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Abstract

In this paper we consider the problem about the conditionf>Xdng(x) and a(t) to ensure that al
solutions of (1) are continuable and oscillatory usingumsiral assumptions.

Keywords: Oscillation; Lienard equation; continuability; asymptdt@havior.

1 Preliminaries

Consider the nonautonomous Liénard equation
xX"+f(x)x'+a(t)g(x)=0, (1)

where a, f and g are continuous in their arguments, watjis§uitable assumptions. In this paper we assume
that f, g and a satisfying some properties that guaralteaisexistence and uniqueness of solutions of (1).
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As it is well known, the problems deal with the quaiNM& properties of solutions of the above equation or
his generalizations are very important in the theory gupdiGations of differential equations. For example,
equation (1) is frequently encountered in mathematical model mot dynamics process in
electromechanical systems in physics and enginedfiogiever, it should be noted that details of these and
other applications will not be given here.

Further details on the qualitative properties of equatipedh be found in [1].

Various questions on stability, oscillation and periodicitysolutions of (1) have received a considerable
amount of attention in the last decades (see [2-4,3H,7and [12] and references cited therein) under
classical assumptions f(x)>0 foJR. In this paper we study the oscillatory nature of smhst of (1)
without makes use of this condition, using a new methodthich the usual assumptions on involved
functions in (1) are not used.

A solution of (1) isoscillatory if there exists a infinite sequencgXtending monotonically teo such that
X(t,)=0.

The equation (1) is equivalent to the system

X'=y-F(x), 2
y'=-a(t)g(x),

whereF (x) = foxf(u)du, xOR. Also, we assume that satisfy the following assumgtio

a) xg(x)>0 for x£0.

b) foxg(s)ds = +oo.

c) 0<a<a(t) <A< +owofortl0,+m0).
The condition a) shows that (0,0) is the only point of equilibrof system (2) and the condition b) ensures
that results obtained are in global sense. From [1] obtaihcondition c¢) is consistent with the common
sense.

We consider now the following system equivalent to (1):

X'=y, 3
y'=-f(x)y-a(t)g(x).

We will show that the solutions of the equation

dy _ f)y-a®g() (4)
dx - y

do not admit vertical asymptotes, consequently the solsitof (3) (and (1)) do not admit them either. It is
enough, to this end, suppose that (4) has a solution y=y&Jpasuch that

lim,_;,- y(x) = +oo. (5)
We can assume with no loss of generality, that O<y(a) for a<x<b, and
d) let Kis the max of f onsx<b and M the max of g orca<b.

It follows that

y(x)-y(@={K+AM/y(a)}(b-a),
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which is a clear contradiction with (5). The other situatioan be analyzed in a similar way. The obtained
allows assuring the global existence of the solutiong)of (

2 On the Oscillatory Solutions of (1) with a(t1 (1)

For any point P(xyo) JR? lety"(P) the positive semi trajectory of (2) passing by P.

Theorem 1 Under conditions a)-d) we suppose in addition that

e) The functions g anél (x) + % are no decreasing fox|>N>0 and h>0.

f) limsup |x|_>+w% <0.

Then for all P(¥,yo) with x>0, yWw>F(X), the positive semi trajectory of (2) passing by P ctbsescurve
y=F(x) in a point (s,F(s)), with s3x

Proof. Let P(%,Yo) With x>0, w>F(%) and let (x(t),y(t)) the solution of (2) with initi@londitions (%,Yo)-

We suppose that x'(t)=y(t)-F(x(t))>0 for>@. From this we obtain that x(t) is increasing strictly
monotonically on [0,40) and X(t)- +o when t +oo. If this is no true then there exists a positive number j
such that for allt0 we have 0<x(@x(t)sj and from c) we obtaitim,_,,y(t) = —o so the curve
(x(1),y(1)) cross y=F(x) in some point of xR contradicting the initial supposition.

In the successive we distingue two cases:

Case 1lim,_, ., F(x) = —o.

Aslim,_, ., x(t) = +oo there exists a positive numb&such that x(t)>N for=td. Let now §, with {,>8 so we
have a positive number k, k<h such that

Y(to)<F(x(t))+9(x(t))/k<F(x(t)) +a(x(t))/k for all eto.

