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Abstract 
 

In this paper we consider the problem about the conditions on f(x), g(x) and a(t) to ensure that all 
solutions of (1) are continuable and oscillatory using non usual assumptions. 
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1 Preliminaries 
 
Consider the nonautonomous Liénard equation 
 

x’’+f(x)x’+a(t)g(x)=0,                                  (1) 
 
where a, f and g are continuous in their arguments, satisfying suitable assumptions. In this paper we assume 
that f, g and a satisfying some properties that guarantees local existence and uniqueness of solutions of (1). 
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As it is well known, the problems deal with the qualitative properties of solutions of the above equation or 
his generalizations are very important in the theory and applications of differential equations. For example, 
equation (1) is frequently encountered in mathematical model of most dynamics process in 
electromechanical systems in physics and engineering. However, it should be noted that details of these and 
other applications will not be given here. 
 
Further details on the qualitative properties of equation (1) can be found in [1]. 
 
Various questions on stability, oscillation and periodicity of solutions of (1) have received a considerable 
amount of attention in the last decades (see [2-4,5,6,7-11] and [12] and references cited therein) under 
classical assumptions f(x)>0 for x∈R. In this paper we study the oscillatory nature of solutions of (1) 
without makes use of this condition, using a new method in which the usual assumptions on involved 
functions in (1) are not used. 
 
A solution of (1) is oscillatory if there exists a infinite sequence {tn} tending monotonically to ∞ such that 
x(tn)=0. 
 
The equation (1) is equivalent to the system 
 

 x’=y-F(x),                    (2) 
 y’=-a(t)g(x), 

 
where ���� = � ����	�
� , x∈R. Also, we assume that satisfy the following assumptions: 
 

a) xg(x)>0 for x≠0. 
b) � ��
�	
 = +∞.
�  

c) 0 < � ≤ ���� ≤ � < +∞ for t∈[0,+∞). 
 
The condition a) shows that (0,0) is the only point of equilibrium of system (2) and the condition b) ensures 
that results obtained are in global sense. From [1] obtain that condition c) is consistent with the common 
sense. 
 
We consider now the following system equivalent to (1): 
 

 x’=y,                     (3) 
y’=-f(x)y-a(t)g(x). 

 
We will show that the solutions of the equation 
 ���
 = ��
���������
��                     (4) 

 
do not admit vertical asymptotes, consequently the solutions of (3) (and (1)) do not admit them either. It is 
enough, to this end, suppose that (4) has a solution y=y(x), a≤x≤b such that 
 lim
→!" #��� = +∞.                    (5) 
 
We can assume with no loss of generality, that 0<y(a)≤y(x) for a≤x≤b, and  
 

d) let K is the max of f on a≤x≤b and M the max of g on a≤x≤b.  
 
It follows that 
 

y(x)-y(a)≤{K+AM/y(a)}(b-a), 
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which is a clear contradiction with (5). The other situations can be analyzed in a similar way. The obtained 
allows assuring the global existence of the solutions of (1). 
 

2 On the Oscillatory Solutions of (1) with a(t)≡≡≡≡1 (I) 
 
For any point P(x0,y0)∈R2 let γ+(P) the positive semi trajectory of (2) passing by P. 
 
Theorem 1. Under conditions a)-d) we suppose in addition that  
 

e) The functions g and ���� + ��
�$  are no decreasing for x>N>0 and h>0. 

f) limsup |
|→*∞ +�
��
 ≤ 0. 

 
Then for all P(x0,y0) with x0≥0, y0>F(x0), the positive semi trajectory of (2) passing by P cross the curve 
y=F(x) in a point (s,F(s)), with s>x0. 
 
