(2πτ)
)
,

yi(x, τ) = N(τ)−1R2 xi , (D.4)

N(τ) = x0R sinh(2πτ) + 1
2 cosh(2πτ)(R2 − x2) + 1

2(R2 + x2) ,
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with x2 = −(x0)2 + xixi. The modular evolved field is

ψ(τ,A)(x) = Ω(d−1)/2(x, τ)S(Λ(x, τ))−1ψ(y(x, τ)) , (D.5)

where the Lorentz transformation Λ and conformal factor Ω follow from

Λµν = Ω−1 dyµ

dxν . (D.6)

Λ is a Lorentz boost in the direction of ~x of a certain hyperbolic angle ν(τ, x) given by

sinh(ν(τ, x)) = − 4 sinh(πτ)|~x|(R cosh(πτ) + x0 sinh(πτ))
R2 + 2Rx0 sinh(2πτ) + x2 + (R2 − x2) cosh(2πτ) . (D.7)

The representation S(Λ) can be obtained by the formula

S = cosh(ν/2) 1− γ0γix̂i sinh(ν/2) . (D.8)

In formula (D.3) we have to choose a complex modular parameter for the transforma-
tion as

τ = s+ i/2 , (D.9)

and take r1 · nA = r2 · nB = 0. We can use local coordinate systems for each sphere where
nA, nB are in the time direction for each of the correlators.

The right hand side of (D.3) gives

tr(1)2 2
√
πdΓ(d+ 1)
Γ
(
d+ 3

2

) (
nδAn

δ′
A + 1

d
gδδ
′
) (

nηBn
η′

B + 1
d
gηη

′
)
RdAR

d
B

r2d
1 r

2d
2
. (D.10)

From which we obtain the coefficient

γ =
√
π Γ(d+ 1)

8dΓ
(
d+ 3

2

) RdARdB . (D.11)

Upon replacing in (D.2), the coefficient of the contribution (6.9) in the main text follows.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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