
Towards Building Reuse-Based Digital Libraries for
National Universities in Patagonia

Hacia la Construcción de Librerı́as Digitales Basadas en Reuso para Universidades

Nacionales en la Patagonia

Alejandra Cechich1, Agustina Buccella1,2, Daniela Manrique1, and Lucas Perez1

1GIISCO Research Group, Departamento de Ingenierı́a de Sistemas, Facultad de Informática, Universidad Nacional del

Comahue, Neuquen, Argentina

{alejandra.cechich,agustina.buccella,daniela.manrique,lucas.perez}@fi.uncoma.edu.ar
2Consejo Nacional de Investigaciones Cientı́ficas y Técnicas - CONICET

Abstract

This article presents a case study exploring the use of

software product lines and reference models as mech-

anisms of a reuse-based design process to build dig-

ital libraries. As a key component in a modern digi-

tal library, the reference architecture is responsible for

helping define quality of the resulting repository. It is

true that many efforts have been addressed towards

providing interoperability; however, repositories are

expected to provide high levels of reuse too, which

goes beyond that of simple object sharing. This work

presents the main steps we followed towards building

a reusable digital library capable of accommodating

such needs by (i) providing mechanisms to reuse re-

sources, and (ii) enabling explicit sharing of common-

alities in a distributed environment.

Keywords: Software Product Lines, Digital Li-

braries, Reference Architectures, Delos Reference

Model

Resumen

Este artı́culo presenta un caso de estudio que explora

el uso de lı́neas de productos de software y mode-

los de referencia como mecanismos de un proceso

de diseño basado en reuso para construir bibliotecas

digitales. Como componente clave en una biblioteca

digital moderna, la arquitectura de referencia es re-

sponsable de ayudar a definir la calidad del reposito-

rio resultante. En la literatura se han realizado mu-

chos esfuerzos para proporcionar interoperabilidad;

Citation: A. Cechich, A. Buccella, D. Manrique and L. Perez.

"Towards Building Reuse-Based Digital Libraries for National Uni-

versities in Patagonia". Journal of Computer Science & Technology, 
vol. 18, no. 2, pp. 81 - 96, 2018.

DOI: 10.24215/16666038.18.e10
Received: December 4, 2017. Revised: June 7, 2018. Ac-

cepted: June 19, 2018.

Copyright: This article is distributed under the terms of the Cre-

ative Commons License CC-BY-NC.

sin embargo, se espera que los repositorios propor-

cionen tambin altos niveles de reutilizacin, que van

ms allá del simple intercambio de objetos. Este tra-

bajo presenta los pasos principales para construir una

biblioteca digital reusable capaz de acomodar tales

necesidades mediante dos actividades especı́ficas (i)

proporcionar mecanismos para reutilizar recursos, y

(ii) permitir el intercambio explı́cito de aspectos co-

munes en un entorno distribuido.

Palabras claves: Lı́neas de Producto de Software, Li-

brerı́as Digitales, Arquitecturas de Referencia, Mod-

elo de Referencia Delos

1 Introduction

Developing architectures for digital libraries thinking

of reuse is not a new concept. For more than a decade,

researchers an practitioners have shown different ap-

proaches to modelling, from general to domain-specic

libraries, such as the Alexandria Digital Earth Proto-

Type (ADEPT) architecture [1], whose framework de-

fines uniform client-level metadata query services that

are compatible with heterogeneous underlying collec-

tions; the Digital Assets Repository (DAR) [2], whose

third version shows a modular design including com-

ponents and a content model for digital objects based

on current standards [3]; or the reference architecture

proposed by Candela, Manghi, and Pagano [4], whose

architectural design pattern builds upon a type-based

repository system capable of dealing with a federa-

tion of knowledge. However, even if such proposals

are effective in some aspects, the process of building

reusable repositories is not clearly addressed, letting

aspects, such as reuse of policies and processes, out

of the process.

By making use of specific techniques of software

reuse, such as software product lines [5, 6, 7], it is pos-

sible to supply software functionality as optional mod-

ules, that can be added to the product at required loca-

tions. Applying this principle can overcome many cur-

rent limitations concerning digital library reuse from

- ORIGINAL ARTICLE - 

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-81-



early stages in a distributed context. For instance,

policies may be encapsulated as reusable components

that map to reusable procedures, which in turn map

to reusable services. Then, like a puzzle, a particu-

lar location might compose its concrete repository by

reusing existing components and extending the archi-

tecture according to its own preferences.

In this paper, we present the development of a soft-

ware product line for digital libraries based on the

definition of a reference architecture built upon differ-

ent aspects that actors should address. As any other

process for defining reference architectures, here we

have selected a reference model as a starting point.

A reference model is an abstract framework that pro-

vides basic concepts used to understand the relation-

ships among items in an environment. On one hand,

we looked at the DELOS Digital Library Reference

Model [8],which was created with the aim of setting

the foundations and identifying concepts within the

universe of digital libraries. DELOS allowed us to

start from six core concepts: content (data and infor-

mation made available to users): users (the various

actors entitled to interact with a digital library); func-

tionality (the services offered to different users); qual-

ity (the parameters for evaluating the content and be-

haviour of a digital library); policy (the sets of con-

ditions, rules, terms and regulations governing inter-

action between the digital library and users); and ar-

chitecture (a mapping of the functionality and content

offered by a digital library to hardware and software

components). On the other hand, we have also taken

into account our previous experiences building a soft-

ware product line for a different domain (marine ecol-

ogy), but with complex data management as well [9].

This paper presents the results of a research and

development project held in Patagonia during 2010-

2017, as part of a National initiative to move govern-

ment and academic libraries into digital repositories.

Two specific research questions framed this investiga-

tion:

1. What reuse needs do librarians believe would

contribute to build distributed and integrated

repositories among all universities in Patagonia?