Proof. Let P(x0,y0) with x0>0, y0>F(x0) and let (x(t),y(t)) the solution of (2) with initial conditions (x0,y0). 
We suppose that x’(t)=y(t)-F(x(t))>0 for t≥0. From this we obtain that x(t) is increasing strictly 
monotonically on [0,+∞) and x(t)→+∞ when t→+∞. If this is no true then there exists a positive number j 
such that for all t≥0 we have 0<x(0)≤x(t)≤j and from c) we obtain lim�→*∞ #��� = −∞  so the curve 
(x(t),y(t)) cross y=F(x) in some point of [x0,j]xR contradicting the initial supposition. 
 
In the successive we distingue two cases: 
 
Case 1. lim
→*∞ ���� = −∞. 
 
As lim�→*∞ ���� = +∞ there exists a positive number δ such that x(t)>N for t≥δ. Let now t0, with t0>δ so we 
have a positive number k, k<h such that 
 

y(t0)<F(x(t0))+g(x(t0))/k≤F(x(t))+g(x(t))/k for all t≥t0. 
 
Then we have for all t≥t0 that y(t)<y(t0)< F(x(t))+g(x(t))/k, i.e. for t≥t0 
 −�������#��� − ������� ≤ −- 

 

So the slope of the trajectory of the solution satisfy 
�.�
 = ���
���+�
� ≤ −- if x≥x(t0), where z is a real function 

definite on R such that z(x(t))=y(t) for all t≥t0. From this we have 
 

z(x(t))≤-k(x(t)-x(t0))+z(x(t0)). 
 
From e) for all real number b and all positive number a, there exists a positive number η such that if x>η we 
have –ax+b≤F(x). As lim�→*∞ ���� = +∞ there exists a positive number t1>t0 such that  
 

y(t)=z(x(t))≤-kx(t)+[x(t0))+z(x(t0)]≤F(x(t)), t≥t1. 
 
But this contradicts the initial supposition. 
 
Case 2. lim
→*∞ ���� > −∞. 
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Again we have lim�→*∞ #��� = −∞ , and as lim�→*∞ ���� = +∞  and lim
→*∞ ���� = 0 > 0  (g is no 
decreasing on (M,+∞)). From the first equation of (2) we have that lim�→*∞ ������� = −∞  and so lim
→*∞ ���� = −∞. But this contradicts the supposition of this case. 
 
As the (0,0) is the unique singular point of (2) we can conclude that any positive semi trajectory passing by 
(x0,y0) with x0≥0, y0>F(x0), cross the curve y=F(x) in a point (s,F(s)) with s>x0.  
 
Remark 1. In a similar way we can prove the existence of a point (u,F(u)) with u< x1 in the case x1≤0, 
y1<F(x1). 
 
Remark 2. In the proof of Case 2 the assumptions d) and e) don’t used completely. 
 
In the prove of following result we recommend to [4, Theorem 1]. 
 
Theorem 2. Under the same assumptions of Theorem 1, we suppose in addition that  
 

g) There exists a positive number ε such that xF(x)<0 if 0<x<ε. 
 
Then all solutions of system (2) are oscillatory. 
 
Proof. Using the Theorem 1 we have that any positive semi trajectory passing by (x0,y0) with x0≥0, y0>F(x0), 
cross the curve y=F(x) in a point (s,F(s)) with s>x0 (analogously we can prove the existence of a point 
(u,F(u)) with u< x1 in the case x1≤0, y1<F(x1)). 
 
Now we will prove that all nontrivial solutions of (1) are oscillatory it is sufficient to prove that any positive 
semiorbit of (2) intersects the y axis in a finite time. This will result from the following considerations. 
 
From a) and g) we have that the (0,0) is a fold and this is unique. Also if x>0 then –g(x)<0 so that a 
nontrivial trajectory which intersects the curve y=F(x) for x>0 can pass only from the part of the semiplane 
x>0 where y>F(x) to the part where y<F(x). The same remark applies to the semiplane x<0: a nontrivial 
trajectory which intersects the curve y=F(x) for x<0 can pass only from the region where y<F(x) to the part 
where y>F(x). We also know that if P(x0,y0) with x0≥0, y0>F(x0) then γ+(P)  intersects y=F(x) at a point of 
the semiplane x>0 whereas if R(x0,y0) is such that x0<0, y0<F(x0) γ+(R) intersects y=F(x) at a point of the 
semiplane x<0. 
 
