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Abstract

Animal models of alcohol (ethanol) self-administration are crucial to dissect the neu-

robiological mechanisms underlying alcohol dependence, yet only a few of these

induce pharmacologically relevant levels of alcohol consumption and rarely the alco-

hol self-administration co-occurs with other addictive behaviours. The present study

aims to validate a novel model of voluntary ethanol consumption in male Wistar rats,

in which ethanol access follows a binge eating experience. Over 10 sessions, Wistar

rats were exposed to binge or control eating (i.e., the ingestion of 11.66 and

0.97 kcal/3 min, respectively, derived from a highly palatable food), immediately

followed by two-bottle choice intake tests (2%, 6%, 10% or 14% w/w ethanol

vs. water). Rats exposed to binge eating drank significantly more 6% or 10% (w/w)

ethanol than control peers, reaching up to 6.3 gEtOH/kg. Rats stimulated with 2%, 6%,

10% or 14% ethanol after binge eating, but not those given those ethanol

concentrations after control eating, exhibited significant within-group increases in

ethanol drinking. This ethanol consumption was not altered by quinine adulteration

(up to 0.1 g/L), and it was blocked by naltrexone (10 mg/kg), administered immedi-

ately before binge eating. Blood ethanol levels significantly correlated with ethanol

consumption; and the more ethanol consumed, the greater the distance travelled in
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an open field test conducted after the two-bottle choice test. Altogether, this self-

administration model seems a valid and robust alternative with remarkable potential

for research on different stages of the alcohol addiction and, particularly, to assess

interactions between alcohol consumption and others addictive-like behaviours.
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1 | INTRODUCTION

According to the 2016 Global Status Report on Alcohol and Health, more

than 40% of the world's population are regular alcohol drinkers. It is not

a surprise, then, that alcohol use is considered the main threat to per-

sonal health among people aged between 15 and 491 and that use of this

drug casually related to 7.2% of the premature deaths around the world.

Alcohol (i.e., ethanol in the context of preclinical studies) consumption

patterns have not been uniformly defined, yet binge drinking (BD)2,3 and

heavy drinking (HD)1 are widely considered harmful pattern of use.

BD (i.e., drinking four to five drinks in a limited period of time, usu-

ally 2 h or less)4 is, in most western countries, highly prevalent among

the general population (18.2%) and in habitual drinkers (39.5%).1–3 This

pattern of alcohol use is associated with a plethora of acute negative

consequences, including greater likelihood of engaging in interpersonal

violence or domestic accidents, as well as with increased probability of

developing an alcohol use disorder (AUD).5 A study conducted in 2014

found that 6.2% of the US population aged 12 or older reported HD

(i.e., ≥ 5 days of BD within 30 days, sometimes daily),6 a figure that

remained fairly similar in 2018.7 In Spain, in turn, 7.4% of those aged

between 15 and 64 admitted consuming alcohol daily.8

Alcohol use is driven by neurobiological and contextual factors.

For instance, exposure to aversive stimulation (i.e., stress) usually

enhances ethanol intake,9 a phenomenon probably related to coping

mechanisms. Likewise, the availability of positive reinforcers also

affects alcohol drinking. Since Mello's and Meisch's seminal studies, it

has been known that concurrent access to food and ethanol enhances

drinking, and several studies report that AUD is comorbid with binge

eating (BE).10–12 The latter involve the ingestion of large amounts of

food in a single and brief occasion, usually associated with a feeling of

loss of control.13 It is also noteworthy that there seems to be an asso-

ciation between sweet liking and ethanol intake.14 The ingestion and

preference for sweet foods and solutions are significantly greater in

individuals diagnosed with AUD (particularly those with positive fam-

ily history of alcohol problems) or in rats selectively bred for exhibiting

high levels of ethanol intake and preference, when compared with

individuals not diagnosed with AUD or non-selected rats.

Ethanol drinking has been modelled in laboratory rodents. These

efforts have been hampered by the innate reluctance of rats or mice

to self-administer ethanol,15 yet some advances have been made by

forcibly administering alcohol16 or by developing strains of rodents

with a genetic predisposition for ethanol consumption.17 These animal

models, however, seldom mimic the contextual variables surrounding

human drinking behaviours, its associations with other addictive

behaviours (like BE), and very few attempts have been made to pro-

mote alcohol consumption by systematically varying food conditions

concurrent with alcohol availability.18

The present study aims at filling this void, at least partially, by

putting forward a new ethanol self-administration animal model in

which the rats are briefly exposed to a sizeable quantity of highly

palatable sugary pellets (i.e., dustless precision pellets [DPPs]), imme-

diately followed by a two-bottle choice test between a given ethanol

solution and water. After revealing the reliability of the experimental

preparation to yield pharmacologically relevant blood ethanol concen-

trations, Experiment 2 indicated that this model actually enhanced

motivation for ethanol and assessed if the BE-induced exacerbation

of ethanol consumption was sensitive to opioid antagonism.