2. How those needs could be achieved through ar-

chitecting the underlying software by thinking of

reuse?

This paper is organized as follows. In Section 2, we

present the literature review. Then, we describe the

main steps towards organizing work among the differ-

ent parties, considering reuse from early stages and

based on the reference model. Section 4 introduces

our process through a case study developed in the con-

text of Argentinean Universities. Final remarks are

introduced in Section 5. Conclusion and future work

are discussed afterwards.

2 Literature Review

Several Digital Library frameworks [10, 11], refer-

ence models [8] and repository software tools [12, 13,

14, 15, 16, 17] have addressed specific problems in

Digital Library System architectural design and im-

plementation. Of course, there are several efforts to-

wards content reuse [18, 19, 20]; however, to situate

our proposal of building a reusable architecture for a

digital library, this section reviews existing proposals

for distributed digital library architectures.

Distributed component architectures arrange com-

ponents and contents spread across multiple locations.

Fedora Commons [15] and Greenstone [13] are typi-

cal examples of digital library tools with a distributed

architectural design. Fedora’s architecture was de-

signed to handle any type of digital content and its key

strength is its inherent support for long term preserva-

tion. Fedora’s distributed model also makes it pos-

sible for complex digital objects to make reference

to content stored on remote storage systems. One

of the features, which makes Fedora appealing to us,

includes versioning, policy model, and object exten-

sibility. However, lacks a dedicated user interface,

and more importantly, it was not conceived for in-

tensive reuse. Greenstone was designed for building

and distributing digital library collections. Its archi-

tecture is decentralized, making the system scalable,

flexible and extensible. The flexibility enables Green-

stone to support distributed collections capable of be-

ing served from different machines, but at the same

time maintaining a consistent presentation view to the

end user.

Improvements to this architecture turned its de-

sign into a network of modules that communicate in

terms of XML messages [14]. All modules charac-

terize the functionality they implement in response

to a describe messages, and can transform messages

using XSLT to support different levels of configura-

bility. This improvement aims at adding new collec-

tions and services adaptively, facilitating extensibility.

Therefore, reuse is addressed from a concrete design

view missing opportunities of systematic reuse from

early stages. Greenstone is a service-based and dy-

namically configurable approach that can be found

in other designs and systems, such as the Extended

Open Archives Initiative protocol (XOAI) [21] and

the OpenDLib system [22].

Finally, DSpace’s architecture [17] is divided into

three layers: application, business logic, and storage.

This organization is, in some way, similar to ours in

the sense we have split the model into layers to deal

with the different aspects of an application. However,

our layers are modeled following a product-line ap-

proach, so reusability is reinforced at every level. In

addition, we used standards and models to contrast

how the dynamics of building a digital library may

change moving towards a completely reusable refer-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-82-



ence architecture.

As far as we know, an holistic approach covering

domain as well as application analysis - like software

product lines propose - is something new for building

digital libraries.

3 Organizing Work Thinking of Reuse

Working packages were aligned to recommendations

from the DELOS reference model [8], as Figure 1

shows, and optimized to keep two premises: delivery

on time and reusing at every time.

Let us further describe working packages to clarify

these points.

WP1: Management & Supervision. This

package was in charge of defining schedules, and

coordinate work among the different sites. It also

evaluated quality of deliverables and supervised work.

Deliverables included typical management reports.

WP2: Meeting & Survey. This package helped

define elemental tasks to coordinate work and collect

information about technological infrastructure and

resources (content) from the different sites. Deliver-

ables included local as well as integrated information.

As Figure 1 shows, WP2 maps to the Content Domain

of the reference model.

WP3: Diagnosis. This package helped us to

elaborate a strategy to incrementally building by

focusing on required services at local and global lev-

els. Deliverables included a situation report and the

strategy to build the following models collaborative

and incrementally. As Figure 1 shows, WP3 was

mapped to the Content Domain and the Functionality

Domain of the reference model.

WP4: Policy & Process Models. This package

focused on elaborating two different but related

perspectives, which included strategic planning, as-

sessment and improvement of policies and processes.

They were further elaborated into a digital library

policy model, a digital library management model, a

digital library operation model, and a digital library

support model. A process for defining, validating and

using metadata was also included. As Figure 1 shows,

tasks and deliverables of WP4 map to all domains of

the reference model.

WP5: Infrastructure & Service Models. This

package complemented WP4 by going deeper into

two complex facets. On one hand, infrastructure

addressed not only technological issues but also

organizational ones such as staffing, furniture, room,

etc.; and on the other hand, services included local as

well as global requirements. Deliverables included a

technological infrastructure model, an organizational

infrastructure model, a local service model, and a

global service model. As Figure 1 shows, WP5 maps

to Functionality, Quality and Architecture domains

of the reference model.

WP6: Assessment Models. This package ad-

dressed quality properties and measures needed to

evaluate quality of other models and the resulting

architecture. Although some quality aspects were

considered to define the models, WP6 stressed the

point by producing a local and a global service

assessment model. Indicators and metrics were

suggested too. As Figure 1 shows, WP6 maps to the

Quality Dimension of the reference model.

WP7: Software Product Line. This package

helped us to finally draw the picture. Components

from policy, procedures, infrastructure and services

were composed all together to build a domain view

of the product line. Then, they were specialized

into the application domain as an implementation

for the whole repository. Validation and deployment

were addressed through pilot cases starting from

common ones. As Figure 1 shows, WP7 maps to the

Architecture Domain of the reference model.

4 Illustrating the Case of Systematic
Reuse

Development Context and Participants

The work described in this paper was contextu-

alised in a project, identified as PICT-O 2010-0139 1,

supported by the Agencia Nacional de Promoción

Cientı́fica y Tecnológica of the Argentine Republic.

