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Abstract. We analyze the two-dimensional momentum distribution of electrons ionized by 

short laser pulses by solving the time-dependent Schrödinger equation. Lindner et al., [Phys. 

Rev. Lett. 95, 040401 (2005)] identified oscillations in the electron emission spectrum for 

ionization by a few-cycle pulse as a time-double slit interference. We extend this analysis to 

interference fringes in the momentum distributions. For longer pulses we find a complex two-

dimensional interference pattern that resembles ATI rings at higher energies and displays 

Ramsauer-Townsend - type diffraction oscillations in the angular distribution near threshold. 

1.  Introduction 
As increasingly shorter pulses (fs) became available, the interaction of few-cycle laser pulses with 

matter has attracted considerable interest. Ultrashort pulses with time duration comparable to the 

optical period lead to novel features of laser-matter interactions. They include the strong carrier-

envelope (CE) phase dependence of excitation and ionization processes [1,2]. Electron emission which 

in the tunnel ionization regime occurs near the extrema of the electric field is temporally confined to a 

few adjacent field extrema. The interference between such ionization bursts gives rise to features in 

the electron emission spectrum dP/dE markedly different from the typical above-threshold ionization 

(ATI) spectrum for longer pulses with well-defined ponderomotive energy [3-8]. Interferences of 

ultrashort free electron wave packets generated by time delayed femtosecond laser pulses have been 

observed [9,10]. Lindner et al. [11] have recently demonstrated that a single ultrashort pulse with a 

sine-like envelope gives rise to a double-slit interference in time. 

For photodetachment of negative ions classical paths of electrons released in a short-range potential 

interfere. The interference of electron emission corresponds to that of two laser-induced point sources 

as in the two-slit Young experiment [12-15]. For neutral rare gases Rudenko et al. [5] presented first 

fully two-dimensional momentum maps for laser-ionized electrons, displaying a complex pattern 

whose origin was not clear. Since then several theoretical investigations have been performed 

addressing the interference phenomena involved in atomic ionization by short laser pulses [4,16]. 

In the present work we firstly extend the study of the time double-slit interference emission pattern 

to the two-dimensional (2D) momentum distribution of the outgoing electron along the direction of the 

laser polarization, kz, and the perpendicular polar coordinate kρ. We present full numerical solutions of 

the time-dependent Schrödinger equation (TDSE). With the help of an analytic semiclassical model 
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closely following the "simple man's model" (SMM) we analyze the interference fringes in terms of 

time double-slit interference. Secondly, for longer pulses we find an equally complex yet surprisingly 

similar pattern suggesting a simple explanation in terms of interferences between different electron 

trajectories in the combined laser and Coulomb field. The pattern is largely independent of the atomic 

core potential. Atomic units are used throughout. 

2.  Theory 
We consider an atom in the single electron approximation interacting with a linearly polarized laser 

field. The Hamiltonian of the system is 

 

²
( ) ( )

2
= + +H V r zF t

p
,    (1) 

 

where V(r) is the atomic potential, p and r are the momentum and position of the electron, 

respectively, and F(t) is the time dependent external field linearly polarized along the z direction. The 

laser pulse is chosen to be of the form 

 

0( )  cos ²( / ) ( / 2- | |)cos( ) 
CE

F t F t t tπ τ τ ω ϕ= Θ + ,                        (2) 

 

where ω is the laser carrier frequency, φCE the relative carrier-envelope phase, Θ is the Heaviside step 

function, τ is the total pulse duration and t = 0 corresponds to the middle of the pulse. φCE = 0 in 

equation (2) corresponds to a cosine-like pulse while φCE = ±π/2 corresponds to a msine pulse. 

The time-dependent Schrödinger equation can be solved by means of the generalized pseudo-

spectral method [17]. This method combines a discretization of the radial coordinate optimized for the 

Coulomb singularity with quadrature methods to achieve stable long-time evolution using a split-

operator method. It allows for an accurate description of both the unbound as well as the bound parts 

of the wave function |ψ(t)>. The process of detecting an electron of momentum k can then be viewed 

as a projection of the wave function onto the Coulomb wave functions [18-20]. Therefore, after the 

laser pulse is turned off, the wave packet is projected onto outgoing Coulomb wave functions, which 

gives the transition probability  
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δl(k) is the momentum dependent Coulomb phase shift, θ is the angle between k and the polarization 

direction of the laser field (chosen along the z-axis), Pl is the Legendre polynomial of degree l, and 

,k l  is the eigenstate of the free atomic Hamiltonian with positive eigenenergy E = k²/2 and orbital 

quantum number l. Cylindrical symmetry makes the dynamics a two dimensional problem with the 

projection of the angular momentum on the polarization direction of the laser as constant of motion 

(the magnetic quantum number m is unaffected during the time evolution). Equation (5) is an 

acceptable approximation for rare gas atoms since the atomic potential is close to Coulombic for 

distances larger than a few atomic units [21]: After tunneling, the continuum electron propagates at 

large distances from the nucleus where the combined laser and asymptotic Coulomb fields dominate. 