2 | MATERIALS AND METHODS

2.1 | Experimental design

Experiment 1 employed a 2 (BE [i.e., 72 DPPs] or control eating condi-

tion [i.e., six DPPs]) � 5 (ethanol concentration: 0.0, 2%, 6%, 10% and

14%) factorial design, with 6–13 rats in each cell of the design. The rats

were tested, after a brief habituation to the procedures, across

10 drinking sessions. Experiment 2a employed a two-group design,

with quinine adulteration (quinine adulterated-ethanol, control group

receiving unaltered ethanol) as the comparative factor between groups.

Experiment 2b assessed if treatment with the opioid antagonist nal-

trexone could inhibit the ethanol drinking observed in our model. A

three-group design was employed in Experiment 2b, with naltrexone

dose (0, 1 or 10 mg/kg) as the comparative factor between groups.

2.2 | Animals

A total of 142 adult male Wistar rats (Envigo Laboratories, Barcelona,

Spain), aged 70–80 days and weighing 240 g (± 37) at the beginning

of the procedures, were employed (91 in Experiment 1, 20 in Experi-

ment 2a and 25 in Experiment 2b). Of those, seven were identified as

non-responders to the BE protocol (i.e., exhibited complete avoidance

of the DPP) and thus were excluded from the experiment. Animals

were individually housed and maintained under a 12-h light/dark cycle

(lights on at 6:00 AM) in a room with constant temperature (21�C) and
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humidity (50%–60%). The experiments were performed during the

light section of the day–night cycle. Animals were food deprived to

82%–85% of their ad libitum weights 3 days before the experiment.

Deprivation levels were maintained by providing rat chow at the end

of the two-bottle choice test. The animals had ad libitum access to

water throughout the experiment. The experimental protocol was

approved by the University of Granada Research Ethics Committee

(Protocol number 09/08/2019/138).

2.3 | Reagents and instruments

In each session, the rats were provided with DPP (45 mg each, nutri-

tional profile: 59.1% carbohydrate, 18.7% protein, 5.6% fat, 3.6 kcal/g;

Bioserve, Femington, USA). These were presented in an empty

polycarbonate cage (42.5 � 26.5 � 15 cm). The ethanol solutions (2%

w/w, 6% w/w, 10% w/w or 14% w/w) were prepared by diluting 96%

ethanol v/v food grade (PanReac AppliChem, Barcelona) with tap

water. During the two-bottle test, the rats were presented two 150-ml

non-drip bottles (Classic Drinker de Luxe, Zooplus, Munich, Germany).

In Experiment 1, 64 animals—randomly selected across the

groups—were tested in an OF test, to assess the motor stimulating

effects of the self-ingested ethanol. The OF apparatus was a black

open squared polycarbonate cage (60 � 60 � 60 cm). The test was

recorded (ToxTrack animal tracking software19) for later analysis.

In Experiment 2a (details in Section 3.2.1), the ethanol solutions

were adulterated with 0.01–0.3 g/L of quinine monohydrochloride

dihydrate 90% (Sigma-Aldrich, Madrid, Spain). The opioid antagonist

naltrexone (Sigma-Aldrich, Madrid, Spain) was administered in

Experiment 2b. Naltrexone (dissolved in sterile physiological saline)

was prepared daily, and 5 ml/kg of the drug or saline was injected

subcutaneously (s.c.).

3 | PROCEDURE

3.1 | BE episode

We adapted a procedure widely used20 for simulate consecutive

episodes of BE (i.e., the time-restricted ingestion of a high amount

of palatable food). In the original procedure,21 the rats had 30 s to

ingest a high (12 pellets of 45 mg each) or low (one pellet) food

reward. In the present version, aimed at inducing compulsive inges-

tion, the rats were given 3 min to eat 72 DPPs (six for those in the

control group).

Preliminary, unpublished, experiments from our lab indicate that

ingestion of 72 DPPs in 3 min is an achievable task for adult rats, but

only if the ingestion is performed quickly and without interruption.