Then we have for albt, that y(t)<y(b)< F(X(t))+g(x(t))/k, i.e. fortt,

—g(x(®) <k
y(@) — F(x(®)
So the slope of the trajectory of the solution sati%f;t y__gT(fx)) < —k if x>X(to), where z is a real function

definite onR such that z(x(t))=y(t) for albt,. From this we have
Z(x(6)=-k(x()-X(to)) +2(x(to))-

From e) for all real number b and all positive number agtkgists a positive numbgrsuch that if x5 we
have —ax+BF(x). Aslim,_,,,, x(t) = +o there exists a positive numbert such that

y(O)=z(X(1))=-kx(t)+[x(t)) +Z(x ()] <F(X(1)), Bta.
But this contradicts the initial supposition.

Case 2lim,_,,,, F(x) > —oo.
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Again we havelim,_,,y(t) = —o, and aslim,_,, x(t) = +o andlim,_,, g(x) =m >0 (g is no
decreasing on (Mg#)). From the first equation of (2) we have thah,_,, F(x(t)) = —c and so
lim,_,,, F(x) = —oo. But this contradicts the supposition of this case.

As the (0,0) is the unique singular point of (2) we can condlgieany positive semi trajectory passing by
(Xo0,Yo) With x>0, y>F(Xo), cross the curve y=F(x) in a point (s,F(s)) withg>x

Remark 1. In a similar way we can prove the existence of a pairf(¢)) with u< x in the case 0,
Y1<F(x0).

Remark 2. In the proof of Case 2 the assumptions d) and e) don't usegletety.

In the prove of following result we recommend to [4, Theotém

Theorem 2.Under the same assumptions of Theorem 1, we suppesigition that
g) There exists a positive numbesuch that xF(x)<O0 if Okx | <e.

Then all solutions of system (2) are oscillatory.

Proof. Using the Theorem 1 we have that any positive semi taajepaissing by (yo) with x>0, Yo>F(Xo),
cross the curve y=F(x) in a point (s,F(s)) with gfanalogously we can prove the existence of a point
(u,F(u)) with u< x in the case <0, yi<F(x;)).

Now we will prove that all nontrivial solutions of (1) awscillatory it is sufficient to prove that any poséiv
semiorbit of (2) intersects the y axis in a finite timaisiwill result from the following considerations.

From a) and g) we have that the (0,0) is a fold and thimigue. Also if x>0 then —g(x)<0 so that a
nontrivial trajectory which intersects the curve y=F(x) o0 can pass only from the part of the semiplane
x>0 where y>F(x) to the part where y<F(x). The same rkragplies to the semiplane x<0: a nontrivial
trajectory which intersects the curve y=F(x) for x<0 pass only from the region where y<F(x) to the part
where y>F(x). We also know that if B(y) with x>0, w>F(X,) theny'(P) intersects y=F(x) at a point of
the semiplane x>0 whereas if Bf) is such that 50, w<F(X)) Y'(R) intersects y=F(x) at a point of the
semiplane x<0.

We consider a point P{y,) with x>0, y<F(X,). From the above the positive semi trajectgi(?) no cross
the curve y=F(x) when x>0 and neither tends to the origiaumee this is repulsive.

Soy'(P) cross the negative y axis necessarily if y<@if is not true we have<g(t), x'(t)<0, y'(t)<0 if t>0.
So, x(tJ[0,xg] if t=0 and there exist positive numbersaand t such that x'(t)=y(t)-F(x(t))<a fi t>t; and so
y'(P) cross the y axis with y<0 against the supposed.

To obtain the final picture we have to show that if gett@ry is starting from Sgxyo) with <0, Y<F(Xo),
then the positive semiorbjf(S) cross the y axis with y<0 and that a trajectorytiaafrom T(%,Yo) with
Xo<0 and y>F(X) crosses the y axis where y>0. Together with theipusvremaks, this ensures that the
nontrivial trajectories of (2) are clockwise around thgiarand leads us to the conclusion that all nontrivial
solutions of (2) are oscillatory.