 

XXV International Conference on Photonic, Electronic and Atomic Collisions IOP Publishing
Journal of Physics: Conference Series 88 (2007) 012054 doi:10.1088/1742-6596/88/1/012054

2



 

 

 

 

 

 

3.  Results 
We consider a hydrogen atom initially in its ground state ionized by a pulse with carrier frequency ω 

= 0.05, peak field F0=0.075 with duration τ = 251 a.u., and φCE = π/2 (a sine-shaped pulse) which 

corresponds to a realistic ultrashort pulse containing two optical cycles. For this pulse shape [see inset 

of Figure 1 (a)], only two paths effectively contribute to the ionization spectrum. The shaded areas in 

Figure 1 (a) show the two temporal slits where the ionization predominately occurs. The photoelectron 

spectrum, shown in Figure 1 (a), has a non-equally spaced peak distribution and the separation 

between two consecutive peaks increases with energy. The peaks correspond to the time-double slit 

interference fringes observed by Lindner et al. [11]. Recent simulations [24] have also shown the 

existence of these peaks in the density probabilities at different angles of ejection but for a much 

stronger field (10
16

 Wcm
-2

) applied to He
+
 atoms. The fringe pattern of the doubly-differential 

momentum distribution (d²P/dkρdkz) as a function of the final longitudinal kz, and transversal 

momentum of the electron 
2 2  
x y

k k kρ = +  (Figure 1 (b) ) features several characteristics that are 

noteworthy: (i) the distribution is constrained to the region -0.5 ≲ kz ≲ 2.5 and kρ ≲ 0.6, (ii) at larger 

momenta the distribution shows an almost vertical strip-like pattern at larger kz, slightly bent outward 

with increasing kρ, and (iii) it features a radial-circular nodal pattern near threshold. The fringe pattern 

can be viewed as a 2D “Ramsey fringe” [25], where the two separated regions of excitation (here 

ionization) originate from different half-cycles of the same pulse. 

 

Figure 1. (Color online) (a) Ab initio 

photoelectron spectra for a two-cycle 

electric field of frequency ω=0.05 a.u., 

peak field F0=0.075 a.u. and duration 

τ=4π/ω=251 (with a cos² envelope 

function) on hydrogen. Inset: Electric 

field as a function of time. The shaded 

areas correspond to the two temporal slits. 

(b) Doubly differential electron 

momentum distribution (kz,kρ) in 

logarithmic scale for the same laser pulse. 

(c) Schematic diagram of the interference 

process. 

 

 

In [23] a simple semiclassical model (SMM) [22,24,26] for ultrashort pulses was presented: the 

diffraction image [Figure 1 (b)] is the result of the superposition of the emission from the atom (point 

source) into the half-space of positive kz during the opening of the first temporal slit (t1) and the beam 

that is emitted from the point source in opposite direction during the opening of the second temporal 

slit (t2) turned around by the field and also emitted in the positive half space [see Figure 1 (c) for a 

schematic diagram of the process]. The interference pattern is therefore controlled by the phase 

acquired by the re-directed trajectory during the propagation in the field relative to that of the directly 
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emitted wave packet. According to the SMM, different trajectories with the same value of the vector 

potential at the time of detachment interfere [11,23]. For our double-slit photoionization case the 

interference condition is fulfilled when t1= -t2. For the sake of simplicity we consider now a one-cycle 

–sine pulse with no envelope function. The interference pattern in the photoelectron spectrum [figure 1 

(a)] is approximately given by [23] 

 

2 ( )
~ ( )cos

2

dP S E
A E

dE

∆ 
 
 

,                                                    (6) 

where A(E) is a prefactor depending on the electron final energy and ∆S(E) is the difference of  the 

accumulated classical action of the two interfering traectories. A Taylor expansion around the energy 
2 2

0' 2E F ω= , corresponding to detachment at the maximum and minimum of the 1-cycle pulse 

( 2 1' /t t t π ω∆ = − = ) yields 
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where 
2 3

0 4Fπ ωΦ = −  is an unimportant absolute phase and 2 / (2 / ) 'tω πΩ = = ∆  near 'E . 