Typically, the rats increase the number of DPP they eat across ses-

sions, and the BE pattern (i.e., effectively eating the 72 pellets in

3 min) is exhibited by most of the rats from the fourth DPP exposure

session onwards. It should be noted that other unpublished experi-

ments from our lab indicate that the rats exhibit a mean intake of 80%

of the available DPP, even when the pellets are adulterated with a

quinine solution (2 mM). A graphic representation of the percentage

of daily consumption of DPP in these preliminary experiments is pres-

ented in the Figure S1.

3.2 | Experiment 1

3.2.1 | Voluntary alcohol consumption after BE
exposure

A schematic representation of the experiments can be found in

Figure 1. During the three days before the beginning of Experiment

1 (Sessions 1–3), the rats were food deprived to 82%–85% of their ad

libitum weights. A habituation session was conducted the day after

food deprivation (Session 4). The rats were placed in an empty poly-

carbonate cage for 3 min and then were returned to their home cages,

which was now equipped with two bottles (containing or not ethanol

as a function of the group assigned to each animal). After 90 min, the

bottles were removed and replaced by a regular water bottle. The ani-

mals were then offered six DPPs and rat chow. The aim of this session

was to familiarize the rats with the stimuli to be presented during the

subsequent sessions. During the next 10 days (Sessions 5–14), the

rats were weighed, and placed for 3 min inside polycarbonate cages in

which they were exposed to a simulated BE episode (i.e., they were

given 72 DPPs) or to a control eating condition (six DPPs).

Immediately after having access to the pellets, the rats were tested in

F IGURE 1 Schematic representation of body weight scores (solid line) and dustless precision pellet (DPP) consumption (long dash line),
exhibited by the rats during the experimental timeline of Experiment 1. The dotted line marks the beginning of the binge eating (BE)-like DPP
consumption
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a two-bottle choice test (length: 90 min), in which they were exposed,

depending on the group, to two bottles of water or one bottle of etha-

nol (2% w/w, 6% w/w, 10% w/w or 14% w/w) and one bottle of

water. The positions of the bottles were daily alternated to avoid

place preference effects. Consumption was measured by weighing the

bottles before and after each session. We estimated bottle leaks by

placing two bottles in an empty cage during the experiments. The

leaks were subtracted from the animal's consumption. In between

sessions, the rats were provided ad libitum water and chow.

3.2.2 | Locomotor activity in an OF test

A cohort of 64 rats, randomly selected from all groups, performed an

open field (OF) test. The test began immediately after the two-bottle

test, lasted 3 min and was carried out on one of the last 3 days of the

procedure (Session 12, 13 or 14, randomly selected). The aim was to

measure the stimulating effects of the self-administered ethanol. The

test was conducted and recorded under identical conditions for each

animal (50 dB, 63 lux, 11:00–12:00 AM), and total distance travelled

was the dependent variable.

3.2.3 | BEL determination

A cohort of 11 rats (2, 1, 5, 2 and 1 rats from groups stimulated with

0% w/w, 2% w/w, 6% w/w, 10% w/w or 14% w/w ethanol, respec-

tively) were randomly selected for blood ethanol level (BEL) determi-

nation. This cohort was completely independent from the one

employed to assess the association between distance travelled and

ethanol intake levels. About 200 μl of tail vein blood were drawn, by

making a small incision in the rat's tail with a surgical scalpel, on one

of the last 3 days of the procedure (Session 12, 13 or 14), immediately

after the two-bottle choice test. BELs were determined using a head-

space gas chromatograph (Perkin Elmer Clarus 580) equipped with a

flame ionization detector (FID) and a headspace sampler (Perkin Elmer

Turbomatrix 16). The injection time was 6 s with 4 min of pressuriza-

tion. A polyethylene glycol (PEG) column (Elite-WAX 30 m � 0.53 mm

i.d., 1.0 μm film thickness, PerkinElmer) was used. The temperatures

for the column, the injector and the detector were set at 70�C, 150�C

and 250�C, respectively. Carrier gas flow was 30 ml/min of nitrogen.

Samples were heated in the head space glass vials for 20 min at 60�C

for equilibration before injection. The internal standard n-propanol

alcohol (25 μl) was added to the total blood sample (100 μl) with

heparin, which was kept in a hermetically closed vial at constant tem-

perature (60�C). The vaporized alcohol from the sample was then

inserted in the gas chromatograph.

