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Abstract Entropic-force cosmology provides, in contrast
with dark energy descriptions, a concrete physical under-
standing of the accelerated expansion of the universe. The
acceleration appears to be a consequence of the entropy asso-
ciated with the information storage in the universe. Since
these cosmological models are unable of explaining the dif-
ferent periods of acceleration and deceleration unless a cor-
rection term is considered, we study the effects of including
a subdominant power-law term within a thermodynamically
admissible entropic-force model. The temperature of the uni-
verse horizon is obtained by a clear physical principle, i.e.,
requiring that the Legendre structure of thermodynamics is
preserved. We analyze the various types of behaviors, and
we compare the performance of thermodynamically consis-
tent entropic-force models with regard to available super-
novae data by providing appropriate constraints for opti-
mizing alternative entropies and temperatures of the Hubble
screen. The novelty of our work is that the analysis is based
on a entropy scaling with an arbitrary power of the Hubble
radius, instead of a specific entropy. This allows us to con-
clude on various models at once, compare them, and conserve
the scaling exponent as a parameter to be fitted with obser-
vational data, thus providing information about the form of
the actual cosmological entropy and temperature. We show
that the introduced correction term is capable of explaining
different periods of acceleration and deceleration in the late-
time universe.

a e-mail: javierzamora055@gmail.com (corresponding author)
b e-mail: tsallis@cbpf.br

1 Introduction

The Lambda Cold Dark Matter (ΛCDM) model assumes a
cosmological constant Λ and the existence of dark energy.
This model is the simplest one that can explain an accel-
erated expansion of the late universe. However, it implies
several theoretical peculiarities, such as the cosmic coinci-
dence and the cosmological constant problem [1,2]. In main-
stream cosmology, matter and space-time emerged from a
singularity and evolved through four distinct periods, namely,
early inflation, radiation, dark matter, and late-time expan-
sion (driven by dark energy according to the ΛCDM model).
During the radiation- and dark-matter-dominated stages, the
universe is decelerating while the early and late-time expan-
sion are accelerating stages. A possible connection between
the accelerating periods remains unknown, and, intriguingly
enough, the most popular dark energy candidate powering the
present accelerating stage (Λ-vacuum) relies on the cosmo-
logical constant and coincidence puzzles. In order to handle
these difficulties, several alternative models have been pro-
posed, see for instance [3–6].

An interesting alternative model based on the concept of
entropic-force is able to explain the late-time accelerated
expansion of the universe [7,8]. From this standpoint, the
controversial dark-energy component is not necessary. Here,
the late-time accelerated expansion is based on the entropic-
force concept. Instead of the dark energy, we have the holo-
graphic principle and entropy as the source of the late acceler-
ating phase of the universe. An entropic-force is an emergent
phenomenon resulting from the natural tendency of a ther-
modynamical system to extremize its entropy, rather than
from a particular underlying fundamental force. There is no
field associated with an entropic-force. The force equation is
expressed in terms of a spatial dependence of the entropy S.
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The cosmological entropic-force F , is then given by

F = −T
dS

drH
, (1)

where rH is the Hubble radius.
At this point, let us make an important clarification. The

present entropic-force cosmological model is definitively dif-
ferent from the idea that gravity itself is an entropic-force,
as suggested in [9]. The entropic-force term has the potential
of explaining the accelerated expansion without introducing
new fields nor dark energy.

Thermodynamical properties of the universe have always
attracted attention [10–12] and, in more recent years, entropic
cosmology in particular [13–18]. The first entropic-force
model proposed by Easson, Frampton, and Smoot (EFS) [7]
assumes that the entropy and temperature associated to the
horizon of the universe are the Bekenstein–Hawking entropy
[19] and the Hawking temperature [20], respectively. After
that, other entropies were considered, such as the nonaddi-
tive Sδ=3/2-entropy [21]. This entropy was proposed in [22]
in the context of black-holes. Let us remind the reader that,
for such systems, the additive Bekenstein–Hawking entropy
is proportional to the area of the horizon, i.e. it is subexten-
sive, whereas the nonadditive Sδ=3/2-entropy is proportional
to the volume (at least in the case of equal probabilities), i.e.
it is extensive as required by thermodynamics. In the mod-
els [7,8,21], the expression of the temperature of the Hubble
horizon is not reobtained from a neat physical principle. It is
simply assumed to be the Hawking temperature expressed in
terms of the universe parameters, namely