Finally, 
2

0(1 / 2) Fπ ωΓ = − +  controls the negative chirp in the frequency of the energy peaks in the 

photoelectron spectrum. The energy dependent phase can therefore be written as  
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t E
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π

∆
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with  
2

2

0

1
( ) ' 1 ( ')

2 4
t E t E E

F

π ω  
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  
. 

The chirp results in an energy dependent effective width of the double slit ∆t(E). In other words, the 

non-equispaced peaks are due to the slits of varying width (as shown in inset of figure 1 (a)). The 

accumulated phase of trajectories of slow electrons born  at earlier times are considerably larger than 

that of fast electrons emitted later during the first slit relative to the corresponding to the second slit 

(for details of the semiclassical description see reference [23]). 

Semiclassical models based on the strong field approximation do not reproduce the near threshold 

structure in the two-dimensional momentum distribution. At low energies the discrepancy is not 

primarily due to the failure of classical dynamics but is the result of the neglect of the atomic core 

potential. More pronounced near-threshold patterns occur for longer pulses, i.e., with more than 3 or 4 

optical cycles. In figure 2, examples of the two-dimensional momentum distribution for 8-cycles 

pulses averaged over the CE phase are displayed. In figure 2 (a) the parameters of the field are 

ω=0.05, τ=1005, and F0 = 0.075, and the target is H, while in figure 2 (b) ω=0.057, τ=882 and F0  =  

0.065 and the target is Ar. Both momentum distributions display a complex interference pattern which 

is characterized by a transition from a ring-shaped pattern at larger 
2 2 0.4

z
k k kρ= + >  with circular 

nodal lines to a very different pattern of pronounced radial nodal lines for small k near threshold. The 

first point to be noted is that the overall pattern displays a surprising and striking similarity to the 

experimental pattern observed recently for rare gases [5,27]. The ring pattern is reminiscent of ATI 

peaks of the multi-photon regime. 
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Figure 2. (Color online) 
Doubly-differential electron 

momentum distributions of 

(a) H with parameters of the 

field ω=0.05, τ=1005, and 

F0=0.075 and (b) Ar with 

ω=0.057, τ=882 and 

F0=0.065. An average over 

the CE phase was 

performed. 

The doubly-differential momentum distribution with fixed CE phase ϕCE = 0 displays a very 

pronounced near-threshold structure with a bouquet shape [Figure 3 (a)]. Radial lines indicate the 

position of the nodal lines (minima) of the angular distribution. The number of minima in this case is 

eight. The distribution of contributing partial waves pl is presented in figure 3 (b) for the first and 

second ATI rings as indicated in the figure. The partial-wave distribution near threshold peaks at l0=8, 

which is enhanced by the relative suppression of adjacent angular momentum l0 ± 1 of opposite parity 

remnant of the multi-photon parity selection rule. The second ring shows a maximum at l0=9, even 

though no dominance of a single partial wave is evident when looking at the angular distribution (not 

shown). According to equation (5) the dominance of a single partial wave in the momentum-

differential ionization cross section implies the dominance of a single Legendre polynomial: 

 

0

2
2

(cos ) .
l

d P
P

d
θ ∝  k

      (9) 

 

Since the number of zeros of the dominant Legendre polynomial is equal to the dominant angular 

momentum  l0, equation (9) predicts the number of nodal lines to be l0, as observed in Figures 3 (a) 

and (b).  
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Figure 3. (Color online) (a) 

