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Not-quite-free shortcuts to adiabaticity
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Given the increasing use of shortcuts to adiabaticity (STA) to optimize the power and efficiency of quantum
heat engines, it becomes a relevant question if there are any theoretical limits to their application. We argue that
quantum fluctuations in the control device which implements the shortcut deflect the system from the adiabatic
path. This not only induces transitions to unwanted final states but also changes the system energy, so that
using the STA has a definite cost in terms of conventional work definitions. This may be the ultimate cost of an
adiabatic shortcut, in the sense that it is present even for a frictionless, zero-temperature driving. We estimate the
effect, to lowest nontrivial order in the derivatives of the time-dependent frequency, on a parametric harmonic
oscillator, thus providing a consistency condition for the validity of the classical approximation.
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I. INTRODUCTION

The option of taking shortcuts to adiabaticity (STA’s) [1–3]
may be construed as meaning that any unitary transformation
of a quantum system that may be realized adiabatically may be
done arbitrarily fast too (there are also shortcuts to adiabaticity
in classical mechanics [4,5], but we shall not discuss them;
see the final section). One has a quantum system in some
state |ψ〉 and wants it to evolve following a preprogrammed
trajectory |ψ〉(t ). Usually this will not be a solution of the
Schrödinger equation given the system’s Hamiltonian HS . We
shall assume, however, that it is an approximate solution in
the adiabatic limit (here “adiabatic” means infinitely slow;
this does not imply there is no heat exchange). If norm is
preserved, then there will be some Hermitian operator HAS

(generally there will be many of them) such that

ih̄
d

dt
|ψ〉(t ) = HAS |ψ〉(t ). (1)

Taking the shortcut to adiabaticity means replacing HS by
HAS ; observe that the restriction to the adiabatic limit disap-
pears. Moreover, it usually may be arranged that not only the
initial and final states, but also the Hamiltonians HAS and HS

are equal to each other at the beginning and the end of the
trajectory, and so the probability distribution for the energy
will be the same, whether the transformation takes place in
finite time through the shortcut or in infinite time through
the original Hamiltonian. This is the usual measure of work
done on the system [6–8]. In this sense, it would appear that
shortcuts to adiabaticity are “free.” This would allow quantum
heat machines [9–12] to approach the ideal situation analyzed
by Curzon and Ahlborn [13,14], where the only limitation to
the power of the machine comes from the finite speed of heat
transfer.
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It is generally accepted that “to replace HS by HAS” means
that the system is being brought into interaction with a driving
system (henceforth, “the driving”), and that a meaningful
discussion of the cost of shortcuts to adiabaticity requires
explicitly including the driving within the model [15]. It may
be argued that the driving must have some kind of dissipation,
not least to stabilize it against the backreaction from the
system, and therefore that there is a cost incurred because
of the need to override this dissipation. The fact that this
actually happens has been demonstrated in specific models
[16]. It has been argued that shortcuts to adiabaticity enhance
work fluctuations [17,18] along the trajectory. It is also known
that there are excitations during the protocol, so that actually
implementing the driving may be quite demanding [19]. These
implementation costs are measured by time integrals of the
average value of powers of the “counterdiabatic” Hamiltonian
H1 = HAS − HS [15,20].

Even including these likely costs, the situation of being
able to drive a quantum system at arbitrary speeds with
no secondary effects on the system itself is quite extraordi-
nary. In a situation with some points in common with our
subject, recently there have been proposals in the literature
claiming that it was possible to cool a quantum system at
a rate |dT /dt | not bounded by T [21], thereby in conflict
with the third law of thermodynamics [22,23]. Closer ex-
amination showed that there was a heating effect associated
with the time dependence of the fields used to drive the
system, and thereby that there was an absolute lower bound
to the temperature that can be reached within that class of
protocols [24].

A maybe closer analogy may be drawn to the time-
dependent electromagnetic fields which are used to trap cold
atoms and ions. For most cold-atom experiments, the trapping
fields can be treated with sufficient accuracy as just an external
potential. However, those fields fluctuate [25] and this causes
heating of the atomic cloud over long enough timescales
[26,27]. This is one effect among several that limit the time
the atoms may be kept within the trap [28].
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We claim that, similarly, when the quantum nature of the
driving is taken into account, the system deviates from the
adiabatic trajectory. Moreover, the unwanted transitions’ rates
become higher for faster protocols. This induces a definite
deviation from the desired target in the mean energy of the
system. Therefore, shortcuts to adiabaticity would be free only
within the approximation of treating the driving as a classical
system. We point this out as a matter of principle since the
classical approximation is usually accurate [29–31], but that
could be relevant to a better understanding of the working and
ultimate limits of shortcuts to adiabaticity. We also provide an
estimate of the energy change in the system computed under
the semiclassical approximation, thus providing a consistency
test for the classical approximation.

