
����������
�������

Citation: Elaskar, S.; del Río, E.;

Elaskar, S. Intermittency Reinjection

in the Logistic Map. Symmetry 2022,

14, 481. https://doi.org/10.3390/

sym14030481

Academic Editor: Christos Volos

Received: 17 December 2021

Accepted: 23 February 2022

Published: 26 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Intermittency Reinjection in the Logistic Map
Sergio Elaskar 1,* , Ezequiel del Río 2 and Silvina Elaskar 3

1 Departamento de Aeronáutica, FCEFyN, Instituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT),
Universidad Nacional de Córdoba and CONICET, Córdoba 5000, Argentina

2 Departamento de Física Aplicada, ETSIAE, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
ezequiel.delrio@upm.es

3 Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
silvinaelaskar@mi.unc.edu.ar

* Correspondence: selaskar@unc.edu.ar

Abstract: Just below a Period-3 window, the logistic map exhibits intermittency. Then, the third iterate
of this map has been widely used to explain the chaotic intermittency concept. Much attention has
been paid to describing the behavior around the vanished fixed points, the tangent bifurcation, and
the formation of the characteristic channel between the map and the diagonal for type-I intermittency.
However, the reinjection mechanism has not been deeply analyzed. In this paper, we studied the
reinjection processes for the three fixed points around which intermittency is generated. We calculated
the reinjection probability density function, the probability density of the laminar lengths, and the
characteristic relation. We found that the reinjection mechanisms have broader behavior than the
usually used uniform reinjection. Furthermore, the reinjection processes depend on the fixed point.

Keywords: chaotic intermittency; logistic map; reinjection mechanisms

1. Introduction

Intermittency is a route by which a dynamical system evolves from regular behavior
to chaos. In chaotic intermittency, a dynamical system alternates laminar phases with
chaotic bursts. The laminar or regular behaviors correspond to pseudo-equilibrium or
pseudo-periodic solutions, while the bursts are related to chaotic evolution [1–3].

Several processes and mechanisms display chaotic intermittency. It has been found
in physical, chemical, medical, and economic phenomena, among others [4–14]. A more
complete description of chaotic intermittency could help in the correct understanding of
these phenomena.

At the end of the 1940s, the word intermittency was employed in turbulent flows [15].
Approximately thirty years later, chaotic intermittency was classified into three types
named I, II, and III [16]. This categorization follows the periodic orbit stability loss using
the system Floquet multipliers or the fixed-point loss of stability in a map taking the map’s
eigenvalues. Type-I intermittency occurs when an eigenvalue moves away from the unit
circle across +1 and a tangent bifurcation occurs. Type-II intermittency happens when two
complex-conjugate eigenvalues escape from the unit circle by a Hopf bifurcation. Finally,
type III occurs by a subcritical period-doubling bifurcation when an eigenvalue goes out of
the unit circle by −1 [2,3].

Subsequent studies found other types of intermittency, such as V, X, on–off, eyelet,
ring, etc. References [17–19] introduced the concept of intermittency type V. This takes
place if a stable fixed point in a non-differentiable, even discontinuous, map impacts with a
non-differentiable or discontinuous point. Price and Mullin, in 1991, introduced the type X
intermittency concept [20]. It is similar to type-I intermittency. Both intermittencies have
the same local map. However, they are distinct, each one having specific characteristics.
Type X intermittency possesses a regular reinjection process and a hysteresis mechanism.
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Intermittency type on–off is depicted by sudden alterations between approximately con-
stant periods or static states and irregular bursts. The static states are the “off” states,
while the bursts correspond to “on” states, which leave and return suddenly to the “off”
states [21,22]. The simplest on–off intermittency has two components: an invariant object
and trajectories in and out of each small neighborhood of the invariant object. Eyelet inter-
mittency was discovered at the border of the phase synchronization of coupled oscillators.
The occurrence of eyelet intermittency is depicted using the synchronization of the unstable
periodic saddle orbits embedded in chaotic attractors [23–25]. The eyelet intermittency
concept was introduced by the analysis of the start of the phase synchronization. Another
intermittent behavior, known as ring intermittency, also takes place close to the phase
synchronization region boundary. Nevertheless, this intermittency happens for high initial
frequency mismatches for two coupled systems [26].