TBH (t) = h̄c

2πkBrH (t)
= h̄H(t)

2πkB
, (2)

where c is the speed of light, h̄ is the reduced Planck con-
stant, kB the Boltzmann constant, and H(t) is the Hubble
parameter. H is defined as

H ≡ c

rH
= ȧ

a
, (3)

a = a(t) being the scale factor.
Arbitrary combinations of entropy and temperature might

violate the Legendre structure of thermodynamics. This is
not the case of the Bekenstein–Hawking entropy and the
Hawking temperature, as proposed by EFS [7]. This issue
was recently discussed in [23], where we proposed a physi-
cal principle for deducing the thermodynamically consistent
temperature associated to each class of entropy. More pre-
cisely, we deduce the temperature from the Legendre struc-
ture of thermodynamics:

G(V, T, p, μ, . . .) = U (V, T, p, μ, . . .) − T S(V, T, p, μ, . . .)

+pV − μN (V, T, p, μ, . . .) − · · · , (4)

where T, p, μ are the temperature, pressure, and chem-
ical potential, and U, S, V, N are the internal energy,
entropy, volume, and the number of particles of the sys-
tem, respectively. This implies that, as detailed in [22], in
a Schwarzschild (3+1)-dimensional black hole, the relation

θ = 1 − d (5)

must hold, where d is the dimension (S ∝ Ld ), and θ is the
corresponding exponent for the scaling of the temperature
(T ∝ Lθ ), L being a characteristic linear dimension of the
d-dimensional system. For the Bekenstein–Hawking entropy
(d = 2), the temperature depends on L−1 as the Hawking
temperature.

The entropic-force term, Eq. (1), affects the background
evolution of the late universe; in the present paper we do
not focus on the inflation of the early universe. It has been
shown that entropic-force models which include only H2

terms are not able to describe on a single footing both decel-
erating and accelerating stages [24,25]. Indeed, Basilakos
et al. [26] have shown that the first Easson-Frampton-Smoot
(EFS) entropic-force model (which only includes a H2 term)
does not describe properly both acceleration and deceleration
cosmological regimes unless a Ḣ term is included as well.

In our previous work [23], we showed that the entropic-
force term in the acceleration equation of all thermodynam-
ically consistent models are of the H2-type, similarly to the
entropic-force term in the EFS model [7]. As a consequence,
the deceleration parameter, currently noted q, is a con-
stant and thermodynamically consistent models are unable
of predicting different stages of acceleration and decelera-
tion. Nevertheless, changes in the deceleration parameter can
be smoothly introduced by including subdominant terms in
the entropy of the horizon. For example, EFS considered a
logarithmic correction term in Bekenstein entropy [8]. With
this additional term, the model predicts different periods of
acceleration and deceleration. However, they do not compare
this prediction with the available data, neither sufficiently
analyze the consequences of this specific addition. Follow-
ing along this line but on more general grounds, we explore
here the effects of adding a power-law subdominant term in
the entropy and, at the same time, we consider an arbitrary
entropy scaling with the power d of the length. From this gen-
eralized approach, we study how several entropic-force mod-
els accommodate a viable cosmology for late-times without
the consideration of dark energy. To develop some physi-
cal intuition concerning subdominant entropic terms we may
think, as an illustration on a classical fluid, in a certain amount
of water flowing, until final arrest, on a horizontal planar
glass. We may observe that, just before the final equilibrium,
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the liquid surface returns slightly back (thus slightly decreas-
ing the entire perimeter) due to surface tension effects. By
this, what we mean is that subdominant entropic terms are
not rare in nature, though they are neglected in first approxi-
mations. Even further, they have physical meaning and their
inclusion are physically motivated.