For concreteness, we shall discuss shortcuts to adiabaticity
in a context that is relevant to the discussion of efficiency
and power of a quantum engine built from a trapped ion
[11,12]. The system is modeled as a parametric oscillator [32]
and the desired trajectory consists of allowing the oscillator’s
frequency ω2(t ) to change in time without causing transitions
between the instantaneous energy levels.

If the system follows the evolution generated by its natural
Hamiltonian, however, a time-dependent frequency generates
excitations through parametric amplification or “particle cre-
ation” [33,34]. This is avoided if the changes in the frequency
are infinitely slow because, in this limit, a positive-frequency
solution remains positive frequency throughout. Moreover, in
this limit, the solutions are given by the so-called WKB wave
functions. Now, the WKB approximated wave functions for
the oscillator with frequency ω2(t ) are actually exact solutions
for an oscillator whose frequency changes according to a
different protocol, say �2(t ). The necessary form for �2(t )
is easily computed from the original ω2(t ) [35]. Thus, given
any protocol ω2(t ), we can find a different protocol �2(t ) that
would make the system follow the adiabatic trajectory of the
original one.

Actually implementing the STA means that we couple our
oscillator, with canonical variables (x, p), to a driving, which
is also a system with canonical variables (θ,�), through an
interaction �2[θ ]x2/2, in such a way that when θ evolves in
time through the classical equations of motion for the driving,
�2[θ (t )] traces the desired protocol.

In the real world, the driving will be a quantum system
and there will be quantum fluctuations around the classical �

and θ . We want to know how these fluctuations in the driving
affect the dynamics of the system. With this goal in mind, we
shall follow the evolution of the reduced Wigner function for
the system to second order in the derivatives of �2(θ ). If the
system is initially in the nth-excited energy eigenstate, then, to
this order, we will show that there is a finite rate for transitions
to the n ± 2 states and that the final mean energy is no longer
that of the nth-excited state of the final Hamiltonian.

Since the transition rates are exponentially suppressed
when the driving is slow, there is a regime where the classical
approximation holds, as confirmed by actual experiments
[36,37]. We regard our analysis as providing a consistency
criterion for the classical approximation. In other words,
shortcuts to adiabaticity are free, as measured by the differ-
ence between the system’s final mean energy and the desired
target, only within the classical approximation for the driving,

and there are definite, if ample, limits for the validity of this
approximation.

This paper is organized as follows. We present the model
for system and driving in the next section. Coupling to the
driving turns the system into a quantum open one, and its state
must be recovered as a partial trace of the system plus driving
composite. In Sec. III we apply Feynam-Vernon influence
functional techniques to obtain the desired reduced density
matrix, and in Sec. IV we turn this density matrix into a
Wigner function through a partial Fourier transform. If the
system is initialized in the nth-excited state, then at the end
of the protocol it has a finite probability of being in the n ± 2
states; this is also computed in Sec. IV. In Sec. V, we estimate
the actual size of the effect. We conclude with some brief final
remarks. There are four appendices filling in some technical
details.

II. THE MODEL

As said, our system consists of a parametric oscillator. The
original system Hamiltonian is

HS = p2

2m
+ 1

2
mω2(t )x2. (2)

The canonical operators x and p may be written as linear
combinations of the initial destruction and creation operators

x(t ) =
√

h̄

m
{f (t )a[0] + f ∗(t )a†[0]},

(3)
p(t ) =

√
h̄m{ḟ (t )a[0] + ḟ ∗(t )a†[0]},

where the function f solves the equation of motion

f̈ + ω2(t )f = 0 (4)

with Cauchy data

f (0) = 1√
2ω(0)

,

ḟ (0) = −i

√
ω(0)

2
. (5)

Since the Wronskian W = i[f ∗ḟ − f ḟ ∗] = 1, f and f ∗ are
linearly independent. We say they form a “particle model,”
with f being the “positive-frequency” solution and f ∗ the
“negative-frequency” one [33,34].

We assume ω̇(0) = 0. At the end of the protocol, ω̇(T ) = 0
again, and we wish a and a† to still diagonalize the Hamilto-
nian HS so that a particle eigenstate at t = 0 will still be a
particle eigenstate at T with the same number of particles.

In the adiabatic limit, this is the case because f is given by
the WKB approximation [34]

f = 1√
2ω

e−i
∫ t

ω(t ′)dt ′ . (6)

One way to implement an adiabatic shortcut is to change the
Hamiltonian so that the WKB wave function becomes exact.
This is achieved by the Hamiltonian

HAS = 1

2m
p2 + 1

2
m�2(t )x2, (7)
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where

�2 = ω2 + 1

2

[
ω̈

ω
− 3

2

(
ω̇

ω

)2
]
. (8)

We now have to write a dynamics for a composite system,
made of system and driving, such that the Hamiltonian for the
system will be HAS when the driving is treated classically.