In this project, named RdiPatag2, we described the

necessary activities for developing reusable processes

and procedures involved in the construction of a digi-

tal library. The participants of the project were mem-

bers of four different universities located in South-

ern Argentina: National University of La Pampa

(UNLPa)3, National University of Comahue (UN-

COMA)4,National University San Juan Bosco (UN-

SJB)5, and National University of Patagonia Austral

(UNPA)6.

The team was a multi-disciplinary staff belonging

to two areas of interest: libraries and informatics. The

staff included in the first area, in general librarians,

was involved in activities related to defining policies

of storing and recovering digital documents, defin-

ing metadata, etc.; and was responsible for determin-

1http://www.agencia.gov.ar/IMG/pdf/Res.330-11_

PICTO_CIN_II_.pdf
2http://rdipatag.wordpress.com/
3http://www.unlpam.edu.ar/
4http://www.uncoma.edu.ar/
5http://www.unp.edu.ar/
6http://www.unpa.edu.ar/

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-83-



Figure 1: Mapping working packages to DELOS

ing the main requirements of the digital library. The

second group, in general software engineers, was in-

volved in activities related to defining services for im-

plementing these requirements.

By considering the aspects previously mentioned,

we defined the technical structure of the digital library.

It consisted of four digital repositories, one for each

university, connected through a federated layer. This

structure was defined as part of the diagnosis activity

of WP3.

Developing a Software Product Line for Digital

Libraries

In this work, we applied the methodology defined

in [9, 23] as an adaptation of several methodologies

widely referenced in academy and industry [5, 6, 7].

Figure 2 shows the domain engineering and applica-

tion engineering phases of our case. According to the

methodology, the activities of the domain engineering

are the following.

• Domain analysis

Information source analysis (ISA): This activity

analyzes sources of information that can support

the domain analysis in order to obtain a first set

of requirements.

Subdomain analysis and conceptualization

(SAC): The information recovered in the pre-

vious process is used to analyze and organize

the features or services that the subdomain

should offer together with the general features

derived from the upper domains. Also, in this

process the subdomain must be conceptualized

by different software artifacts (such as class

models and process models) when it is possible.

Reusable component analysis (RCA): This

process identifies the set of reusable components

that could be used to implement the features de-

fined in the last process. It returns a preliminary

reference architecture.

• Organizational analysis

Reuse and boundary analysis (RBA): This ac-

tivity defines the organizational boundary, com-

monality, and variability features. Thus, by con-

sidering the features specified in the subdomain

analysis and conceptualization process and the

information from domain experts, the scope of

the product line must be defined.

Platform analysis and design (PAD): This ac-

tivity builds the reference architecture based

on the features defined in the previous activi-

ties and processes. The preliminary structure

of reusable components defined in the reusable

component analysis process is reorganized and

refined. Here, each component with its common

and variable parts (when necessary) is fully de-

signed.

Then, in the application engineering phase, in

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-84-



Figure 2: Activities of the domain and application engineering phases

which we perform the specific activities for develop-

ing new products from the line, we must consider the

following four activities:

• Application requirements engineering (AR):

This activity must retrieve the specific require-

ments for a particular organization or applica-

tion by considering the reusable domain require-

ments.

• Application design (AD) and implementation

(AI): By taking into account the reference archi-

tecture and the specific requirements of an or-

ganization, the activity must define and imple-

ment the application’s architecture. It selects and

configures the reusable components of the refer-

ence architecture and adds specific adaptations.

In this activity, the variabilities defined for the

reusable components must be bounded in order

to fix the specific functionality of the resultant

product.

• Application testing (AT): This activity must vali-

date and verify an application against its specifi-

cation.

In Figure 2, we can observe on one hand, the eight

activities of the domain engineering phase together

with the software artifacts (numbered from one to six);

and on the other hand, the four activities of the appli-

cation engineering together with four artifacts (num-

bered from seven to ten). Another important aspect of

the figure is the big arrow on the left side. It denotes

the influence of the standards on the domain analysis

activities.

4.1 Our Case: Domain Engineering Phase

1. Information source analysis. This process

must gather information and analyze three types of

sources within the library domain: standards, existing

applications and librarians as domain experts.

Firstly, information was obtained from ISO stan-

dards and the DELOS Reference Model. The ISO

14721 [24] and DELOS introduce techniques and pro-

cesses to define reference models for storing, manag-

ing and publishing digital information. On one hand,

the ISO 14721 defines, in a more general and abstract

way, a reference model for an open archival informa-

tion system (OAIS) describing common services and

responsibilities for this type of systems. On the other

hand, DELOS provides a more specific scenario for

defining digital libraries by introducing a framework

composed of three types of systems: Digital Library,

Digital Library System, and Digital Library Manage-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-85-



ment System. The manifesto describes the main as-

pects of these systems focusing on functionality, ar-

chitecture, and actor roles (end-user, designer, admin-

istrator, etc.), among others. Finally, the ISO 15836

[25] defines the Dublin Core metadata standard7, in

which a set of vocabulary terms are introduced to de-

scribe different types of resources, such as physical or

web resources.

Secondly, we analyzed whether the universities had

used some software tools for managing digital infor-

mation. We observed that universities had no appli-

cations or processes to manipulate this information.

They only had some web pages (available on Internet)

to allow end users to download some type of docu-

ments without well-defined rules. Also, here we ana-

lyzed the deliverables of WP3 (represented in Figure

2 by a big arrow on the top of this activity) in which an

analysis about the real situation of the universities was

described. These deliverables were designed as tech-

nical reports describing two main aspects: available

resources, such as technical infrastructure and person-

nel, and policies and procedures about manipulating

digital information. Technical reports represent the

first software artifact created in the domain engineer-

ing phase (Figure 2, 1).