Doubly-differential electron 

momentum distributions for 

H. (b) Partial ionization 

probability pl as a function 

of the angular momentum l 

for the different spectral 

regions indicated in the 

figure. (c) Angular 

momentum distribution of 

classical trajectories. The 

parameters of the field are 

ω=0.05, τ=1005, and 

γ=0.67 (F0=0.075). 
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A simple semiclassical analysis of the interference pattern in the angular distribution can be 

performed. To uncover the relevant classical paths we employ a CTMC-T simulation [3] for the same 

parameters as in figure 3. The ensemble of ionized electrons near threshold features, indeed, an L 

distribution [figure 3 (c)] that resembles the quantum distribution (figure 3) with a peak near l0=8, 

clearly emphasizing the underlying classical character of this process. A typical electron trajectory 

after tunneling shows a quiver motion along the polarization of the laser field. Even though the motion 

is strongly driven by the laser field, the motion follows the Kepler hyperbola [figure 4 (a) and (b)] if 

the atomic potential can be approximated by a purely Coulombic one. The point to be emphasized is 

that the dashed line in the figure 4 (a) and (b) does not represent the laser-driven trajectory averaged 

over a quiver oscillation period but the unperturbed Kepler hyperbola with the identical asymptotic 

momentum as the laser driven trajectory (solid line). Thus, the angular momentum of the Kepler 

hyperbola is identical to that of the asymptotic L of the laser-driven electron. Identifying the pericenter 

of the hyperbola with the quiver amplitude, 
2 ( )² - / ²Z kL Z kα  = +

 
 with α = F0/ω², results in a 

simple relation between the angular momentum L and α [28], 

 

 ( )
1/ 2

2 2
1/ 2

( ) 2 1 .
2

k
L k Z

Z

α
α

 
= + 

 
    (10) 

 

This simple classical formula predicts the number of quantum interference minima or the peak in the 

calculated partial wave populations. The initial conditions for the laser driven trajectory are provided 

by tunneling ionization with the release of the electron with zero longitudinal velocity at times ti near 

the maxima of the field amplitude F(it) ≃ F0. Note that the number of quiver oscillations along the 

Kepler orbit is not unique thus allowing for path interferences. Trajectories released at different times 

ti or different maxima of the field reaching the same asymptotic branch of the Kepler hyperbola will 

interfere and generate generalized Ramsauer-Townsend (GRT) interference fringes [4,29]. In order to 

reach the limiting case of the dominance in the semiclassical domain of a single 
0l

P it is necessary that 

interference trajectories at fixed energy that approximately cover the entire range of scattering angles 

(0 ≲ θ ≲ π) all of which with angular momenta close to l0 exist. Our CTMC-T calculations show that 

close to threshold such families of trajectories indeed exist [4]. Analogous path interference occurs in 

electron-atom scattering where GRT interference fringes can be semiclassically described in terms of 

interferences of paths with different angular momenta scattered into the same angle [29]. 
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Figure 4. Classical trajectories of laser-driven electrons (solid lines) and unperturbed Kepler 

hyperbola of same asymptotic E and L (dashed lines). 
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At threshold, i.e., k = 0, Equation (10) reduces to: 2L Zα= , which depends only on the quiver 

amplitude (i.e. the laser parameters) and the charge of the (asymptotic) Coulomb field Z. In figure 5 

we plot the dominant angular momenta L, i.e., the number of nodal lines near the origin, as a function 

of the quiver amplitude α for different atomic species (H, Ar, Kr, Ne, He) from theoretical calculations 

[4,14,16,30]. Very good agreement to our predictions is observed without any adjustable parameters. 
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Figure 5. Dominant angular momentum 

as a function of the quiver amplitude. The 

semi-classical estimate (solid line) is 

compared with different quantum 

simulations: Chen et al. [16] (circles), 

Wickenhauser et al [30] (rhombus), Arbó 

et al. [4] (up triangles), de Bohan [31] 

(down triangles), and Dionissopouplou et 

al. [18] (squares). 

 

 

4.  Conclusions 
We have presented theoretical studies of the interference effect observed in the electron distributions 

of ionized atoms subject to linearly polarized ultrashort laser pulses. We have extended the previous 

analysis in the energy domain to the full two-dimensional momentum space distribution. After one- 

and two-cycle pulses, the two-dimensional electron momentum distribution displays interference 

fringes identified as interference between the wave packets released during the first and second half 

cycle. Each half cycle operates as an independent slit. For a multi-cycle pulse the near-threshold 

pattern has been recently analyzed in terms of generalized Ramsauer-Townsend diffraction 

oscillations [4], where Coulomb scattering effects have been shown to be important. A simple 

semiclassical analysis identifies the fringes resulting from interfering paths released at different times 

but reaching the same Kepler asymptote. The present result shows that a proper semiclassical 

description along the lines of the "simple man's model" [32] requires the inclusion of Coulomb 

scattering. Our results feature a striking similarity to recent data by Rudenko et al. [5] suggesting the 

presence of the 2D interference fringes to be mostly independent of the specific atomic species. 
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