We model the driving as an integrable system with Hamil-
tonian HD[�], where � is an action variable; let θ be the
conjugated angle variable. In the classical approximation and
neglecting backreaction, θ = H ′

D[�]t evolves linearly in time.
We ignore complications arising from the periodic nature of θ .
The full Hamiltonian is then

H = HD + HAS = HD[�] + 1

2m
p2 + 1

2
m�2(θ )x2. (9)

We also assume H ′′
D[�] �= 0, so we may go through the

protocol at different speeds by choosing different values of
�. When θ evolves from 0 to 2π , say, �2 traces the desired
evolution, which it completes in time T = 2π/H ′

D[�].

III. STA’S AS QUANTUM OPEN SYSTEMS

Coupling the system to the driving makes the former into a
quantum open system. The unitary evolution of system and
driving, generated by the Hamiltonian H of Eq. (9), will
entangle them. The quantum state of the system alone is the
partial trace of the full density matrix with respect to the
driving. We want to follow its evolution.

The proper tool for this analysis is the Feynman-Vernon
influence functional [34,38–40]. We assume that at t = 0,
system and driving are uncorrelated and the state is a direct
product,

ρ((x, θ ), (x ′, θ ′), 0) = ρSi (x, x ′)ρDi (θ, θ ′). (10)

The state at the end of the protocol will be given by a two-time
path integral [34,41],

ρ((x, θ ), (x ′, θ ′), T ) =
∫

Dx1Dx2Dθ1Dθ2D�1D�2

ei[S(x1,θ1,�1 )−S∗(x2,θ2,�2 )]/h̄

× ρSi (x
1(0), x2(0))ρDi (θ

1(0), θ2(0)).

(11)

The trajectories in the forward branch go from [x1(0), θ1(0)]
to [x1(T ) = x, θ1(T ) = θ ]; similarly for the backward
branch. �1 and �2 are unconstrained. The action

S =
∫

dt

{
�θ̇ − HD[�] + 1

2
mẋ2 − 1

2
m�2[θ ]x2

}
(12)

has been modified in each branch to enforce path ordering.
Since our goal is to check the consistency of the classical

approximation for the driving, we may assume we are in
a situation where the classical approximation is expected
to hold. Therefore the path integral will be dominated by
trajectories that stay close to the classical evolution, � =
�̄ + ξ, θ = � + ϑ , with �̄ = constant and � = H ′

D[�̄]t . So

we expand

S = S̄D +
∫

dt

{
ξ ϑ̇ − 1

2
H ′′

D[�̄]ξ 2 + 1

2
mẋ2 − 1

2
m�2[�]x2

+ 1

2
m(�2)′[�]ϑx2

}
. (13)

Note that (�2)′ is a derivative with respect to �. The term
S̄D = ∫

(��̇ − HD[�̄]) cancels out from Eq. (11) because
we assume the same classical trajectory in both branches.
Integrating over ξ , we obtain

S = SS + SD + SDS, (14)

where

SS (x) = 1

2

∫
dt{mẋ2 + m�2[�(t )]x2},

SD (ϑ ) = M

2

∫
dt ϑ̇2, (15)

SDS (x, ϑ ) = m

2

∫
dt (�2)′[�]ϑx2,

where M = 1/H ′′
D[�̄] is assumed to be finite.

We obtain the state for the system by Landau tracing [42]
over the quantum fluctuations of the driving,

ρSf (x, x ′) =
∫

dθ ρ((x, θ ), (x ′, θ ), T ), (16)

so

ρSf (x, x ′) =
∫

Dx1Dx2 ei{SS (x1 )−S∗
S (x2 )+SIF (x1,x2]}h̄

× ρSi (x
1(0), x2(0)), (17)

where SIF is the influence action,

eiSIF (x1,x2]/h̄ =
∫

dϑ

∫
Dϑ1Dϑ2

× ei[SD(ϑ1 )+SDS (x1,ϑ1 )−S∗
D(ϑ2 )−S∗

DS (x2,ϑ2 )]/h̄

× ρDi (ϑ
1(0), ϑ2(0)). (18)

The integral is over a closed time path such that
ϑ1(T ) = ϑ2(T ) = ϑ [34,41].