2. Domain analysis and conceptualization. In

this process we must analyze and organize the infor-

mation recovered in the previous activity according

to the features and services that the library domain

should offer.

In our project, we defined a preliminary set of

policies and procedures, as part of WP4 deliverables,

in which we describe specific requirements and re-

strictions of the domain. In Table 1 we can see some

policies defining manipulation and management

of digital information. These policies introduce a

framework to regulate the operation of the digital

repositories. They provide a clear view of roles and

responsibilities of the parties involved, as well as

comply with the guidelines of the National Digital

Repositories8. As we can see in Table 1, policies

are classified into five main categories: policy frame-

work, content and object collection management,

resource deposit, use and access, and copyright and

intellectual property.

Table 1 enumerates each policy included in one cat-

egory together with a goal description. For example,

policies defined in the second category, content and

object collection management, describe valid content

of the documents, the way they are organized and

procedures for their management. Each document’s

content includes the research and academy produc-

tion generated by professors, researchers and special-

7http://dublincore.org/
8http://repositorios.mincyt.gob.ar/pdfs/Directrices SNRD-

2012.pdf

Table 1: Policies defined as part of WP4

Categories Policies Description

Policy

framework

Intra-

university

policies

Strategies and activities to be

performed for guaranteeing the

correct management and use of

digital documents within a

university

Inter-

university

policies

Strategies and activities to be

performed for guaranteeing the

correct management and use of

digital documents among

universities

Content

and

object

collec-

tion

manage-

ment

(COCM)

Collection

structures

Aspects about mandatory

information included in each

collection

Document

type

Allowed types of documents

together with the metadata

associated to each one

Collection

manage-

ment

Permissions, revisions,

validations,backups, etc.

Resource

deposit(RD)

Direct

deposit

Requirements about the direct

deposit of documents

Mediated

deposit

Requirements about the mediated

deposit of documents

Deposit

type

File formats depending on the

document types

Use and

access

(UA)

User

types
User types and well-defined roles

Access

type

Access types according to the

roles

Copyright

and intel-

lectual

property

(CIP)

License

type

Licenses used to publish

documents

Document

category

Classification of type of

documents according to the

review process submitted

ist of each university. In particular, the policy doc-

ument type describes the documents to be accepted,

such as articles, books, book chapters, etc., and meta-

data requested for each case. This last information

was extracted from the ISO 15836 standard. At the

same time, we defined a set of procedures, each one

describing the set of services needed to implement a

set of policies (a procedure can implement more than

only one policy).

All the previous information was classified and an-

alyzed in order to create a reference architecture (sec-

ond software artifact of Figure 2). In this case, a

layer-based approach was chosen, in order to include

particularities of the library domain. Thus, we de-

fined a user interaction layer for grouping services

related to the user interaction, a processing layer for

grouping transactional services, and a model layer in-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-86-



cluding services for database access. In Figure 3, we

show the main global components belonging to each

layer. Also we can see a federation layer with spe-

cific components to manage the federation aspects.

This layer implements federated components, includ-

ing those responsible for solving possible incompati-

bilities among different repositories. These incompat-

ibilities emerge due to products, in spite of they were

derived from the same platform, can add new func-

tionalities that are specific of each product. In this

way, the components of the federated layer include

syntactic and semantic mechanisms in order to find

possible conflicts that must be identified and solved

to build an integrated environment.

At the same time, we modeled the information re-

trieved from the technical reports and the library do-

main particularities into functional datasheets (third

software artifact of Figure 2). These artifacts were

defined in previous works [9, 23] to model domain

functionalities by designing interactions among vari-

ant and common services. In this work, we adapted

the functional datasheets in order to store and model

all information about procedures. The template used

for classifying these procedures is shown in Table 2.

It contains, for each procedure, an identification, such

as a number or code; a textual name describing the

main function; a procedure type classifying the pro-

cedure as generic or specific, considering that generic

procedures describe services that are needed by a set

of specific procedures; the policies implemented; the

list of services involved for fulfilling the procedure;

a graphical notation consisting of a set of design arti-

facts (generally represented as UML diagrams) repre-

senting service interactions graphically; and a set of

XML files specifying the design artifacts. For these

two last items, we must define the set of dependencies

that allow us to represent the interactions. These de-

pendencies involve the common interactions among

common9 and variant services.

Id Identification of the procedure

Name Textual Name of the procedure

Procedure Type
Whether the procedure is generic or

specific

Policies

Implemented

Set of policies the procedure

implements

List of Services
List of services used to fulfill the

procedure

Graphical

Representation

Graphical notation showing service

interactions

XML Files
XML files representing the services

and their interactions

Table 2: Template for domain procedure definition

In order to produce machine-readable dependen-

cies (from the Orthogonal Variability Model (OVM)

proposed in [6]), we defined a set of XML tags. The

9Common services are services which will be part of every prod-

uct derived from the SPL

dependencies represented are (Table 3):

Use: specifying a dependence between common

services, which are not necessarily associated with a

variation point.

Mandatory variation point: determining the selection

of a variant service when the variation point is

included.

Optional variation point: specifying that zero or

more variant services, associated to the variation

point, can be selected.

Alternative variation point: defining that only one

variant service, of the set of associated variants of the

variation point, must be selected (XOR relation).

Variant variation point: defining that at least one

variant service, of the set of associated variants of the

variation point, must be selected (OR relation).

Requires: specifying a relation between two variant

services independent from the variation points the

variants are associated with, in which the selection of

one variant service requires the selection of the other.

Excludes: which is the opposite of the requires

dependency specifying the exclusion of a variant

when another one is selected.