2 Subdominant term

Let us consider an entropy that scales with some arbitrary
positive power d ∈ R

+ plus an additional term depending
on a smaller power 0 < Δ < d.

S

kB
= A

(
rH
LP

)d

+ E
(rH/LP )Δ − 1

Δ
, (6)

where A and E are dimensionless constants, and LP =√
h̄G/c3 is the Planck length. By expressing the subdom-

inant term in this way, we recover the logarithmic cor-
rection presented in [8] when we take Δ → 0, since
limΔ→0

xΔ−1
Δ

= ln x . Additionally, by taking E = 0 we
obtain the Bekenstein–Hawking entropy (d = 2) and the
δ = 3/2 entropy (d = 3) as particular cases.

According to Eq. (5), the thermodynamically correct tem-
perature must scale like T ∝ r1−d

H . Consequently, we use

T = TP
B

(
rH
LP

)1−d

, (7)

as the temperature of the Hubble horizon, where B is a dimen-

sionless factor, and TP =
√
h̄c5/Gk2

B is the Planck temper-
ature. The entropic force is then given by

F ≡ −T
dS

drH
= −kB

d A

B
.
TP
LP

[
1 + E

d A

(
rH
LP

)Δ−d
]

≡ −Cd FP (1 + Dd,ΔHd−Δ), (8)

where FP ≡ kBTP/LP = c4/G is the Planck force,
Cd ≡ d A/B, and Dd,Δ ≡ E(L p/c)d−Δ/(d A). Therefore,
the entropic pressure in the Hubble surface is

pF ≡ F

4πr2
H

= −Cdc2

4πG
H2(1 + Dd,ΔHd−Δ). (9)

Note that, when d = 2 with Δ → 0, we obtain the H4

correction term in [8], and when Dd,Δ = 0 we obtain the
H2-type models [7,23]. To obtain the Friedmann equations
modified by pF , we replace the effective pressure p′ = p +
pF in the acceleration equation

ä

a
= −4πG

3

(
ρ + 3p′

c2

)
, (10)

thus arriving to

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ CdH

2(1 + Dd,ΔHd−Δ). (11)

In Eqs. (10) and (11), ρ is the total energy density of the
universe. Replacing now p′ in the continuity equation

ρ̇ + 3
ȧ

a

(
ρ + p′

c2

)
= 0, (12)

we obtain

ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= 3Cd

4πG
H3(1 + Dd,ΔHd−Δ). (13)

Now, we follow the procedure of [21] to derive a modified
Friedmann equation from Eqs. (11) and (13). Considering
the generalized Friedmann and acceleration equations,
(
ȧ

a

)2

= 8πGρ

3
+ f (t), (14)

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ g(t), (15)

one deduces

ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= 3

4πG
H

(
− f (t) − ḟ (t)

2H
+ g(t)

)
.

(16)

As examined in [25], assuming a non-adiabatic-like
expansion of the universe, we can simplify the model by
considering a dependence of the form f (t) = α[H(t)]2. By
comparing Eq. (13) with (16), and Eq. (11) with (15), we
obtain α = 0. Consequently, the Friedmann equation is

(
ȧ

a

)2

= 8πGρ

3
. (17)

The three main equations are (11), (13), and (17), but only
two of them are independent.