Let S(%,Yo) With %<0, yw<F(X), be fixed. The trajectory’(S) cannot cross the curve y=F(x) in the part
where x>0 by previous remarks and cannot accumulated to stationary point of the system (2) since
the origin is repulsive. To show thg(S) has to cross the y axis at y<0 we have to prove thahitot stay
forever in the region {(x,y) %0, y<F(x)}. If it could stay forever in this region we wdthave for the unique
global solution (x(t),y(t)) with initial data gxyo) that

0=x(t), X' (1)<0, y'(tx0, 0
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Thus x(tJ[0,%o], O<t andlim,_,,, y(t) = —o0 which is impossible since the slope of the trajectary i
bounded forx0 (see Preliminaries) big enough (we héve, .. y(t) = —o and x(tJ[0,%g], O<t, implies
that F(x(t)) and g(x(t)) are bounded faf). This contradiction show thgf(S) crosses the y axis at y<0.

The second case, T(y) with X,<0 and y>F(X)), may be treated exactly in the same way.

From this we obtain that all solution of (2) is oscillatasyrrounding the origin clockwise and the proof of
the theorem is completed.

The following result generalizes the above.

Theorem 3. In addition to a) and g) we suppose that there existsid a real functiomIC(|x|>\)
verifying @'(x)<0 if |x|>\, and

h) % is no decreasing oneg;-A)CI(A,+c0).
i) There exists a positive number h such tRék) + h[_g;’,‘()x)]

j)  For all positive number a and all real number b#$a+b<F(x) (x>A\) and & (x)+b>F(x) (x<-A).

is no decreasing oneg;-A) (A, +00).

Then, all solutions of (2) are oscillatory.
Proof. Taking @(x)=-x we have the Theorem 2. We just have to followpite®fs of Theorems 1 and 2.
Remark 3. Taking into account the Remark 2 If instead of the ¢t e) and f) byim sup,_,,. F(x) >

—oo, lim supr——w/Ar<+w, lim infr— +wogr=7722>0, we obtain a modification of Theorem1 of [4].

2
1\73
x+1—ﬁ) x < -1

_l(
Example 1.We consider in (1) g(x)=¥;(x) = II ’ -1,-1<x <2 1
l—3(x-1-5) *x=1
We define the functiolf (x, y) = yz_z + G(x) with G(x)=¥/2.

We suppose a solution of (2) definite op T} for some T>L Then there exists a sequencg fin [to, T)
such that x— T when n- o and | x(t,) [+ y(t,) | - +c0 with n— +co.

The derivative of V along this solution gives V'(x(t) JEx*<2V(x(t),y(t)), from this is clear

In(V(X(tn),Y(t))<IN(V(X(to),Y(t0)))+2(T-to), to=t<T

but this is false because In(VR(¥(t,)) is no bounded. So the supposition is no true and theisolist
definite for all &t

If h=1 it's easy to see thEt+% is a no decreasing function dx|>2 and f) holds. Then in virtue of
Theorem 2 we have that all solutions of system () Wéitnd g as above, are oscillatory.

Remark 4. This example is no covered with results of [4].
Example 2.We consider now in (1), f(xX)=-4 and g(x)=x. The assumptiaf flheorem 2 hold taking h=1/5,

but e) is no fulfilled. However according to theory afelar differential equation the characteristic equation
in this case is%*4r+1=0, with positive roots so we have nonoscillatory sahsti13, pp.75-86]).
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3 On the Oscillatory Solutions of (1) with a(&1 (11)

In this section we will give other results that involve soimatwdifferent conditions on the functions of (1).
Theorem 4.Let F(x) and g(x) such that

a) xg(x)>0 for x+0.

b) There exist a positive number h such that the fundios +
bounded above oncf;0].

c) lim sup,_,,[F(x) + hx] = 4o (or lim infxqmi(—:; < 1), lim inf,,_,[F(x) + hx] = — (or

& ).

—hx

d) lim inf |, o10lg(x)| =m > 0.

gx)

- is bounded below on [k and

lim inf ,__,

Then for all point P(xYo) with x>0, y»>F(Xo) the positive semi trajectory of (2) passing by P crosstirve
y=F(x) in the point (s,F(s)) with s3x

Analogously, the positive semi trajectory of (2) passingQfys,y:) with x;<0, yi<F(x;) cross the curve
y=F(x) in the point (s,F(s)) with usx

Proof. Let a point P(xYo) with x>0, yv>F(x) and let (x(t),y(t)) the solution of (2) with initial conditisn
(Xo0,Yo) and suppose that x'(t)=y(t)-F(x(t))>0 for aliG. From here we have that x(t) is monotone increasing
strictly on [0,%0) andlim,_,,,, x(t) = +oo.