Dependency XML Tag Graphical Notation

Use <Use>

Mandatory

variation point
<MandatoryVP>

Optional variation

point
<OptionalVP>

Alternative

variation point
<AlternativeVP>

Variant variation

point
<VariantVP>

Requires
dependency:Requires

= “serviceName”

Excludes
dependency:Excludes

= “serviceName”

Table 3: Set of dependencies used to model proce-

dures

Differently from OVM, which suggests employing

XML tags to mark text fragments, we defined three

types of XML documents for representing datasheets.

The first one, named service interactions is generated

to represent the graphical service interactions defined

in a datasheet. The second type of XML documents is

the service information containing the service id, the

textual description, and the name of the architectural

component in which it is included. Then, for each

service involved in a service interaction XML file, a

link to the service information XML file must be in-

cluded. Finally, the third type of XML documents is

the variability constraint which describes the variabil-

ity constraints imposed to the services. Thus, for each

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-87-



Figure 3: Reference Architecture

required functionality of the domain, one template

is completed by generating the functional datasheets

with a set of XML files.

In order to illustrate the set of resources de-

scribed previously, Table 4 shows the Submit Thesis

Datasheet in which we can see the information related

to the submit thesis specific procedure to submit a dig-

ital thesis by an author.

Id STD1

Name Submit Thesis

Procedure Type Specific

Policies

Implemented

RD.DT3 - RD.DD2 - UA.AT1 -

COCM-DT1

List of Services

user authentication, selecting

communities, selecting collections,

etc.

Graphical

Representation
Figure 4

XML Files
To be defined during the

organizational analysis

Table 4: Submit Thesis Datasheet

As we can see in the Table, the procedure imple-

ments several policies related to the document type

(COCM.DT), deposit type (RD.DT), use and access

(UA.AT), and direct deposit (RD.DD). At the same

time, it uses a set of services that can be inherited

from generic procedures previously defined. In order

to show this different granularity among procedures,

we include, as part of the graphical notation, work-

flow diagrams that represent each procedure. For ex-

ample, the workflow for the submit thesis procedure

is shown in Figure 4. Here we can see that generic

procedures (procedures 2, 3, and 6) are represented by

simple boxes involving filled out, control and licenses.

The specialized procedures are defined as overwritten

ones (represented by highlighted boxes) showing the

specific activity that is involved. Thus, the Submit

Thesis specific procedure overwrites procedures 1, 4,

5 and 7 in order to allow content producers to authen-

ticate (defined by the access type policy); fill out meta-

data included in the thesis (defined by the document

type policy); define the embargo over the document

(defined by the use and access policy); and upload the

file in source and pdf format (defined by the deposit

type policy). The output of the procedure is a docu-

ment, physically stored in a repository, which is set

with pre-published state.

3. Reusable component analysis. This process

identifies the set of reusable services that could be

used to implement the procedures defined in the last

process. Here, a preliminary structure (forth software

artifact of Figure 2) composed of possible reusable

components must be included. For example, the Sub-

mit Thesis specific procedure can be specified as a

Submit Thesis service implemented as part of the Sub-

mit Digital Documents component. This preliminary

structure will be then modified during the organiza-

tional analysis.

4. Reuse and boundary analysis. This activity

defines the organizational boundary, commonality,

and variability features. Thus, by considering the

services specified in the domain analysis and the

information from domain experts, we defined the

scope of the product line.

Firstly, we performed a detailed analysis and de-

sign of each procedure defined in the functional

datasheets of the domain analysis. The most impor-

tant activity was to define the commonality and vari-

ability included in each of them. For example, for the

Submit Thesis procedure, two of the overwritten pro-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-88-



Figure 4: Submit Thesis specific procedure

cedures (1 and 7 of Figure 4) implement these exten-

sions by means of variability definition. Thus, both

user authentication and file format have variant ser-

vices making the implementation of these policies be

adapted by each university.

In order to design specific dependencies among

common and variant services, we built two new dia-

grams. These diagrams are part of the graphical rep-

resentation item of the submit thesis datasheet (Table

4). Firstly Figure 5 shows two variability diagrams as-

sociated to a sequence diagram. The first one is asso-

ciated to the user authentication procedure, being the

login authentication service defined as mandatory and

the network access authentication service as optional.

The other variability represents the way thesis are up-

loaded, being always requested in postscript format

and optionally in source format.

Then, the second diagram (Figure 6) represents the

dependencies within the layered reference architec-

ture, previously defined. On the left of Figure 6 we

can see the service model diagram, according to the

variabilities and dependencies also represented in Fig-

ure 5. This model was built by using a design tool,

named Datasheet Modeler, developed in a previous

work [26] for supporting service models and their vari-

abilities. Specifically, the tool was created for allow-

ing designers to specify dependencies, variabilities,

graphical representations and XML transformations.

Once a designer performs the service model diagram

in the Datasheet Modeler tool, it automatically de-

rives XML files representing, in a computer-readable

format, the service information and interactions. The

XML files generated are part of the XML files item

of the datasheets (Table 4). On the right of Figure 6,

we can see the XML files generated by the tool. For

this service model, the tool derived fourteen service

information XML files corresponding to the fourteen

services, and one service interaction XML file for rep-

resenting layers and the way services interact to each

other.

5. Organizational requirements. In this ac-

tivity, we used the information of the commonality

and variability identified in the last activity, the

information provided by the domain analysis and

conceptualization, and reusable component analysis

processes. The main goal here is to define the range

of products and services that the line is able to

implement.

In our project, we defined a product/service matrix

indicating which subset of services will be part of the

product line and which subset of services will be prod-

uct specific. In this work, we followed a minimalist

approach, that is, only the features used in all prod-

ucts are part of the SPL. Thus, our SPL is then seen

as a platform [7]. A part of this product/service ma-

trix can be seen in Table 5 in which we show some of

the services of the Submit Thesis procedure. For ex-

ample, services as uploading files and thesis form are

part of the platform because they are required by all

products; rather, services such as source file and user

authentication by network will be part only of some

products (Products 2 and 4).