Our problem is to find the influence action and thereby
the state of the system at T . The Gaussian integral over ϑ

is immediate and we get

SIF [x1, x2] = im2

8h̄

∫
dtdt ′(�2)′[�(t )](�2)′[�(t ′)]

×{(x1)2(t )(x1)2(t ′)〈T (ϑ (t )ϑ (t ′))〉
+ (x2)2(t )(x2)2(t ′)〈T̃ (ϑ (t )ϑ (t ′))〉.
− (x2)2(t )(x1)2(t ′)〈ϑ (t )ϑ (t ′)〉
− (x1)2(t )(x2)2(t ′)〈ϑ (t ′)ϑ (t )〉}, (19)

where T means temporal and T̃ antitemporal ordering. By
writing x1,2 = X ± u/2, this becomes

SIF = Snl + Sd + iSn, (20)
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where

Snl = m2

4

∫
dt (�2[�(t )])′u(t )X(t )

×
∫

dt ′ D(t, t ′)(�2[�(t ′)])′X2(t ′),

Sd = m2

16

∫
dt (�2[�(t )])′u(t )X(t )

(21)
×

∫
dt ′ D(t, t ′)(�2[�(t ′)])′u2(t ′),

Sn = m2

2h̄

∫
dt (�2[�(t )])′u(t )X(t )

×
∫

dt ′ N (t, t ′)(�2[�(t ′)])′X(t ′)u(t ′),

are associated to an induced nonlinear interaction, dissipation,
and noise, respectively. D and N are the dissipation and noise
kernels [34],

D(t, t ′) = i〈[ϑ (t ), ϑ (t ′)]〉θ (t − t ′),

N (t, t ′) = 1
2 〈{ϑ (t ), ϑ (t ′)}〉. (22)

To compute them, write the Heisenberg ϑ operator as

ϑ = ϑ (0) + M−1PD (0)t, (23)

so

N (t, t ′) = 〈ϑ (0)2〉 + M−2〈PD (0)2〉t t ′

+ 1

2
M−1〈{ϑ (0), PD (0)}〉(t + t ′),

D(t, t ′) = 1

2M
(t − t ′)θ (t − t ′). (24)

For simplicity, we shall assume that 〈{ϑ (0), PD (0)}〉 = 0; this
is obtained, for example, when ϑ is initially in a Gaussian pure
state [recall that by definition, 〈ϑ (0)〉 must vanish]. We now
write

N (t, t ′) = m2[(�2)′X](t )N (t, t ′)[(�2)′X](t ′) (25)

and

e−Sn/h̄ =
∫

Dζ P[ζ,X]ei
∫

dtζ (t )u(t )/h̄, (26)

where P[ζ,X] is a Gaussian measure such that 〈ζ (t )〉 = 0 and

〈ζ (t )ζ (t ′)〉 = N (t, t ′). (27)

Then,

e(iSd−Sn )h̄ =
∫

Dζ PQ[ζ,X, T ]ei
∫

dt ζ (t )u(t )/h̄, (28)

where

PQ[ζ,X, T ] = eiL(T )P [ζ,X], (29)

L(T ) = m2

4h̄

∫
dt (�2)′X(t )

[
ih̄

δ

δζ (t )

]

×
∫

dt ′ (�2)′
(
t ′
)
D(t, t ′)

[
ih̄

δ

δζ (t ′)

]2

. (30)

We now put it all together,

ρSf

(
Xf + uf

2
, Xf − uf

2
, T

)

=
∫ X(T )=Xf ,u(T )=uf

X(ti )=Xi,u(ti )=ui

DXDu

∫
Dζ PQ[ζ,X, T ]e(im/h̄)uf Ẋf

× e(−im/h̄)
∫

dt u(t ){mẌ(t )+D[X]−ζ}(t )e(−im/h̄)uiẊi

× ρSi

(
Xi + ui

2
, Xi − uf

i
, ti

)
, (31)

where

D[X](t ) = D0[X](t ) + D2[X](t ), (32)

D0[X](t ) = m�2[�]X(t ),

D2[X](t ) = −m2(�2)′X(t )
∫

dt ′ (�2)′(t ′)D(t, t ′)X2(t ′).

(33)

IV. THE SYSTEM’S WIGNER FUNCTION

Although the reduced density matrix gives a full descrip-
tion of the quantum state of the system, its dynamics, given
by the so-called master equation, is rather involved [34]. It is
more heuristic to introduce the Wigner function [43,44],

FW (X,P, t ) =
∫

du e−iPuρS

(
X + u

2
, X − u

2
, t

)
. (34)

Introducing

1 =
∫

DP δ(P − mẊ) (35)

into the path integral, we get

FW (Xf , Pf , T )

=
∫ X(T )=Xf ,P (T )=Pf

X(ti )=Xi,P (ti )=Pi

DXDP

∫
Dζ PQ[ζ,X, T ]

× δ

(
Ẋ − P

m

)
δ(Ṗ + D[X] − ζ )f (Xi, Pi, ti ). (36)

The Wigner function obeys the equation (see [34] and
Appendix A)