If the assumption were not true would exist a positive nurpbach that for all*0 be 0<x(0¥x(t)<j and
from a) we havéim,_,,, y(t) = —o and then (x(t),y(t)) will intercept to y=F(x) in some pioiof band
[x(0),j]xR against the supposition.

In what follows we will consider two cases.

Case 1lim,_, ., F(x) = —o.

We suppose that k is above bound ) + %

will be a positive numbeg such that y(t)<k and

on [0,4). From d) we havéim;,_, ., y(t) = —oo so there

—g(x(8)
T <L - >,
YO-Fx@®) — k for t to

So the slope of the trajectory sati%/: y__gF(g) < —k if x>X(to), where w is a real function definite éh

such that w(x(t))=y(t) for alktt,. From this we have

W(x(t))<-k(x(t)-x(to)) +W(X(to))-

From c) for all real number b and all positive number agtleists a positive numbgen(a,b) such that if
x>n we have 1g+b<F(@n). Aslim,_,,,, x(t) = +oo there exists a positive numbesrt such that

Y(t)=W(x(to))=-kx(tr)+[X(to)) +z(X ()] <F(X(t)).

But this contradicts the initial supposition.
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Case 2lim,_,,,, F(x) > —oo.

Again we havelim,_,,y(t) = —o, and aslim,,,, x(t) = +» andlim,_,,g(x)=m >0 (g is no
decreasing on (Mg#)). From the first equation of (2) we have thah, . F(x(t)) = —o and so
lim,_,,, F(x) = —oo. But this contradicts the supposition of this case.

As the (0,0) is the unique singular point of (2) we can condlogieany positive semi trajectory passing by
(Xo0,Yo) With x>0, w>F(Xo), cross the curve y=F(x) in a point (s,F(s)) withg>x

Remark 5. In a similar way we can prove the existence of a pairf(¢)) with u< x in the case 0,
Y1<F(x0).

Remark 6. In the proof of Case 2, the conditions b) and c) haveesn bised.

Remark 7. If in this theorem we replace conditions b) and c) liny sup,_,,.[F(x)] > — and
lim sup,_,_,[F(x)] < +o we obtain a modification of Theorem 1 of [4].

Theorem 5.Under the same assumptions of Theorem 4, we suppesklition that
e) There exists a positive numbesuch that xF(x)<O0 if Okx | <.
Then all solutions of system (2) are oscillatory.

Proof. It is sufficient to follow the proof of Theorem 1 of [4héthe proof of Theorem 2 of the preceding
section.

Theorem 6. We suppose that F(0)=0 and we suppose that assumptions a) aedwfileed if in addition
there exists a positive numbgrnd a real functio®[IC'(| x| >B) verifying ®'(x)<0 if [x|>B, and

f)  There exists a positive number h such thék) + h[f;’,‘()x)]
bounded on ¢,[3].

g) lim sup,_,.[F(x) — h®(x)] = +oo andlim inf,_,_,[F (x) — h®(x)] = —c.

is below bounded orf3[+) and above

The, all solutions of (2) are oscillatory.
Proof. It is similar to the proof of Theorem 3 of the precedindisec

Remark 8. The simple case x”-2x'+x=0; with non-oscillatory solution)x€, is no contradictory with our
results.

Remark 9. Our results are consistent with those obtained in [2,3,598®]12].

Remark 10. The results obtained completes those obtained in [8], aboabiistruction of a stability region
for the equation (1).

Remark 11. Finally we give examples of functions f(x) which show that results contains those in [10]
and [11] with a(tF1.

Example 1.

xlx| <1,
x7 L x| > 1

f(x)={



Brundo et al.; ARJOM, 2(1): 1-9, 2017; Article n&20OM.30885

Example 2.
1,x>1
fOC)=4{xlxl<1,
-Lx<-1

These examples do not satisfy the conditions of RepiladoRaiz] but if are covered by results of this
paper.

4 Conclusion

The motivation of this work arises from the following problem:
Under assumptions f(xjo>0 for some positive constary, the class of equation (1) with oscillating

solutions is not very large. We can exhibit equations thatolgatisfy the above condition and have no
oscillating solutions. For example

1
x" - (Zlnzx + 3) X +2(t2+1)x=0
has the no oscillating x(t)Ze
The following question then arises naturalye there conditions under which we can ensure that

equation (1) has all its oscillating solutions® is clear that the results obtained outline a firstveer to this
question.
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