6. Platform analysis and design. This activity

builds the reference architecture based on the services

and components defined in the previous activities and

processes.

Firstly, we reorganized and redefined the prelimi-

nary structure of reusable components defined in the

reusable component analysis (forth software artifact

of Figure 2) in order to design the final platform ar-

chitecture (fifth software artifact of Figure 2).

To do so, we took the XML files previously gener-

ated (Figure 6) as inputs of the Component Derivator

tool [27]. This is a semi-automatic tool that analyzes

possible scenarios of service interaction models and

applies a set of predefined rules to generate the final

reference architecture. The tool analyzes specifically

the architectural components and dependencies of ser-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-89-



Figure 5: Variability model associated to the sequence diagram of the Submit Thesis procedure

Figure 6: Service model diagram associated to the reference architecture of the Submit Thesis procedure

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-90-



Services
Product1

(UNComa)

Product2

(UNPA)

Product3

(UNSJB)

Product4

(UNLa)

completing thesis fields X X X X

user/password form X X X X

selecting licences X X X X

selecting communities X X X X

thesis form X X X X

postcript file X X X X

source file X X

user authentication by login X X X X

user authentication by network X X

submit thesis X X X X

uploading files X X X X

storing documents X X X X

Table 5: Product/service matrix for services included in the Submit Thesis Procedure

vices in order to define a component structure that can

be implemented. Once the tool specifies this structure,

the designer must determine the final structure to be

implemented.

By following the submit thesis procedure, in Fig-

ure 7 we can see the software components generated

within the reference architecture. For example, for

the case of the user authentication service, the tool

proposed a software component that implements both

variabilities within the same layer (see Figure 6). The

user/password form was separated as another compo-

nent because it is part of the User Interaction layer.

At the same time, user authentication, submit thesis

and uploading files services are into different compo-

nents due to they are also used by other procedures

(or included in other datasheets) such as submitting

journal documents, proceedings, etc. Something sim-

ilar happens with the thesis entry form and selecting

communities/collection/licenses components because

they will be reused by other procedures.

7. Platform implementation. In this activity,

components that are common for all products, that is,

components of the line are implemented.

In particular, in our project, as part of WP2 and WP3

deliverables, we performed an analysis of software

tools for implementing digital repositories. In that

study, we analyzed at least six different digital repos-

itories and at the same time, we compared those to

the digital repositories actually implemented in the

Argentine Republic. From them, we considered that

DSpace provides the better environment for reuse and

interoperation issues. At the same time, it provides

an architecture well-documented and flexible for be-

ing adapted to our policies and procedures previously

defined.

First of all, previous to implement components, we

performed a re-engineering of DSpace in order to de-

termine the way our reference architecture fitted into

the DSpace architecture. In other words, it was neces-

sary to know which procedures were completely sup-

ported by DSpace and which of them must be imple-

mented by extending parts of DSpace’s components.

It was a complex task, because each software com-

ponent had to be identified within the DSpace archi-

tecture in order to determine whether the procedures

were completely or partially supported. In order to

show complexity and to see the magnitude of the

work, we analyze here the user authentication com-

ponent of our architecture (shown in Figure 7) ver-

sus the authentication/authorization component of the

DSpace architecture. In DSpace, the authentication

is implemented as a stack in which several methods

can be added. Comparatively, in our procedures, the

authentication can be made by user/password (manda-

tory) and by network access (optional) and we do not

allow any other authentication options. Remember

that the network access service was inside our user

authentication component (Figure 7).

In this way, we had to restrict the authentication/au-

thorization component of DSpace in order to

provide a common platform for the SPL. Thus,

when the SPL is instantiated (see Section 4.2)

only the allowed methods can be selected. This

adaptation of the DSpace architecture was per-

formed by changing the configuration property

plugin.sequence.org.dspace.authenticate.Authen-

ticationMethod that defines the authentication

stack. As this file is a comma-separated list of

class names, each of them implementing a different

authentication method, we modified it in order to

give support for Authentication by Password (class :

org.dspace.authenticate.PasswordAuthentication)

as default, and IP Address based Authentication

(class : org.dspace.authenticate.IPAuthentication)

as optional. In Figure 8 we can see the documentation

of this adaptation for the authentication methods.

Another aspect that we can see in the figure is that

we had to provide a correspondence between layers

of both architectures. Fortunately, the three layers of

both architectures have the same semantic meaning

grouping the same set of functionalities; only a differ-

ent organization of components are implemented by

each of them.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-91-



Figure 7: Reference architecture and components for the Submit Thesis procedure

Figure 8: Documentation of correspondences between our architecture and DSpace for the authentication compo-

nent

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-92-



The output of this activity is the Library SPL which

conforms the platform for the four universities in-

volved.

4.2 Our Case: Application Engineering
Phase

In order to show an instantiation of the product line,

here we describe the activities performed by the UN-

COMA University for creating a new product based

on the SPL platform. To do so, we followed the activ-

ities defined in the application engineering phase of

Figure 2.

1. Application requirements. In the first activ-

ity, we captured the specific requirements of the uni-

versity and we obtained a set of requirements – some

of them included in the services implemented in the

line, and some others were new ones. For our case, a

new requirement emerged in order to support a special

case of licenses.

2 and 3. Application design and implementation.

In this activities, we instantiated the reference archi-

tecture into an application architecture by performing

two main activities: binding the variability and imple-

menting specific components.