3.3 | Experiment 2

In Experiment 1, the rats exposed to BE and one bottle of 10% etha-

nol and one bottle of water exhibited the greatest level of ethanol

self-administration (measured in g/kg). The aim of Experiment 2 was

to find if drinking after exposure to BE and 10% ethanol was resistant

to the adulteration of ethanol with quinine (Experiment 2a) and if this

drinking was mediated by the opioid system (Experiment 2b). There-

fore, Experiments 2a and 2b were conducted only in rats exposed to

72 DPPs (i.e., the six DPPs groups were not included).

3.3.1 | Resistance to the adulteration of ethanol
with quinine (Experiment 2a)

The adulteration of ethanol solutions with the prototypical bitter com-

ponent quinine has been used to test alcohol consumption despite

aversive consequences. It is often assumed that the persistence of

ethanol intake after such an adulteration indicates that ethanol intake

has become a compulsive or habitual behaviour.22,23 Experiment 2a

replicated the procedures of Experiment 1, yet, on Sessions 12–15,

the rats belonging to the quinine-adulterated ethanol solution group

(n = 10) were given 10% w/w ethanol contaminated with quinine

(concentration: 0.01, 0.03, 0.1 or 0.3 g/L, Sessions 12–15 respec-

tively). Control rats (n = 9) received unaltered 10% w/w ethanol. In

this experiment, only the BE condition was tested, and all the rats

were stimulated for 45 min with a bottle of water and a bottle of

ethanol.

3.3.2 | Voluntary alcohol consumption after
naltrexone injection (Experiment 2b)

This experiment assessed if the opioid antagonism inhibited BD (as it

has been reported24) after exposure to the BE condition. Specifically,

we used naltrexone as a control drug to detect pharmacological sensi-

tivity to medications used to treat AUD. Naltrexone is a compound

with known efficacy to reduce ethanol consumption.25 Experiment 2b

replicated the procedures of Experiment 1, yet—on Session 12, 30 min

prior to the two-bottle choice procedure—the rats received naltrex-

one (0, 1 or 10 mg/kg). Only the BE condition was tested, and all rats

were stimulated for 45 min with a bottle of water and a bottle of 10%

w/w ethanol. The length of the two-bottle choice test was chosen to

ensure that testing took place under the pharmacological actions of

naltrexone.

3.4 | Statistical analysis

Our (unpublished) preliminary results indicate that, under the present

DPP exposure protocol, Wistar rats exhibit BE (i.e., eat the 72 pellets

in 3 min) from the fourth DPP exposure session onwards. Thus, we

analysed ethanol intake (g/kg and percent preference over water) or

water intake (g/kg of body weight) separately for Sessions 5–7

(i.e., the acquisition of BE-like consumption) and for Sessions 8–14

(i.e., when BE-like consumption is established). Specifically, these vari-

ables were analysed via separated repeated measures (RMs) analyses
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of variance (ANOVAs). Sessions 5–7 or 8–14 were the within-mea-

sures, whereas ethanol concentration (0, 2%, 6%, 10% and 14%) and

eating condition (BE, control) were the between-group factors. Etha-

nol and water intake (g of fluid/kg of body weight) at the last session

(i.e., Session 14) was further scrutinized via an RM ANOVA. This anal-

ysis included ethanol concentration and eating condition as between-

group factors and ethanol/water intake as the within measure.

In Experiment 2a, ethanol intake (g/kg) was analysed for Sessions

11 (last session before ethanol was contaminated with quinine) to

15 via an RM ANOVA. In Experiment 2b, ethanol intake (g/kg) was

analysed for Sessions 11 (no administration of naltrexone), 12 (day in

which the rats were administered naltrexone or vehicle) and 13 via an

RM ANOVA. Separate Pearson's time-moment correlation analyses

assessed the association between distance travelled during the OF

test or BELs measured on the day of sampling and the ethanol intake

scores achieved by the rats.

The partial eta-squared (η2p) was used to report the effect sizes

of the ANOVAs. Tukey's post hoc test was used to explore the signifi-

cant main effects and significant interactions yielded by the ANOVAs,

and the differences between means were considered statistically sig-

nificant when p < 0.05.

4 | RESULTS

4.1 | Experiment 1

During the BE acquisition sessions (i.e., Sessions 5–7), the RM

ANOVA for water intake (Figure 2, Panels A and B) revealed a signifi-

cant main effect of eating condition (F1,81 = 14.41, p < 0.001,

η2p = 0.15), with the rats exposed to BE drinking more water than

their CONTROL peers. The two-way interaction session � ethanol

concentration (F8,162 = 4.43, p < 0.01, η2p = 0.14) was also signifi-

cant. The post hoc test revealed that, on Session 7, the rats exposed

to 10% ethanol drank significantly less water than those exposed to

two water bottles (i.e., those in the 0% ethanol concentration group).