We obtain the solution under the assumption of a homoge-
neous, isotropic, and spatially flat universe. From Eqs. (11),
(13), and (17), we obtain

2CdDd,ΔHd−Δ
0 + [2Cd − 3(1 + ω)]

(
H0
H

)d−Δ

2CdDd,ΔHd−Δ
0 + [2Cd − 3(1 + ω)]

×
(
a

a0

)− (d−Δ)
2 [2Cd−3(1+ω)]

, (18)

where ω ≡ p
ρ c2 ; a0 and H0 are the contemporary values of

a and H , respectively. Let us focus now on the simple case
of non-relativistic matter-dominated universe, i.e. ω = 0 [3].
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A straightforward calculation yields the following explicit
time-dependent solution:

(1 + d − Δ)Cd Dd,ΔHd−Δ
0 H0(t − t0) =

[
(2Cd Dd,ΔHd−Δ

0

+ 2Cd − 3)

(
a

a0

)− (d−Δ)
2 (2Cd−3)

− 2Cd Dd,ΔHd−Δ
0

⎤
⎦

1+ 1
d−Δ

×2F1

(
1, 1 + 1

d − Δ
; 2 + 1

d − Δ
;

1 − 2Cd Dd,ΔHd−Δ
0 + 2Cd − 3

2Cd Dd,ΔHd−Δ
0

(
a

a0

)− (d−Δ)
2 (2Cd−3)

⎞
⎠

−(2Cd − 3)1+ 1
d−Δ

×2F1

(
1, 1 + 1

d − Δ
; 2 + 1

d − Δ
; 2Cd − 3

2Cd Dd,ΔHd−Δ
0

)
. (19)

3 Results

In this section, we analyze the behavior of entropic-force
models for late-time cosmology. To do so, in Fig. 1 we have
plotted Eq. (19) for several combinations of the parameters,
showing the different types of behaviors. We have plotted
the solution for Cd = 1.2, Dd,Δ = −0.01, and d − Δ = 1
(red dashed curve) in which the curvature is always convex.
The solution with parameters Cd = 0.1, Dd,Δ = −0.01, and
d−Δ = 1 (orange dotted curve) is always concave. The blue
dot-dashed curve has parameters Cd = 1.8, Dd,Δ = −0.6,
and d − Δ = 0.3 and it presents a change of concavity, in a
similar way to the fine-tuned standard ΛCDM model (Ωm =
0.315,ΩΛ = 0.685, purple solid curve). In other words,
the entropic-force model with subdominant term is able to
predict stages of decelerated and accelerated expansion of the
universe, which is similar to the fine-tuned standard ΛCDM
model. The blue curve is indistinguishable from the ΛCDM
model for t < t0, and the red curve is indistinguishable from
the ΛCDM model for t > t0.

Let us study how the subdominant term influences the
behavior of the deceleration parameter, q ≡ −ä/(aH2).
We remind the reader that without a subdominant term,
entropic-force models are not capable of accommodating a
viable cosmology, since the deceleration parameter is always
negative and, therefore, they predict a universe in perpetual
accelerated expansion [7,23,26]. The deceleration parameter
straightforwardly follows from Eq. (19), and is given by

q = −1

2
(2Cd − 3) − 1 − CdDd,ΔHd−Δ

= −1

2
(2Cd − 3) − 1 − CdDd,Δ

(z + 1)
1
2 (d−Δ)(2Cd−3)

(
H−(d−Δ)

0 + 2Cd Dd,Δ

2Cd−3

)
− 2Cd Dd,Δ

2Cd−3

. (20)

Fig. 1 Time evolution of normalized scale factor a/a0 for several
combinations of the parameters. The horizontal axis is normalized as
H0(t − t0). t0 and a0 are the current values of time and scale fac-
tor, respectively. The possible behaviors of the solution are: i-convex
curve (red dashed), ii-concave curve (orange dotted), and iii-curve with
change of concavity (blue dot-dashed). The fine-tuned standard ΛCDM
model (purple solid curve) is showed for comparison purposes

The deceleration parameter does depend on H , and there-
fore, on time. The inclusion of a first-order correction to the
horizon entropy provides a natural source of dependence of
the deceleration parameter with the redshift z. The equation
describing H(z) is obtained by replacing the definition of the
redshift, 1 + z ≡ a0/a, in Eq. (18). Values of q < 0 corre-
spond to an accelerating universe and q > 0 to a decelerating
one. Depending on the combination of parameters Cd , Dd,Δ,
d, and Δ, the deceleration parameter is positive or negative,
and it is able to explain periods of acceleration and deceler-
ation, as shown in Figs. 2, 3, 4 and 5. In Fig. 2 we plot the
deceleration parameter for five different values of Cd . They
intersect in the point H = (−Dd,Δ)1/(d−Δ), and q = 1/2.
The physical interpretation of this interesting point remains
elusive at the present stage. Let us also mention that q = 1/2
is precisely the value of the deceleration parameter at t = 0
in the ΛCDM model.