For the UNCOMA repository, the variability de-

fined in the Submit Thesis procedure was bound by us-

ing the login and password authentication service and

by the two options for uploading files, in postscript

and source file formats. Figure 9 shows the service

model diagram of the final documentation for this pro-

cedure. In addition, we had to create new specific

components according to the new requirements. Par-

ticularly, we had to develop one specific component

in order to support the service for allowing users to

choose different types of licenses when a thesis is

ready to be published. In Figure 11 we can see the

user authentication page that should be used for user

login when submitting and querying thesis of differ-

ent collections (faculties). The repository is available

at http://rdi.uncoma.edu.ar

4. Application validation. Here, the specific

software product was validated. To do so, we an-

alyzed two main aspects of any SPL development:

reusable component development and product devel-

opment10. The former was analyzed from the point of

view of the reuse capability given by the opinion of

domain experts and addressing the procedures spec-

ified in the platform. For this, a validation of some

procedures was carried out in their common and vari-

able aspects with participants from all the sites in-

volved. Also within this aspect, the effort made to

adapt DSpace to the reuse needs of the platform was

10http://www.sei.cmu.edu/productlines/frame report-

/meas tracking.htm

Figure 9: Service model diagram of the Submit Digi-

tal Thesis procedure binding for the UNCOMA prod-

uct

analyzed. Here, aspects such as existence of docu-

mentation of DSpace, knowledge of the developers,

flexibility of the tool, etc. were taken into account.

As a result of both analyzes, we reach the conclu-

sion that any implementation of our proposal will re-

quire a careful selection of participants (previous ex-

perience in component-based software development,

knowledge in DSpace, etc., significantly alters adap-

tation times of DSpace); and it will require a careful

selection of procedures to be implemented (preferably

selected by their incremental complexity). The latter,

product development, was based mainly on the time

required to derive the specific product (in our case sub-

mit thesis), taking into account again the developers’

capabilities and the time invested (without consider-

ing prior learning for the use of the platform, since

it had been considered in the previous aspect). As

preliminary results, flexibility and speed in the elabo-

ration of the product showed that the approach can be

highly beneficial by reducing development efforts.

5 Discussion

Reuse-oriented models can reduce the effort of soft-

ware development when comparing with other meth-

ods. However, moving into reuse is not a panacea. It

is not always practical because the collection of com-

ponents may not be available, developing with reuse

may not be an established practice, or selecting ser-

vices for reuse requires domain knowledge is included

in some way. Our proposal addressed those issues by

modeling through a product line following an integral

perspective of the digital library domain. From this

perspective, we elaborate some key points:

• An integral perspective for developing reuse-

base digital libraries should include mechanisms

for reusing different assets – from policies to ar-

chitectural components (including of course, ob-

ject collections). To do so, a developer may look

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-93-



Figure 10: Web page for authentication in the digital repository of the UNCOMA product

at reference models (as our case does) or propos-

ing a set of policies, procedures and services that

constitute the domain rules.

• Reuse models should be thought as linked

abstractions that connect the different assets.

Therefore, not only software will be reused but

also decisions, activities, roles, and regulations.

It means that the adopting organization should

be ready to think of itself as a set of building

blocks to be composed. We realize that this is

one of the hardest parts of our proposal, which

we addressed by sharing diverse experiences,

and building commitment through participation.

It implied considerable leadership and manage-

ment.

• Once reuse artifacts are built, selecting the ap-

propriate combination requires knowing the ser-

vices a library system can provide. Interaction

among stakeholders is the basis for extracting

and modeling this knowledge in the way the

development team considers more efficient. In

our case, service model diagrams along with

datasheets were used for communication and

documentation, reducing the gap between librar-

ians’ and software developers’ backgrounds.

• Selecting the implementation platform will im-

pact on reuse. Reusing third-party software com-

ponents requires additional efforts in understand-

ing the components, their interfaces, and the

way they can be adapted (and eventually ex-

tended). We mitigated this risk by using a well-

known platform (DSpace); however complexity

of reengineering/adapting any platform implies a

considerable amount of work that should not be

neglected.

6 Conclusion and Future Work

A digital library is a library in which collections are

stored locally, or accessed remotely via computer net-

works. In the last case, and coming back to our re-

search questions, we found that librarians as well as

software developers agreed on the needs of integrat-

ing not only documents but also policies and proce-

dures. Then, our answer to the second question (How

those needs could be achieved through architecting

the underlying software by thinking of reuse?) led

us to use reference models and reuse-based develop-

ment.

This paper introduced the main steps we followed

towards building this systematic approach. Prelimi-

nary validation has shown promissory results; how-

ever, we are aware that further experimentation is

needed to wide-spreading. Our actual efforts are fo-

cused on providing quantitative measures to both pro-

cess and product quality.

Acknowledgements

This work was partially supported by the UNComa

project 04/F009, and the PICTO CIN Project 2010-

0139

Competing interests

The authors have declared that no competing interests

exist.

References

[1] G. Jane and J. Frew, “The ADEPT digital library

architecture,” in JCDL ’02 Proceedings of the

2nd ACM/IEEE-CS joint conference on Digital

libraries, pp. 342–350, 2002.

[2] I. Saleh, N. Adly, and M. Nagi, “DAR: A Dig-

ital Assets Repository for Library Collections,”

Research and Advanced Technology for Digital

Libraries, LNCS, vol. 3652, pp. 118–127, 2005.

[3] Y. Mikhail, N. Adly, and M. Nagi, “DAR: in-

stitutional repository integration in action,” in

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-94-



TPDL’11 Proceedings of the 15th international

conference on Theory and practice of digital li-

braries: research and advanced technology for

digital libraries, pp. 348–359, 2011.

[4] L. Candela, P. Manghi, and P. Pagano, “An Ar-

chitecture for Type-based Repository Systems,”

in Second Workshop on Foundations of Digi-

tal Libraries, in conjunction with 11th Euro-

pean Conference on Research and Advanced

Technologies on Digital Libraries (ECDL 2007),

2007.