The RM ANOVA for ethanol intake (Figure 3, Panels A and B) dur-

ing Sessions 5–7 revealed significant main effects of session

(F2,114 = 14.95, p < 0.001, η2p = 0.21) and ethanol concentration

(F3,57 = 8.85, p < 0.001, η2p = 0.32), as well as a significant interac-

tion between ethanol concentration and eating condition

(F3,57 = 4.29, p < 0.01, η2p = 0.18). The subsequent post hoc analyses

revealed significantly greater ethanol intake on Session 7, compared

with the previous sessions; and significantly greater ethanol intake in

rats exposed to BE and 10% ethanol, than in the remaining groups,

except for the control 14% ethanol group. With regard to ethanol

preference (Figure 4, Panels A and B) the ANOVA for Sessions 5–7

yielded significant main effects of session (F2,104 = 4.83, p < 0.01,

η2p = 0.08) and eating condition (F1,52 = 9.01, p < 0.01, η2p = 0.15),

and a significant interaction between session and alcohol concentra-

tion (F6,104 = 2.26, p < 0.05, η2p = 0.12). The post hoc tests on the

significant main effects revealed significantly greater preference on

Session 7 than in the other sessions and significantly lower preference

scores in rats exposed to BE than in control rats. The post hoc tests

conducted to explore the significant two-way interaction did not

reveal significant differences.

In regard with water intake scores during Sessions 8–14 (those

in which the rats achieve BE-like consumption of DPP; Figure 2,

Panels A and B), the corresponding RM ANOVA revealed significant

main effects of ethanol concentration (F4,81 = 6.09, p < 0.001,

F IGURE 2 Panels (A) and (B). Water intake (g/kg) in Wistar rats as a function of ethanol concentration (0%, 2%, 6%, 10% or 14%), eating
condition (binge or control dustless precision pellet [DPP] exposure) and session. Panel (C). To facilitate data visualization, this panel depicts the
same data as (A) and (B) yet collapsed across sessions. Each point or bar and vertical line represent the mean ± SEM of the values obtained in 7–
12 animals per group. (Panel C) Statistically significant differences between the values obtained in binge and control groups in each ethanol
concentration: #p < 0.05; ##p < 0.01; and between the values obtained in binge groups compared with 0% ethanol concentration: *p < 0.05
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η2p = 0.23) and eating condition (F1,81 = 21.28, p < 0.001,

η2p = 0.21), as well as a significant interaction between these vari-

ables (F4,81 = 3.52, p < 0.05, η2p = 0.15). The post hoc test revealed

significantly greater water intake in the BE 0% group than in any

other group, except for the BE 14% group. Rats in the latter group

drank significantly more water than their control peers and those

rats given control and 6% or 10% ethanol. These results are

depicted in Figure 2.

F IGURE 3 Panels (A) and (B). Ethanol intake (gEtOH/kg) in Wistar rats as a function of ethanol concentration (2%, 6%, 10% or 14%) and eating
condition (binge or control DPP exposure) and session. Panel (C). To facilitate data visualization, this panel depicts the same data as (A) and (B) yet
collapsed across sessions. Each point or bar and vertical line represent the mean ± SEM of the values obtained in 7–12 animals per group. (Panels
A and B) Statistically significant differences between the values obtained in binge and control groups: *p < 0.05; **p < 0.01; and between the
values obtained in binge groups compared with 10% ethanol concentration: #p < 0.05; ##p < 0.01. (Panel C) Statistically significant differences
between the values obtained in binge and control groups in each ethanol concentration: &&p < 0.01; and between the values obtained in binge
groups compared with 10% ethanol concentration: $$p < 0.01

F IGURE 4 Panels (A) and (B). preference scores (percent ethanol preference vs. water) in Wistar rats as a function of ethanol concentration
(2%, 6%, 10% or 14%) and eating condition (binge or control dustless precision pellet [DPP] exposure) and session. Panel (C). To facilitate data
visualization, this panel depicts the same data as (A) and (B), yet collapsed across sessions. Each point or bar and vertical line represent the mean
± SEM of the values obtained in 7–12 animals per group. A reference line has been set at 50% of preference, indicating that there is no
preference at this value
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The RM ANOVA for ethanol intake in Sessions 8–14 (see