∂FW

∂t
+ {HAS, FW }

= ∂

∂P

[
D2FW −

∫
dt ′N̄ (t, t ′){X̄(t ′), FW }+ m2h̄2

4
(�2)′X

×
∫

dt ′D(t, t ′)(�2)′(t ′){X̄(t ′), {X̄(t ′), FW }}
]
, (37)

where X̄(t ′) is the solution to the equations

d

dt
X̄ = P̄

m
,

d

dt
P̄ = −D[X̄] + ζ, (38)

032107-4



NOT-QUITE-FREE SHORTCUTS TO ADIABATICITY PHYSICAL REVIEW A 98, 032107 (2018)

which passes through (X,P ) at time t . ζ is multiplicative
noise with distribution function PQ[ζ, X̄, t].

The idea is to solve this equation perturbatively; first the
homogeneous solution, then replacing FW by the homoge-
neous solution in the right-hand side, and so on.

It helps to notice that one can make a canonical transfor-
mation (see Appendix B),

X =
√

J

m
[f (t )e−iφ + f ∗(t )eiφ],

(39)
P =

√
mJ [ḟ (t )e−iφ + ḟ ∗(t )eiφ],

where f and f ∗ are WKB wave functions. J is the adiabatic
invariant of the linearized dynamics. Because this is an exact
solution of the linear dynamics when J and φ are constant, the
homogeneous solution is just any time-independent function
of J and φ. The initial energy is E0 = ω(0)J ; if the initial
state is the nth-energy eigenstate, then the zeroth-order solu-
tion FWn depends only on J . The first-order term reads

δFW = m2

2

∫
dt (�2)′(t )

∫
dt ′ (�2)′(t ′)

×
[
D(t, t ′){X2, X2(t ′)FWn}

+ 1

2
N (t, t ′){X2, {X2(t ′), FWn}}

− h̄2

4
D(t, t ′){X2, {X(t ′), {X(t ′), FWn}}}

]
, (40)

where δFW describes a nonstationary state,

δFW =
4∑

k=−4

F
(k)
W (J, t )eikφ. (41)

However, if we measure the energy at the end of the protocol,
the state collapses onto its φ- independent part,

F
(0)
W = νJ [F ′

Wn + (JF ′
Wn)′] + μ

J

h̄

{
FWn + (JFWn)′

+ h̄2

4
[F ′′

Wn + (JF ′′
Wn)′]

}
, (42)

where

ν =
∫

dt (�2)′(t )
∫

dt ′ (�2)′(t ′)N (t, t ′)

× [f 2(t )f ∗2(t ′) + c.c.]

= 2〈ϑ (0)2〉|I0|2 + 2M−2〈P (0)2〉|I1|2,
μ = ih̄

4

∫
dt (�2)′(t )

∫
dt ′ (�2)′(t ′)D(t, t ′)

× [f 2(t )f ∗2(t ′) − c.c.]

= ih̄

8M
[I1I

∗
0 − I0I

∗
1 ], (43)

I0 =
∫

dt (�2)′(t )f 2(t ),

I1 =
∫

dt t (�2)′(t )f 2(t ). (44)

To compute the final state, we use the recurrence relations for
the Wigner functions of a harmonic oscillator (see [44] and
Appendix C),

JFWn = h̄

4
[(2n + 1)FWn + nFW (n−1) + (n + 1)FW (n+1)],

JF ′
Wn = 1

2
[nFW (n−1) − FWn − (n + 1)FW (n+1)],

h̄J

4
F ′′

Wn = −
(

n + 1

2

)
FWn + J

h̄
FWn − h̄

4
F ′

Wn. (45)

We obtain

F
(0)
W = 1

2

{(
ν + μ

2

)
n(n − 1)FW (n−2)

+
(
ν − μ

2

)
(n + 1)(n + 2)FW (n+2)

− 2[ν
(
1 + n + n2

) − μ(2n + 1)]FWn

}
. (46)

We see that within this approximation, after measuring the
energy in the final state, the system may have undergone a
transition to the n ± 2 states, thus violating adiabaticity.

In particular, the variation in the mean occupation
number is

�n =
(

ν − μ

2

)
(n + 1)(n + 2) −

(
ν + μ

2

)
n(n − 1)

= 2ν(2n + 1) − μ(n2 + n + 1). (47)

The extra energy injected into the system is δW = �nh̄ω(T ).
The condition for adiabaticity is �n � 1.

V. ESTIMATING THE COST OF THE STA

To conclude our analysis, we must estimate the coefficients
ν and μ from Eq. (42). Observe that μ depends on the inertia
of the driving but not on its quantum state, while ν depends
on both.