In Figs. 3, 4 and 5 we have plotted the deceleration param-
eter as a function of redshift z for recent times (low negative
and positive values of z) for various values of (Cd , Dd,Δ,
d − Δ). Cd has the effect of changing the value of q in
the point z = −1. When Cd = 1.5, q = −1, as in the
ΛCDM model and others [27,28]. However, the shape of the
curve is different from the ΛCDM one. Instead, it is similar
to that reported in [29]. In all cases, when z = 0 (current
time) q < 0, thus recovering the knowledge that the universe
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Fig. 2 Deceleration parameter q versus Hubble parameter H for five
different values of Cd , Dd,Δ = 0.00005, and d − Δ = 2. Notice the
change of sign

Fig. 3 Deceleration parameter q versus redshift z for three different
values of Cd , Dd,Δ = −0.005, and d − Δ = 1. Cd changes the value
of q in z = −1

Fig. 4 Deceleration parameter q versus redshift z for three different
values of Dd,Δ, Cd = 1.5, and d − Δ = 1

is currently accelerating. Finally, notice the change of sign,
meaning that the subdominant term in the horizon entropy
is capable of explaining both decelerated and accelerated
expansions. Unlike ΛCDM in which q approaches 0.5 when
z goes to infinity, q grows without restriction for the early
universe in this model. Then, one should restrict the present
analysis to the late-time and close-future universe.

Fig. 5 Deceleration parameter q versus redshift z for three different
values of d−Δ,Cd = 1.5, and Dd,Δ = −0.005. Notice the big changes
in q for small variations in d − Δ

Let us focus now on the entropy evolution. In Fig. 6,
we show the behavior of different dimensionless entropies
with the scale factor. The entropies are normalized in dif-
ferent ways (see caption). We analytically calculated the
Bekenstein–Hawking entropy of the fine-tuned standard
ΛCDM model as SBH/KBH = H−2 = (a/ȧ)2, (KBH ≡
πkBc5/h̄GH2

0 ), in order to compare with the entropic-force
models. For a/a0 < 1, the entropy for the standard ΛCDM
model increases rapidly, whereas, for a/a0 > 1, the incre-
ment in the entropy tends to become gradually slower. Sim-
ilar results have been reported in [30–36]. We now examine
the entropic-force models. Let us emphasize at this point
that, for a/a0 < 1, the entropy for all entropic-force mod-
els is consistent with the standard ΛCDM model. However,
for a/a0 > 1, the entropy for the EFS entropic-force model
increases uniformly, whereas the increment in the entropy
for the generalized Komatsu and Kimura (KK) entropic-
force model [21] tends to become gradually slower. On the
other hand, for a/a0 > 1, the entropy for this generalized
KK entropic-force model increases more rapidly than for the
ΛCDM model. The evolution of the entropy for the present
generalized entropic-force model with power-law subdomi-
nant term exhibits diverse behaviors depending on the param-
eters values, ranging from curves similar to the EFS model
(Cd = 3, Dd,Δ = −0.25, d = 2,Δ = 1, E = 0), pass-
ing through the Komatsu-Kimura model (Cd = 3, Dd,Δ =
−0.29465, d = 3,Δ = 2, E = 0), until eventually attaining
curves similar to the ΛCDM model for all a/a0. For instance,
Cd = 3.3, Dd,Δ = −0.45, d = 2,Δ = 1, E = 0.01 corre-
spond to the plotted orange dotted curve in Fig. 6.