descriptive data in Figure 3) indicated significant main effects of

session (F6,318 = 4.88, p < 0.001, η2p = 0.08), ethanol concentration

(F3,53 = 18.26, p < 0.001, η2p = 0.51) and eating condition

(F1,53 = 52.59, p < 0.001, η2p = 0.50). The ANOVA yielded significant

two-way interactions between session and ethanol concentration

(F18,318 = 1.99, p < 0.05, η2p = 0.10), session and eating condition

(F6,318 = 3.14, p < 0.01, η2p = 0.06) and ethanol concentration and

eating condition (F3,53 = 5.02, p < 0.01, η2p = 0.22). The three-way

interaction session � ethanol concentration � eating condition was

also significant (F18,318 = 1.81, p < 0.05, η2p = 0.09; see Figure 3,

Panels A and B). Tukey's post hoc test revealed that rats exposed to

BE and given 6% or 10% ethanol drank more than their control

counterparts in Sessions 10–12 or in Sessions 9 and 11–14, respec-

tively; furthermore, rats given BE and 10% ethanol also drank more

ethanol than those given BE and 2% ethanol (Sessions 8–14) or BE

and 14% ethanol (Sessions 9, 12 and 13). Besides, in Session 8, rats

given BE and 2% had a lower ethanol intake than those belonging to

the BE 6% group. No significant differences were found between

rats given control eating condition, regardless the volume of alcohol

contained in ethanol bottle. Additionally, ethanol intake scores were

compared within groups between Sessions 7 and 14 (i.e., the last

session of the acquisition of BE-like consumption of DPP period and

the final session of the procedure), via Student's T test. Rats given

BE and 2%, 6% or 14% ethanol had a significantly greater ethanol

intake in Session 14 than in Session 7 (p < 0.001, p < 0.01, p < 0.05

respectively). No differences were found between these two ses-

sions for any of the groups that received CONTROL nor for the rats

given BE and 0% or 10%. The ANOVA conducted to analyse ethanol

preference (Figure 4) yielded a significant main effect of ethanol

concentration (F3,50 = 6.74, p < 0.001, η2p = 0.29), as well as a

significant interaction between alcohol concentration and eating

condition (F3,50 = 3.76, p < 0.05, η2p = 0.18), and between session

and ethanol concentration (F18,300 = 1.75, p < 0.05, η2p = 0.09). The

three-way interaction (F18,300 = 1.95, p < 0.05, η2p = 0.10) was also

significant. In Session 9, those rats exposed to BE and 14% ethanol

exhibited significantly lower preference for ethanol than those

exposed to 10% or 6% (regardless the consumption or not of DPP).

This effect was also observed in Session 10 for rats assigned to the

BE 10% ethanol group, and in Session 12 for rats belonging to the

groups BE 2% ethanol or control 10% ethanol. The ANOVA for etha-

nol/water intake (g of fluid/kg of body weight) at Session 14 yielded

a significant, three-way interaction between ethanol concentration,

eating condition and ethanol/water intake (F4,81 = 17.72, p < 0.001,

η2p = 0.47). The subsequent post hoc tests revealed significantly

lower consumption of the bottle filled with water versus the bottle

containing 2%, 6% or 10% ethanol in the 72 DPPs, but not in the six

DPPs, group.

A significant correlation was observed between the distance trav-

elled by the rats in the OF test and their ethanol intake scores

(r = 0.7, p < 0.001). Likewise, the correlation between BELs and etha-

nol intake on the day of blood sampling was significant (r = 0.65,

p < 0.05). These associations are depicted in Figure 5.

4.2 | Experiment 2a

The ANOVA for gEtOH/kg during Sessions 11–15 yielded a signifi-

cant interaction between group (control group receiving plain 10%

ethanol or quinine adulterated group) and session (F4,68 = 5.6,

p < 0.01, η2p = 0.25). As confirmed by the post hoc tests, the adultera-

tion with 0.01, 0.03 or 0.1 g/L of quinine failed to decrease ethanol

intake. Only the addition of 0.3 g/L of quinine led to a significant

decrease in ethanol intake (Figure 6).

F IGURE 5 Association between distance
travelled (m) at the open field test or blood
ethanol level (mgEtOH/dl, blood ethanol level
[BEL]) measured on the day of sampling and
ethanol intake scores (gEtOH/kg) achieved by
Wistar rats (upper and lower panel). Independent
Pearson correlation coefficients indicated that
greater ethanol intake was significantly associated
with greater distance travelled and with
higher BELs
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4.3 | Experiment 2b

The ANOVA for gEtOH/kg during Sessions 11–13 yielded a signifi-

cant interaction between naltrexone dose and session (F4,44 = 3.69,

p < 0.01, η2p = 0.25) (Figure 7). Given our a priori hypothesis, a

planned comparison was conducted, which indicated that ethanol

drinking was lower in rats treated with 10 mg/kg of naltrexone, when

compared with those that received 1 mg/kg or vehicle on Session 12.