Actually, if d�/dt = constant throughout the protocol,
then I0 = 0 (see Appendix D), so μ = 0, and

ν = 2M−2〈PD (0)2〉|I1|2, (48)

where, from Eq. (D2),

I1 = 1

�̇

∫
dt

[
−i

(
ω̇

ω

)
− 1

4

(
ω̇2

ω3

)]
(t )e−2i

∫
ωdt . (49)

To see that this is generally nonzero, consider a protocol of
the form

ω = ω0 + δ arctan (t/τ ), (50)

δ/ω0 � 2/π . The condition that �2 � 0 requires ω0τ �√
3/4(δ/ω0). Then,

ω̇ = δ

τ

1

1 + (
t
τ

)2 , (51)
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FIG. 1. Numerical evaluation of F [x, 1/2] from Eq. (54) (solid
line) and the asymptotic form for δ → 0 from Eq. (55) (dashed line).

while ∫
ωdt = ω0τ

{[
1 + δ

ω0
arctan

(
t

τ

)]
t

τ

− δ

2ω0
ln

[
1 +

(
t

τ

)2]}
. (52)

So, separating the dimensionful constants, we find

|I1| = δ

�̇ω0
F

[
ω0τ,

δ

ω0

]
, (53)

F [x, y] =
∣∣∣∣∣∣
∫ ds

{
1 − i(y/4x)

(1+s2 )[1+y arctan (s)]2

}
(1 + s2)[1 + y arctan (s)]

× e−2ix{[1+y arctan (s)]s− y

2 ln[1+s2]}
∣∣∣∣∣∣. (54)

In Fig. 1, we plot F [x, 1/2], together with the asymptotic
form (compare with [45,46])

F [x, 0] = π e−2x (55)

in the range x � 0.1. For smaller x at fixed y �= 0, we find
F ∝ 1/x. Finally,

ν = 2F 2

[
ω0τ,

δ

ω0

](
δ

ω0

)2 〈PD (0)2〉
(M�̇)2

. (56)

Since we expect the driving to complete the protocol in a time
≈τ, 〈P 2

D〉/2M ≈ δE is constrained by the quantum speed
limit [17,47–49]. Adopting a simple uncertainty relation es-
timate 〈P 2

D〉/2M ≈ δE � h̄/τ and also estimating M�̇2/2 ≈
HD[�̄] as the energy of the driving system [cf. Eq. (9)], we
get

ν ≈ 2F 2

[
ω0τ,

δ

ω0

](
δ

ω0

)2
h̄

HD[�̄]τ
. (57)

Therefore, to make ν small, we must make τ large.

VI. FINAL REMARKS

It is known that shortcuts to adiabaticity have definite costs
in terms of work that has to be done during the protocol,

although within the classical approximation the work invested
is recovered at the end [15,20]. We have shown that there is
also a definite cost in terms of particles being created during
the protocol, so that there is a violation of adiabaticity. To
lowest nontrivial order, the mean number of particles created
is �n = 2ν(2n + 1), where

ν ≈ 2π2

(
δ

ω0

)2
h̄

HD[�̄]τ
e−4ω0τ . (58)

The meaning of ω0, δ, and τ comes from the explicit protocol
given by Eq. (50), and HD[�̄] is the energy for the classical
trajectory of the driving system; see Eq. (9). For a given
driving system energy, ν can be made arbitrarily small only
in the adiabatic limit.

This deviation from adiabaticity is intrinsic in the sense
that it does not depend on any parameter not present under
the classical approximation. It has no analog in a classical
model, where to obtain a similar result one has to assume that
the driving is at finite temperature, has a definite dissipation
mechanism, or both. Of course, in practice, these classical
sources of noise and dissipation are likely to overwhelm the
effect we have discussed, but we believe the fact that such an
intrinsic deviation from adiabaticity exists is relevant from a
first-principles point of view.

Actually, the picture emerging from our analysis is quite
simple. Quantum fluctuations in the driving cause uncertainty
in the initial value of the driving’s coordinate and its initial
speed. If we had simply replaced these uncertain quantities
by c− number random variables with the proper distribution,
we would have essentially arrived at the same final result in
a much more direct way. However, it is unclear that such a
replacement is justified because quantum fluctuations mediate
interactions and provide dissipative mechanisms, beyond rat-
tling the system. So we went through a systematic derivation
of the lowest nontrivial order result, keeping all relevant terms.

Of course, to have a detailed derivation such as this may be
useful to go beyond this leading-order result or to seek similar
effects in other types of quantum engines. We expect to deal
with these matters in future communications.