We consider a point P(x0,y0) with x0≥0, y0<F(x0). From the above the positive semi trajectory γ+(P) no cross 
the curve y=F(x) when x>0 and neither tends to the origin because this is repulsive. 
 
So γ+(P) cross the negative y axis necessarily if y<0. If this is not true we have 0≤x(t), x’(t)<0, y’(t)≤0 if t≥0. 
So, x(t)∈[0,x0] if t≥0 and there exist positive numbers α and t1 such that x’(t)=y(t)-F(x(t))<-α fi t≥t1 and so 
γ+(P) cross the y axis with y<0 against the supposed. 
 
To obtain the final picture we have to show that if a trajectory is starting from S(x0,y0) with x0≤0, y0<F(x0), 
then the positive semiorbit γ+(S) cross the y axis with y<0 and that a trajectory starting from T(x0,y0) with 
x0≤0 and y0>F(x0) crosses the y axis where y>0. Together with the previous remaks, this ensures that the 
nontrivial trajectories of (2) are clockwise around the origin and leads us to the conclusion that all nontrivial 
solutions of (2) are oscillatory. 
 

Let S(x0,y0) with x0≤0, y0<F(x0), be fixed. The trajectory γ+(S) cannot cross the curve y=F(x) in the part 
where x>0 by previous remarks and cannot accumulated to the only stationary point of the system (2) since 
the origin is repulsive. To show that γ+(S) has to cross the y axis at y<0 we have to prove that it cannot stay 
forever in the region {(x,y):x≥0, y<F(x)}. If it could stay forever in this region we would have for the unique 
global solution (x(t),y(t)) with initial data (x0,y0) that 
 

0≤x(t), x´(t)<0, y´(t)≤0, t≥0 
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Thus x(t)∈[0,x0], 0≤t and lim�→*∞ #��� = −∞  which is impossible since the slope of the trajectory is 
bounded for t≥0 (see Preliminaries) big enough (we have lim�→*∞ #��� = −∞ and x(t)∈[0,x0], 0≤t, implies 
that F(x(t)) and g(x(t)) are bounded for t≥0). This contradiction show that γ+(S) crosses the y axis at y<0. 
 
The second case, T(x0,y0) with x0≤0 and y0>F(x0), may be treated exactly in the same way. 
 
From this we obtain that all solution of (2) is oscillatory, surrounding the origin clockwise and the proof of 
the theorem is completed. 
 
The following result generalizes the above. 
 
Theorem 3. In addition to a) and g) we suppose that there exists λ and a real function Φ∈C1(x>λ) 
verifying Φ’(x)<0 if x>λ, and  
 

h) 
��
��Φ′�
� is no decreasing on (-∞,-λ)∪(λ,+∞). 

i) There exists a positive number h such that  ���� + ��
�$1�Φ′�
�2  is no decreasing on (-∞,-λ)∪(λ,+∞). 

j) For all positive number a and all real number b is aΦ(x)+b≤F(x) (x>λ) and aΦ(x)+b≥F(x) (x<-λ). 
 
Then, all solutions of (2) are oscillatory. 
 
Proof. Taking Φ(x)=-x we have the Theorem 2. We just have to follow the proofs of Theorems 1 and 2. 
 
Remark 3. Taking into account the Remark 2 If instead of the conditions e) and f) by lim sup
→*∞ ���� >
−∞, lim sup�→−∞��<+∞, lim inf�→+∞��=0>0, we obtain a modification of Theorem1 of [4]. 
 

Example 1. We consider in (1) g(x)=x, ���� =
567
68− 9: ;� + 1 − 9√>?@�AB , � ≤ −1−1, −1 < � < 1

− 9: ;� − 1 − 9√>?@�AB , � ≥ 1
E. 