4 Comparison with supernova data

Supernova data are the main source of available measure-
ments in order to compare cosmological models. They con-
stitute nowadays one of the best observational tools for com-
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Fig. 6 Evolution of the Bekenstein–Hawking and generalized
entropies. The vertical axis represents dimensionless entropy, where the
parameter K is KBH = πkBc5/h̄GH2

0 and KKK = πkBc6/h̄GH3
0 , for

the Bekenstein–Hawking entropy used in EFS entropic model (EFS, red
dashed curve) and generalized Komatsu-Kimura entropic-force model
(KK, dot-dashed blue curve), respectively. The purple solid line rep-
resents SBH /KBH for the fine-tuned standard ΛCDM model and it is
analytically calculated from SBH /KBH = H−2 = (a/ȧ)2. K = kB A
for our generalized model with power correction term (orange dotted
curve). Depending on the parameters, our model presents diverse behav-
iors, ranging from curves similar to EFS model (Cd = 3, Dd,Δ =
−0.25, d = 2,Δ = 1, E = 0), passing through Komatsu-Kimura
model (Cd = 3, Dd,Δ = −0.29465, d = 3,Δ = 2, E = 0), until a
curve similar to the ΛCDM model (Cd = 3.3, Dd,Δ = −0.45, d =
2,Δ = 1, E = 0.01), which is the plotted orange dotted curve

paring several entropic-force models. We present here an
analysis of the available updated data. In Fig. 7, we have
plotted the Hubble parameter H as a function of the redshift
z using the data points taken from table 1 in [37]. We have
plotted the best fittings for four different entropic-force mod-
els. In all cases, the value of H0 is set to be 67.4 (km/s)/Mpc
based on the Planck 2018 results [38]. The first EFS entropic-
force model [7] (black dotted curve) uses the Bekenstein–
Hawking entropy and the Hawking temperature. This is a
particular case of our present model (d = 2, Dd,Δ = 0,
Cd = 1). Log-correction corresponds to the second EFS
model [8] (dot-dashed blue curve), which includes a logarith-
mic subdominant term. This particular case can be obtained
from our model by taking d = 2, Δ → 0, Cd = 1. We
fitted Dd,Δ = (0.1322 ± 0.0004) × 10−3. ZT stands for
our previous thermodynamically consistent entropic-force
model (dashed red curve) [23]. In this case the entropy scales
with an arbitrary power d, and can be obtained by taking
Dd,Δ = 0. The fitting value is Cd = 0.57 ± 0.03. For our
current entropic-force model with power correction (solid
green curve), Cd = 1.23 ± 0.03, Dd,Δ = −0.005 ± 0.001
and d − Δ = 1.0 ± 0.1 are determined by optimally fitting
the data points. Notice that d − Δ is the difference of two
dimensions (d > Δ), therefore a positive integer number is
welcome.

Fig. 7 Hubble parameter H versus redshift z. The open circle with bars
are data points taken from Table 1 in [37]. In all cases, the value of H0 is
set to be 67.4 km/s/Mpc based on the Planck 2018 results [38]. The black
dotted curve is the first EFS entropic-force model [7] (d = 2, Δ → 0,
Dd,Δ = 0, Cd = 1). The dot-dashed blue curve is the second EFS
model [8] with logarithmic correction term (d = 2, Δ → 0, Cd = 1).
The fitting value is Dd,Δ = (0.1322 ± 0.0004) × 10−3. The dashed
red curve is our previous thermodynamically consistent entropic-force
model [23] (Dd,Δ = 0). The fitting value is Cd = 0.57 ± 0.03. The
solid green curve is our present model with power correction. The best
fitting values are Cd = 1.23 ± 0.03, Dd,Δ = (−0.005 ± 0.001) and
d − Δ = 1.0 ± 0.1

In addition to the above, we obtain a satisfactory agree-
ment for the luminosity distance data pointsdL for all models,
using the above fitting parameters. The luminosity distance
is defined (see [7,21] for instance) by

dL(z) ≡ c(1 + z)