There were no significant differences between the groups at Sessions

11 or 13 (i.e., non-injection sessions) (see Figure 7).

5 | DISCUSSION

This study presents, to the best of our knowledge, the first preclinical

suggestion of an interaction between the compulsive addictive behav-

iours of BE and BD, in male rats. Moreover, the self-administration

model induced remarkably high levels of absolute ethanol

consumption—that is, around 5 g/kg/90 min—and ethanol preference

scores neared 80%–90%, much greater than those reported by other

preclinical models. For instance, rats exposed to intermittent access to

20% ethanol in a two-bottle-choice procedure achieved 9–10 g/kg,

yet they did that in a 24-h span26; whereas those tested in

the drinking-in-the-dark-multiple-scheduled access rarely exceed

5–6.5 g/kg/day.27

The present results indicate that the experience of BE, immedi-

ately before the availability of ethanol, heightens voluntary ethanol

self-administration, particularly of the 6% and 10% (w/w) ethanol

concentrations. When using the level of preference for the ‘experi-
mental’ bottle (i.e., a bottle filled with 0%, 6%, 10% or 14% ethanol) as

a point of reference across groups, it seems that exposure to the BE

condition was associated with a notable preference for the alcohol

solution, over 0.85 in most groups. An exception to the latter pattern

was when the rats were given the 14% ethanol concentration, which

was associated with ethanol intake and preference similar to or lower

than those observed in control counterparts. This might relate to the

well know reluctancy of rodents to ingest highly concentrated ethanol

solutions, which may entail burning sensation or gastric irritation.28

When two bottles of water, or water and a 14% ethanol solution

were available, water intake was greater in those rats that performed

BE. In other words, when no ethanol solution was available, BE

exerted a facilitatory effect on water intake, which suggests that BE

does have a facilitatory effect upon general fluid intake (see

Figure S2, top panel). Nevertheless, it is important to highlight that,

when ethanol was available in two-bottle choice against water, BE

yielded a highly selective facilitatory effect on ethanol consumption.

Specifically, when the rats that underwent BE were offered a bottle of

2%, 6% or 10% ethanol (and a bottle of water), there was a notable

increase in overall fluid intake, which was (a) much greater than that

observed after six DPPs and (b) specifically driven by the drinking

from the ethanol bottle (note that drinking from the water bottle was

negligible in these groups; see Figure S2, middle panels). Moreover,

the more ethanol consumed, the greater the distance travelled in the

OF test conducted after the two-bottle choice test. Several studies

indicate that acute ethanol administration induces locomotor

F IGURE 6 Effects of the adulteration of the ethanol solution
(10% w/w) with increasing quinine concentrations (0.01–0.3 g/L, from
Sessions 11 to 15; respectively). Control rats were given exposure to
unaltered 10% w/w ethanol. Each bar and vertical line represent the
mean ± SEM of the values obtained in 9–10 animals per group.
Statistically significant differences in ethanol intake scores between
control and quinine adulterated group on session 15 (**p < 0.01)

F IGURE 7 Effects of the subcutaneous administration of
naltrexone (1–10 mg/kg) on ethanol intake (gEtOH/kg) during Session
12 (administration session), in comparison with Sessions 11 and
13 (pre- and post-administration sessions, respectively). Each bar and
vertical line represent the mean ± SEM of the values obtained in 6–12
animals per group. Statistically significant differences between
ethanol intake scores obtained in vehicle- and 1 mg/kg naltrexone-
treated animals compared with 10 mg/kg of naltrexone-treated
animals: *p < 0.05; **p < 0.01
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stimulant effects, which are consistent with the latter results. Further-

more, ethanol intake in this model—specifically that registered in the

BE 10% ethanol group—was found to be resistant to the contamina-

tion with quinine (at concentrations of 0.01, 0.03 or 0.1 g/L). It should

be noted that such resistance to the adulteration with a bitter taste

was found in less than 2 weeks of ethanol exposure, a relatively brief

period of time.22

As predicted, the ethanol self-administration of the BE 10% etha-

nol group was significantly reduced after the acute administration of

naltrexone. A large body of evidence supports the mediating role of

opioid receptors on ethanol intake, and the antagonism of this system

is a common therapeutic target on AUD treatment.24,25,29 Recent

studies have reported a similar role of opioid receptors antagonism on

BE as well.30 Furthermore, both ethanol intake and BE have been

reduced by modulating other pharmacological targets such as

corticotropin-releasing factor,31,32 dopamine receptors33,34 and

sigma-1 receptor,35,36 which support the connection between the two

behaviours. In addition, this effect of naltrexone supports the useful-

ness of our model for the preclinical assessment of novel drugs with

potential use for the treatment of AUD.