Meanwhile, once the deviation from adiabaticity is prop-
erly characterized, it may be possible to compensate for it.
In fact, some relevant steps seem to have been taken already
[36,37].
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APPENDIX A: DERIVATION OF EQ. (37)

To simplify the analysis to follow, it is convenient to
discretize time. Write Xk = X(tk ), tk = ti + kdt , and so on.
Then,

FW (k+1)(X,P ) = 〈δ(X − Xk+1)δ(P − Pk+1)〉, (A1)
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where

Xj+1 = Xj + dt
Pj

m
,

Pj+1 = Pj + dt[−Dj + ζj ], (A2)

Dj = m�2[�j ]Xj − m2dt (�2[�j ])′Xj

×
j−1∑
l=0

D(tj , tl )(�
2[�l])

′X2
l . (A3)

The average is over initial conditions, weighted by
FW0(X0, P0), and over the noise with distribution

PQ(j+1) = eiLj+1Pj+1, (A4)

Lj+1 = Lj + Lj,j+1, (A5)

Lj,j+1 = m2

4h̄dt
(�2[�j ])′Xj

[
ih̄

∂

∂ζj

]

×
j−1∑
m=0

D(tj , tm)(�2[�m])′
[
ih̄

∂

∂ζm

]2

, (A6)

Nkl = m2(�2[�k])′XkN (tk, tl )(�
2[�l])

′Xl, (A7)

Pj+1 = Pj

e
−

(
ζj −

∑j−1
p=0 γjpζp

)2
/2dt2γj√

2πdtγ
1/2
j

, (A8)

where

j−1∑
m=0

γjmNmq = Njq , (A9)

γj = Njj −
j−1∑
m=0

j−1∑
r=0

γjmNmj . (A10)

In particular, ∫
dζj Pj+1 = Pj . (A11)

We now write the Wigner function as

FW (j+1)(X,P )

=
∫

dX0dP0 FW0(X0, P0)

×
∫ j∏

k=0

dζk PQ(j+1)δ(X − Xj+1)δ(P − Pj+1). (A12)

Because of the causal prescription we have chosen, we avoid
the appearance of a Jacobian within the path integral.

The idea is to eliminate ζj . From the recursion relation

Xj+1 = Xj + dt
Pj

m
,

Pj+1 = Pj + dt[−Dj + ζj ], (A13)

to first order, we get

δ(X − Xj+1)δ(P − Pj+1) = δ

(
X − Xj − dt

Pj

m

)
δ(P − Pj + dt[Dj − ζj ])

=
[

1 − dt
∂

∂X

P

m
+ dt

∂

∂P
[Dj − ζj ]

]
δ(X − Xj )δ(P − Pj ), (A14)

whereby the ζj dependence is made explicit. Next we integrate by parts,

FW (j+1)(X,P ) =
∫

dX0dP0 FW0(X0, P0)
∫ j∏

k=0

dζk eiLj +Lj,j+1Pj+1δ(X − Xj+1)δ(P − Pj+1)

=
∫

dX0dP0 FW0(X0, P0)
∫ j∏

k=0

dζk eiLj Pj+1e
−iLj,j+1δ(X − Xj+1)δ(P − Pj+1)

= FWj (X,P ) + dt[A + B + C + D], (A15)

where

A = − ∂

∂X

P

m
FWj (X,P ),

B = ∂

∂P

∫
dX0dP0 FW0(X0, P0)

∫ j∏
k=0

dζk PQ(j )Dj δ(X − Xj )δ(P − Pj ),

C = − ∂

∂P

∫
dX0dP0 FW0(X0, P0)

∫ j∏
k=0

dζk PQ(j )

⎡
⎣j−1∑

p=0

γjpζp

⎤
⎦δ(X − Xj )δ(P − Pj ),

D = ∂

∂P

∫
dX0dP0 FW0(X0, P0)

∫ j∏
k=0

dζk PQ(j )[iLj,j+1ζj ]δ(X − Xj )δ(P − Pj ). (A16)
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The idea is to compute these terms to lowest nontrivial order in � derivatives. The A term is already in its final form. In the
B term, we replace D by D̄, namely, we evaluate it on the linearized trajectory (X̄k, P̄k ). In C and D, we neglect Lj and we
approximate Pj by P̄j . Then,

C = − ∂

∂P

∫
dX0dP0 FW0(X0, P0)

∫ j∏
k=0

dζk PQ(j )

⎡
⎣j−1∑

p=0

γjpζp

⎤
⎦δ

(
X − Xj

)
δ
(
P − Pj

)

= ∂

∂P

⎡
⎣ ∂

∂X

j−1∑
p=0

N̄jp

∂Xj

∂ζp

+ ∂

∂P

j−1∑
p=0

N̄jp

∂Pj

∂ζp

⎤
⎦FWj (X,P ). (A17)

The derivatives are computed as in [34],

∂Xj

∂ζp

= −dt
∂X̄p+1

∂Pj

,

∂Pj

∂ζp

= dt
∂X̄p+1

∂Xj

. (A18)

Introducing the Poisson brackets

{f, g} = ∂f

∂P

∂g

∂X
− ∂f

∂X

∂g

∂P
, (A19)

C = − ∂

∂P
dt

j−1∑
p=0

N̄jp{X̄p+1, FWj (X,P )}. (A20)

In the same way,

D = m2h̄2

4

∂

∂P
(�2[�j ])′Xjdt

×
j−1∑
p=0

D(tj , tp )(�2[�p])′{X̄p+1, {X̄p+1, FWj }}. (A21)

We may now take the continuum limit, whereby we find
Eq. (37).