H0

∫ 1+z

1

dy

F(y)
, (21)

where y ≡ a0/a, and F(y) ≡ H(y)/H0. We remind that we
are assuming ω = 0. From Eq. (18), we obtain

H0

c
dL = (1 + z)(2Cd − 3)

2Cd Dd,ΔHd−Δ
0

×
{

2F1

[
1, 1 + 2Cd − 1

(2Cd − 3)(d − Δ)
,

1 + 2

(2Cd − 3)(d − Δ)
, 1 + 2Cd − 3

2Cd Dd,ΔHd−Δ
0

]
− (1 + z)

×
[

(2Cd − 3 + 2Cd Dd,ΔHd−Δ
0 )(1 + z)

d−Δ
2 (2Cd−3)

2Cd − 3

× −2Cd Dd,ΔHd−Δ
0

2Cd − 3

]1+ 1
d−Δ

× 2F1

[
1, 1 + 2Cd − 1

(2Cd − 3)(d − Δ)
, 1 + 2

(2Cd − 3)(d − Δ)
,

(2Cd − 3 + 2Cd Dd,ΔHd−Δ
0 )(1 + z)

d−Δ
2 (2Cd−3)

2Cd Dd,ΔHd−Δ
0

]}
. (22)

In Fig. 8, we have plotted the distance modulus μ versus
redshift z data taken from the so-called “Pantheon Survey”,
consisting of a total of 1048 Type Ia Supernovae [39], where
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Fig. 8 Dependence of the distance modulus μ with redshift z. The
open circles with error bars are supernova data points taken from [39].
SN1a absolute magnitude M0 = −19.36. The dashed red curve is our
previous thermodynamically consistent model [23]. The solid green
curve is the present model with power correction term. All entropic
force models have a good agreement, with R2 = 0.999 . . ., we plotted
two of the models for simplicity. In both cases, H0 = 67.4 (km/s)/Mpc

μ = 5 log10 dL − 5, (23)

with dL in parsec. Figure 8 displays the Pantheon Survey as
the standard Hubble diagram of SN1a (absolute magnitude
M0 = −19.36). We plotted our first model (ZT model, red
dashed curve) as well as the current model with subdomi-
nant term (solid green curve). All entropic-force models fit
similarly the modulus distance data points; we only plotted
two of them as illustrations. In fact, there exist numerous and
diverse cosmological models exhibiting a similar agreement
with such data (see, for example, [5,40–43]).

More complete data analyzes (for example using covari-
ance matrix) are needed to further validate these models but
this is out of the present scope. Here, we only used the data to
compare the performance of different entropic-force models.

Finally, in Fig. 9 we have plotted the deceleration param-
eter q as a function of the redshift z with the fitting parame-
ters for the present model with subdominant power-law term.
Notice the change of sign. This means that the fitting param-
eters are coherent with stages of accelerated and decelerated
expansion for the late-time expansion.

5 Comments on matter density and equation of state
parameters

Let us discuss some aspects that deserve to be mentioned
here. The present entropic cosmological model is able of
predicting both accelerated and decelerated regimes of the
universe, as already discussed. In this model we add an
extra pressure term, but not an additional energy density
term. Therefore, while the analysis can describe the observed

Fig. 9 Dependence of the deceleration parameter q with redshift z for
the fitted values Cd = 1.23, Dd,Δ = −0.005, and d − Δ = 1. H0 was
set to be 67.4 (km/s)/Mpc. See Eq. (20)

behavior of H(t) and q(z), it cannot describe the matter den-
sity parameter Ωm . According to Eq. (17), Ωm is always 1,
while according to the observations it was 1 in the past and is
0.3 today, the other 0.7 being the source of the acceleration of
the universe. This is due to our assumption f (t) = α[H(t)]2,
where f (t) is the additional term in the Friedmann equation.
Comparison between Eqs. (11) and (13) yields f (t) = 0.
Consequently, extra energy density terms in Eq. (17) can be
added in the framework of entropic cosmology considering
other functional forms for f (t). Since in this paper we have
focused on showing how accelerated and decelerated regimes
can take place in this framework, we have not explored the
possibility of adding extra dominant terms in say the energy
density. The addition of such as term would naturally allow
for more precise models which could be considered in the
future.