The self-administration of alcohol of this model has several possi-

ble interpretations. The comorbidity between AUD and other disor-

ders, including the addiction to other substances, is well known. In

that sense, clinical data show connections between BD and BE,12,37

and similarities between both BE and BD can be observed. BE implies

the ingestion of high amounts of palatable foods (lipids or sugars) in

short periods of time38,39 just as BD implies high consumption of eth-

anol in a brief time. In addition, although the BE condition was not

spontaneous in our model (because the animals were food deprived),

the consumption pattern (amount of food per minute) was much more

pronounced than that found in other models of BE (11.66

vs. 2 kcal/3 min38), reaching even similar levels of caloric consumption

with a lower consumption time (11.66 vs. 12 kcal/30 min).40

It is notable that some characteristics of the present intake model

resemble those of the scheduled-induced polydipsia (SIP) model.18

The latter preparation leads to relatively high levels of ethanol intake

by exposing food-deprived rats to several sessions of pellet delivery

with a time-fixed interval. There are, however, methodological differ-

ences that make unlikely that the findings of the present study obey

to SIP. Specifically, it has been found that for SIP to take place an

interval of 40–60 s is needed between pellet delivery. Moreover, SIP

involves the presentation of several pellets across a rather lengthy

session (usually within 1 h), and the longer the session, the greater the

SIP (Falk and Tang, 1988). In sharp contrast, in the present model all

pellets are presented at the same time. Also, in the SIP model most of

the liquid intake occurs in the training box during the interval between

pellets delivery, yet the amount of fluid the rats drink in their home-

cages is negligible (Falk, 1966). In the present study, the rats are

exposed to the ethanol or water bottle in their home cage; hence,

fluid intake and pellet exposure occur in quite different and distinct

contexts.

An important limitation of the present study is the lack of female

representation. Future studies should include both sexes to assess

potential sex-related patterns in the phenomena under analysis.

Another factor that could explain the patterns found relates to the

high sucrose content of the DPP (59.1% carbohydrate). It has been

shown that, in rats, a previous alcohol (or sugar) dependence, induced

by a binge procedure, facilitates subsequent sugar (or alcohol) con-

sumption.14 It is important to note that this alcohol–food interaction

does not occur with fatty foods,41 highlighting the key role of sugar

dependence and its interaction with alcohol dependence.14,41,42

Furthermore, the sweet neural pathway seems to be essential on

voluntary ethanol consumption, as long as rats sense such taste in

ethanol solutions43 and its suppression produces a reduction of etha-

nol intake.44 This relationship between the taste of ethanol and sweet

may play a crucial role on the ethanol intake in this model.

It is notable that previous studies which employed stimulation

with 32% sucrose failed to induce subsequent self-administration of

2% ethanol.45 It is noteworthy that, in that previous study, sucrose

consumption was actually higher (around 2.4 g) than that observed in

our experiment (i.e., around 1.91 g). This has several implications. One

relates to a sequential effect of sucrose on alcohol consumption,

which to our knowledge has not been investigated before. Previous

research has analysed the mutual interaction of alcohol and sucrose

but by using an administration pattern that provides them simulta-

neously or separated by a significant delay,14,41,46–48 which signifi-

cantly differs from the sequential pattern of exposure employed in

the present work. Moreover, as mentioned before, BE is sensitive to

manipulations of the opioid and DA system.30,49 It is possible that BE

stimulates, and likely primes, the brain reward pathway and, due to

such priming, promotes the subsequent consumption of ethanol. The

significant decrease of the ethanol consumption observed after the

administration of naltrexone (10 mg/kg) supports this hypothesis and

is congruent with previous research.25 However, future studies should

include additional combinations of ethanol concentrations and eating

conditions, to assess interactions with systems other than the opioid

system.

This novel model of ethanol consumption induced by a BE experi-

ence implies a new approach, sharply different from other ethanol

self-administration methods, such as operant models that require

lever pressing, or chronic or episodic access, or the drinking in the

dark procedure.16,50 The BE-BD association triggers an important

amount of ethanol consumption in a relatively brief period, which can

seldom be observed in other self-administration paradigms, and thus

the model seems to better fit the canonical definition of

BD. Furthermore, because the model does not require extensive etha-

nol pre-exposure or habituation, the model allows investigating all the

stages of the ethanol addiction and adds a new experimental tool for

drug discovery in the AUD field.
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