[5] J. Bosch, Design and use of software archi-

tectures: adopting and evolving a product-

line approach. New York, NY, USA: ACM

Press/Addison-Wesley Publishing Co., 2000.

[6] K. Pohl, G. Böckle, and F. J. v. d. Linden, Soft-

ware Product Line Engineering: Foundations,

Principles and Techniques. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2005.

[7] F. van der Linden, K. Schmid, and E. Rommes,

Software Product Lines in Action: The Best In-

dustrial Practice in Product Line Engineering.

Secaucus, NJ, USA: Springer-Verlag New York,

Inc., 2007.

[8] L. Candela, G. Athanasopoulos, D. Castelli,

K. E. Raheb, P. Innocenti, Y. Ioannidis, A. Kat-

ifori, A. Nika, G. Vullo, and S. Ross, “The DE-

LOS Digital Library Reference Model - In a Nut-

shell,” tech. rep., DL.org Consortium, 2011.

[9] A. Buccella, A. Cechich, M. Arias, M. Pol’la,

M. del Socorro Doldan, and E. Morsan, “To-

wards systematic software reuse of GIS: Insights

from a case study,” Computers & Geosciences,

vol. 54, pp. 9–20, 2013.

[10] R. Kahn and Wilensky, “A framework for dis-

tributed digital object services,” International

Journal on Digital Libraries, vol. 6, pp. 115–

123, 2006.

[11] M. Gonalves, E. Fox, L. Watson, and N. Kipp,

“Streams, structures, spaces, scenarios, societies

(5s),” ACM Transactions on Information Sys-

tems, vol. 22, pp. 270–312, 2004.

[12] R. Tansley, M. Smith, and J. H. Walker, “The

DSpace Open Source Digital Asset Manage-

ment System: Challenges and Opportunities,”

Research and Advanced Technology for Digital

Libraries, LNCS, vol. 3652, pp. 242–253, 2005.

[13] D. Bainbridge, G. Buchanan, J. McPherson,

S. Jones, A. Mahoui, and I. Witten, “Greenstone:

A platform for distributed digital library applica-

tions,” in ECDL 2001, Research and Advanced

Technology for Digital Libraries, 5th European

Conference, pp. 137–148, 2001.

[14] D. Bainbridge, K. Don, G. Buchanan, I. Witten,

S. Jones, M. Jone, and M. Barr, “Dynamic dig-

ital library construction and configuration,” in

ECDL 2004, Research and Advanced Technol-

ogy for Digital Libraries 8th European Confer-

ence, pp. 1–13, 2004.

[15] D. Bainbridge and I. Witten, “A FEDORA li-

brarian interface,” in 8th ACM/IEEE-CS joint

conference on Digital libraries, Pittsburgh PA,

PA, USA, June 16-20, pp. 407–416, 2008.

[16] A. Pepe, T. Baron, M. Gracco, J. Le Meur,

N. Robinson, T. Simko, M. Vesely, and J.-y. L.

Meur, “CERN Document Server Software: the

integrated digital library,” in ELPUB 2005 con-

ference, Heverlee (Belgium), pp. 8–10, 2005.

[17] DSpace, “The DSpace Developer Team.

DSpace 3.x Documentation,” 2013.

https://wiki.duraspace.org/display/DSDOC3x.

[18] J. H. Canos, M. I. Marante, and M. Llavador,

“SliDL: A Slide Digital Library Supporting

Content Reuse in Presentations,” in Research

and Advanced Technology for Digital Libraries),

pp. 453–456, 2010.

[19] J. Diederich and W.-T. Balke, “The Semantic

GrowBag Algorithm: Automatically Deriving

Categorization Systems,” in European Confer-

ence on Digital Libraries), pp. 1–13, 2007.

[20] M. Gahegan, R. Agrawal, T. Banchuen, and

D. DiBiase, “Building rich, semantic descrip-

tions of learning activities to facilitate reuse in

digital libraries,” International Journal on Digi-

tal Libraries, vol. 7, pp. 81–97, 2007.

[21] H. Suleman and E. A. Fox, “Designing protocols

in support of digital library componentization,”

in European Conference on Digital Libraries,

pp. 568–582, 2002.

[22] D. Castelli and P. Pagan, “A system for building

expandable digital libraries,” in The third ACM

and IEEE joint conference on Digital Libraries,

pp. 335–345, 2003.

[23] A. Buccella, A. Cechich, M. Pol’la, M. Arias,

S. Doldan, and E. Morsan, “Marine ecology ser-

vice reuse through taxonomy-oriented SPL de-

velopment,” Computers & Geosciences, vol. 73,

no. 0, pp. 108 – 121, 2014.

[24] ISO/IEC, “ISO 14721: Space data and informa-

tion transfer systems - Opern archival informa-

tion system - Reference Model,” 2003. Interna-

tional Standard.

[25] ISO/IEC, “ISO 15836: Information and docu-

mentation - The Dublin Core metadata element

set,” 2009. International Standard.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-95-



[26] M. Mancuso, A. Buccella, A. Cechich, M. Arias,

and M. Pol’la, “Datasheet modeler: Una her-

ramienta de soporte para el desarrollo de fun-

cionalidades en lı́neas de productos de software,”

in Proceedings of the CACIC’15: XXI Argen-

tine Congress of Computer Science, (Junin, Ar-

gentina), 2015.

[27] M. Arias, A. Buccella, and A. Cechich, “To-

wards semi-automatic component derivation

from an spl variability model,” in Proceedings

of the CONAIISI: III Argentine Congress of In-

formatics Engineering, (Argentina), 2015.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-96-