Moreover, for simplicity, the model was solved assum-
ing a homogeneous, isotropic, spatially flat, and single-fluid
dominated universe, more precisely a non-relativistic matter-
dominated universe. This means that we have assumed that
the equation-of-state parameter ω vanishes. Let us emphasize
that this assumption is not always adopted within entropic
cosmological models. The study of the present model consid-
ering other values of ω, or even using it as a free parameter to
be fitted, might be useful but beyond the scope of the present
work. Explicit multi-fluid solutions and the corresponding
equations of state could, as in [44], also be considered along
the present lines.

Additionally, note that the relation to the underlying
expansion parameters that have been measured (e.g., via the
angular-diameter distance) depends on the assumed cosmol-
ogy [38]. As stated in page 17 of [38] after presenting the
value of Ωm : “It is important to emphasize that the values
given in Eq. (13) assume the base-ΛCDM cosmology with
minimal neutrino mass. These estimates are highly model
dependent…”. Thus, the obtained value Ωm = 0.3 might
not be valid for other models like the present one.
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6 Conclusions

Summarizing, in order to examine the entropic cosmology,
we have assumed a generalized entropy with including a
power-law subdominant term in the cosmological equations.
This approach provides, in contrast with the dark energy
description, a concrete physical understanding of the acceler-
ation. The current accelerated expansion rate is the inevitable
consequence of the entropy associated with the information
storage in the universe. The different periods of acceleration
and deceleration can be explained by such a correction term.

The choice of the entropy and temperature of the hori-
zon of the universe is based on the Legendre structure of
thermodynamics. It is on this basis that we have formulated
the modified Friedmann, acceleration, and continuity equa-
tions. We showed that the Friedmann equation itself does not
include the entropic-force term, in variance with the accel-
eration equation which presents the H2 term as well as a
Hd−Δ+2 correction term, and the continuity equation which
presents the H3 term as well as a Hd−Δ+3 correction term.

We have obtained a solution of the model, assuming a
homogeneous, isotropic, and spatially flat universe. We have
confirmed that this model describes a currently accelerating
universe, without adding a cosmological constant or assum-
ing the existence of dark energy. The power-law correction
term in the entropy is capable of explaining the periods of
acceleration and deceleration since the deceleration param-
eter can take both positive and negative values. In fact, the
solution has three types of behaviors, namely, (i) an always
accelerated expanding universe, (ii) an always decelerated
expanding universe, and (iii) a decelerating and accelerat-
ing expanding universe similar to the ΛCDM model. How-
ever, the shape of the curve is different from the ΛCDM one.
Instead, it is similar to that reported in [29]. Unlike ΛCDM
in which q approaches 0.5 when z goes to infinity, q grows
without restriction for the early universe in this model. Then,
one should restrict the present analysis to the late-time and
close-future universe. In addition, depending on the values
chosen for the parameters of the model, the behavior of the
entropy is similar to that of the ΛCDM model.

Finally, we compared the performance of diverse entropic
force models with regard to the available supernova data.
They show satisfactory agreement with the distance lumi-
nosity, and the Hubble parameter H as a function of redshift
z.

To sum up, this kind of models is capable of predicting
stages of deceleration and acceleration in the late cosmic
expansion, a time-evolution of entropy similar to mainstream
cosmology, being consistent with data. In addition, the fitting
values of the parameters are consistent with a deceleration
parameter changing signature around z = 1.

As a serious alternative to mainstream cosmology, entropic
force models need to satisfactory handle three important

points: (i) validation through the full data analysis, including
covariance matrices; (ii) correct explanation of the different
periods of acceleration and deceleration; and (iii) a physical
principle that mandates the entropy and temperature to be
used for the Hubble horizon. In the present paper we have
focused on the latter two points.
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