 

We define the function F��, #� = �A
> + G��� with G(x)=x2/2. 

 
We suppose a solution of (2) definite on [t0,T) for some T>t0. Then there exists a sequence {tn} on [t0,T) 
such that xn→T when n→∞ and x(tn)+y(tn)→+∞ with n→+∞. 
 
The derivative of V along this solution gives V’(x(t),y(t))≤x2

≤2V(x(t),y(t)), from this is clear  
 

ln(V(x(tn),y(tn)))≤ln(V(x(t0),y(t0)))+2(T-t0), t0≤t<T 
 
but this is false because ln(V(x(tn),y(tn))) is no bounded. So the supposition is no true and the solution is 
definite for all t≥t0. 
 
If h=1 it's easy to see that � + �$ is a no decreasing function on x>2 and f) holds. Then in virtue of 

Theorem 2 we have that all solutions of system (2) with f and g as above, are oscillatory. 
 
Remark 4. This example is no covered with results of [4]. 
 
Example 2. We consider now in (1), f(x)=-4 and g(x)=x. The assumption f) of Theorem 2 hold taking h=1/5, 
but e) is no fulfilled. However according to theory of linear differential equation the characteristic equation 
in this case is r2-4r+1=0, with positive roots so we have nonoscillatory solutions ([13, pp.75-86]). 



 
 
 

Brundo et al.; ARJOM, 2(1): 1-9, 2017; Article no.ARJOM.30885 
 
 
 

6 
 
 

3 On the Oscillatory Solutions of (1) with a(t)≡≡≡≡1 (II)  
 
In this section we will give other results that involve somewhat different conditions on the functions of (1). 
 
Theorem 4. Let F(x) and g(x) such that 
 

a) xg(x)>0 for x≠0. 

b) There exist a positive number h such that the function ���� + ��
�$  is bounded below on [0,+∞) and 

bounded above on (-∞,0]. 

c) lim sup
→*∞H���� + ℎ�J = +∞  (or lim inf 
→*∞ +�
��$
 < 1 ), lim inf
→�∞H���� + ℎ�J = −∞  (or lim inf 
→�∞ +�
��$
 < 1). 

d) lim inf |
|→*∞|����| = 0 > 0. 
 
Then for all point P(x0,y0) with x0≥0, y0>F(x0) the positive semi trajectory of (2) passing by P cross the curve 
y=F(x) in the point (s,F(s)) with s>x0.  
 
Analogously, the positive semi trajectory of (2) passing by Q(x1,y1) with x1≤0, y1<F(x1) cross the curve 
y=F(x) in the point (s,F(s)) with u<x1. 
 
Proof. Let a point P(x0,y0) with x0>0, y0>F(x0) and let (x(t),y(t)) the solution of (2) with initial conditions 
(x0,y0) and suppose that x’(t)=y(t)-F(x(t))>0 for all t≥0. From here we have that x(t) is monotone increasing 
strictly on [0,+∞) and lim�→*∞ ���� = +∞.  
 
If the assumption were not true would exist a positive number j such that for all t≥0 be 0<x(0)≤x(t)≤j and 
from a) we have lim�→*∞ #��� = −∞ and then (x(t),y(t)) will intercept to y=F(x) in some point of band 
[x(0),j]xR against the supposition. 
 
In what follows we will consider two cases. 
 
Case 1. lim
→*∞ ���� = −∞. 
 

We suppose that k is above bound of ���� + ��
�$  on [0,+∞). From d) we have lim�→*∞ #��� = −∞ so there 

will be a positive number t0 such that y(t)<k and  
 ���
���������+�
���� ≤ −- for t≥t0. 

 

So the slope of the trajectory satisfy 
�K�
 = ���
���+�
� ≤ −- if x≥x(t0), where w is a real function definite on R 

such that w(x(t))=y(t) for all t≥t0. From this we have 
 

w(x(t))≤-k(x(t)-x(t0))+w(x(t0)). 
 