APPENDIX B: EQ. (39) AS A CANONICAL
TRANSFORMATION

It is rather essential to show that the transformation given
by Eq. (39) is canonical since only then can we compute
Poisson brackets indistinctly in either set of variables (P,X)
or (J, φ).

We need to show that there is a function G = G(X,φ) such
that

PdX − HASdt = Jdφ − Kdt − dG, (B1)

where K is the Hamiltonian in the new variables; this means

∂G

∂X
= −P,

∂G

∂φ
= J,

∂G

∂t
= HAS − K. (B2)

In our case,

G = −1

2
mX2

{
ḟ (t )e−iφ + ḟ ∗(t )eiφ

f (t )e−iφ + f ∗(t )eiφ

}
. (B3)

From the oscillator equation for f , we see that actually K =
0, so both J and φ are constants of motion.

APPENDIX C: HARMONIC-OSCILLATOR
WIGNER FUNCTIONS

For a harmonic oscillator in an energy eigenstate, the
Wigner function obeys[−h̄2

2m

∂2

∂x2
+ 1

2
mω2x2 − h̄ω

(
n + 1

2

)]

×
∫

dp

h
eip(x−y)FWn(X,p) = 0, (C1)

where X = (x + y)/2. Observe that

x2 =
(

X + x − y

2

)2

= X2 + X(x − y) + 1

4
(x − y)2;

(C2)

then we get {−1

2m

[
−p2 + ih̄p

∂

∂X
+ h̄2

4

∂2

∂X2

]

+ 1

2
mω2

[
X2 + ih̄X

∂

∂p
− h̄2

4

∂2

∂p2

]

− h̄ω

(
n + 1

2

)}
FWn = 0 (C3)

or else[
ωJ − h̄ω

(
n + 1

2

)]
FWn − i

2
h̄ω{J, FWn}

− h̄2

4

[
1

2m
{p, {p, FWn}} + 1

2
mω2{X, {X,FWn}}

]
= 0.

(C4)

Recall that

X =
√

2J

mω
cos (φ + ωt ),

(C5)
p = −

√
2mωJ sin (φ + ωt ),
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so FWn = FWn(J ) and

h̄

4
[JF ′′

Wn + F ′
Wn] +

[
n + 1

2
− J

h̄

]
FWn = 0. (C6)

Write

s = 4J

h̄
(C7)

and

FWn = e−s/2Ln[s]. (C8)

Then,

sL̈n + [1 − s]L̇n + nLn = 0, (C9)

where Ln is a Laguerre polynomial [50].
The normalization is determined by

fn(0) =
∫

dy ψn(y/2)ψ∗
n (−y/2) = 2(−1)n. (C10)

Since Ln(0) = 1, to get this we must define

fn = 2(−1)ne−s/2Ln[s]. (C11)

Equations (45) follow from Eq. (C6) and the recursion rela-
tions for Laguerre polynomials,

L̇n − n

s
[Ln − Ln−1] = 0,

(n + 1)Ln+1 + [s − 2n − 1]Ln + nLn−1 = 0. (C12)

APPENDIX D: I0 AND I1 WHEN d�/dt = CONSTANT

We want to show that when d�/dt = constant, I0 = 0
and I1 may be greatly simplified. The point is that up to a
constant, we may replace the � derivative by a time derivative
in Eqs. (44). From Eq. (8),

d

dt
�2 = 2ω

{
ω̇ + 1

4ω

d

dt

[
ω̈

ω
− 3

2

(
ω̇

ω

)2
]}

= 2ω

[
ω̇ + 1

4

d

dt

1

ω

d

dt

(
ω̇

ω

)]
. (D1)

I0 = 0 follows from a double integration by parts of the
second term. With respect to I1, we find

I1 = 1

�̇

∫
dt t

[
ω̇ + 1

4

d

dt

1

ω

d

dt

(
ω̇

ω

)]
(t )e−2i

∫
ωdt

= 1

�̇

∫
dt

[
−i

(
ω̇

ω

)
− 1

4

(
ω̇2

ω3

)]
(t )e−2i

∫
ωdt , (D2)

namely, Eq. (49).
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