From c) for all real number b and all positive number a, there exists a positive number η=η(a,b) such that if 
x>η we have –aη+b≤F(η). As lim�→*∞ ���� = +∞ there exists a positive number t1>t0 such that  
 

y(t1)=w(x(t1))≤-kx(t1)+[x(t0))+z(x(t0)]≤F(x(t1)). 
 

But this contradicts the initial supposition. 
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Case 2. lim
→*∞ ���� > −∞. 
 
Again we have lim�→*∞ #��� = −∞ , and as lim�→*∞ ���� = +∞  and lim
→*∞ ���� = 0 > 0  (g is no 
decreasing on (M,+∞)). From the first equation of (2) we have that lim�→*∞ ������� = −∞  and so lim
→*∞ ���� = −∞. But this contradicts the supposition of this case. 
 
As the (0,0) is the unique singular point of (2) we can conclude that any positive semi trajectory passing by 
(x0,y0) with x0≥0, y0>F(x0), cross the curve y=F(x) in a point (s,F(s)) with s>x0.  
 
Remark 5. In a similar way we can prove the existence of a point (u,F(u)) with u< x1 in the case x1≤0, 
y1<F(x1). 
 
Remark 6. In the proof of Case 2, the conditions b) and c) have not been used. 
 
Remark 7. If in this theorem we replace conditions b) and c) by lim sup
→*∞H����J > −∞  and lim sup
→�∞H����J < +∞ we obtain a modification of Theorem 1 of [4]. 
 
Theorem 5. Under the same assumptions of Theorem 4, we suppose in addition that  
 

e) There exists a positive number ε such that xF(x)<0 if 0<x<ε. 
 
Then all solutions of system (2) are oscillatory. 
 
Proof. It is sufficient to follow the proof of Theorem 1 of [4] and the proof of Theorem 2 of the preceding 
section. 
 
Theorem 6. We suppose that F(0)=0 and we suppose that assumptions a) and e) are fulfilled if in addition 
there exists a positive number β and a real function Φ∈C1(x>β) verifying Φ’(x)<0 if x>β, and  
 

f) There exists a positive number h such that  ���� + ��
�$1�Φ′�
�2  is below bounded on [β,+∞) and above 

bounded on (-∞,β]. 
g) lim sup
→*∞H���� − ℎΦ���J = +∞ and lim inf
→�∞H���� − ℎΦ���J = −∞. 

 
The, all solutions of (2) are oscillatory. 
 
Proof. It is similar to the proof of Theorem 3 of the preceding section. 
 
Remark 8. The simple case x’’-2x’+x=0; with non-oscillatory solution x(t) = et, is no contradictory with our 
results. 
 
Remark 9. Our results are consistent with those obtained in [2,3,5,8,9] and [12]. 
 
Remark 10. The results obtained completes those obtained in [8], about the construction of a stability region 
for the equation (1). 
 
Remark 11. Finally we give examples of functions f(x) which show that our results contains those in [10] 
and [11] with a(t)≡1. 
 
Example 1.  
 

���� = L �, |�| ≤ 1,��9, |�| > 1E 
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Example 2. 
 

���� = M 1, � ≥ 1�, |�| < 1,−1, � ≤ −1E 
 
These examples do not satisfy the conditions of Repilado and Ruiz, but if are covered by results of this 
paper. 
 

4 Conclusion 
 
The motivation of this work arises from the following problem: 
 

Under assumptions f(x)≥f0>0 for some positive constant f0, the class of equation (1) with oscillating 
solutions is not very large. We can exhibit equations that do not satisfy the above condition and have no 
oscillating solutions. For example 

 

�´´ − O14 QR>� + 3T �´ + 2��> + 1�� = 0 

 
has the no oscillating x(t)=e2t.  
 
The following question then arises naturally Are there conditions under which we can ensure that 
equation (1) has all its oscillating solutions? It is clear that the results obtained outline a first answer to this 
question. 
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