For one-dimensional maps, chaotic intermittency is generated by a local map and
a mechanism of reinjection [1–3]. The local map determines the intermittency type, and
the reinjection process drives the trajectories’ return from the chaotic behavior to the
laminar zone. The reinjection probability density function (RPD function) is utilized to
specify the probability that trajectories are reinjected in the laminar interval [1–3]. The
accurate description of the RPD function is fundamental to correctly calculate the chaotic
intermittency. There was not a theory to describe the RPD function, and different schemes
were implemented, the uniform RPD function being the most used [1,2,16,27]. In recent
years, a more general scheme, called the M function methodology, was introduced [3]. It
has accurately worked for maps showing type-I, -II, -III, and -V intermittencies with and
without noise [28–31]. Furthermore, the RPD function depends on the map derivative at
pre-reinjection points [32]. If the pre-reinjection points are extreme or point with an infinite
derivative, the RPD function is not uniform [3].

Chaotic intermittency and its applications are current research topics [33–35]. Further-
more, studies about intermittency and the logistic map have been recently published [36,37].
The logistic map, Lµ(x), exhibits intermittency just below a Period-3 window. Then, the
third iterate, L3

µ(x), has been widely used to explain chaotic intermittency [1,2,38,39]. How-
ever, very little attention has been given to describe the reinjection processes, which show
different behaviors depending on the fixed point of the map. In this paper, we studied
the reinjection processes in type-I intermittency for the third iterate of the logistic map.
To develop this task, we used recent advances in chaotic intermittency. In addition, we
calculated the following statistical variables: the laminar length, the probability density of
the laminar lengths, and the characteristic relation.

For µ < µc = 1 +
√

8, type-I intermittency occurs around three fixed points x01
∼=

0.15992881844625645, x02 ∼= 0.5143552770619905, and x03 ∼= 0.9563178419736238. By the
map symmetry, the reinjection process is different for x01 and x03 concerning x02. The main
objective is to show that the reinjection process is more complex than described in previous
studies and to introduce a work methodology to evaluate the main statistical variables of
chaotic intermittency.

2. The Logistic Map

The logistic map has been widely studied [1,2,38–40]. It is a discrete analog of the
logistic equation introduced to study population evolution [38,40]. It can be written as:

Lµ(x) = µ x (1− x), (1)

where µ is a positive real parameter and x is a dimensionless measure of the population,
0 ≤ x ≤ 1. The maximum of Lµ is µ/4, which is obtained at x = 1/2. For 0 < µ ≤ 4, the
logistic equation maps the interval [0, 1] into itself.

Because Lµ(x) shows intermittency just below a Period-3 window, we studied the
third iterate map of Equation (1):

xn+1 = Lµ(Lµ(Lµ(xn)))) = L3
µ(xn) . (2)
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We describe the behavior of the Period-3 cycle of Equation (1) as the parameter µ
decreases from slightly above the critical value µc = 1 +

√
8 to slightly below it. For

µ = 1 +
√

8 + 0.002, the logistic map has a stable Period-3 cycle consisting of the following
points: 0.1556..., 0.5034..., 0.9575... [39]. If we consider µc = 1 +

√
8, the map L3

µ(x)− x has
three double roots, which are at x01 = 0.15992881844625645..., x02 = 0.5143552770619905...,

and x03 = 0.9563178419736238.... At these points,
d L3

µ

d x = 1, and the graph of L3
µ is tangent to

the diagonal. Note that the eighth-degree polynomial L3
µ(x)− x has additional roots, which

correspond to unstable fixed points. For µ < 1 +
√

8, but close it, type-I intermittency
occurs by a tangent bifurcation. The laminar intervals are placed around the vanished fixed
points x01, x02, x03. However, the reinjection processes around these points are different
and depend on the fixed point. We studied the reinjection mechanism for these points
using recent advances to analyze chaotic intermittency [3,28,31,41,42].

3. Intermittency in the Logistic Map: Reinjection Processes

There are fixed-point theorems that determine the existence of fixed points in
maps [39,43–45]. As we explained in Section 2, the map L3

µ(x) for µc has three fixed points in
which type-I intermittency occurs x01 = 0.15992881844625645..., x02 = 0.5143552770619905...,
and x03 = 0.9563178419736238.... However, the reinjection processes are different for x01
than that for x02.

To understand the reinjection mechanisms, we have to describe the pre-reinjection points
for the map L3

µ(x). The pre-reinjection points are the xn−1 points for which xn = L3
µ(xn−1),

where xn points are inside the laminar interval and xn−1 outside the laminar interval. The
pre-reinjection points govern (have a strong influence on) the reinjection process [3].

The derivative of the map at pre-reinjection points is different for x01 and x03 than
that for x02. Furthermore, the pre-reinjection points depend on the length of the laminar
interval. Therefore, the reinjection mechanism and the statistical variables depend on the
fixed point.

3.1. Fixed Point x01: Non-Uniform RPD Function

First, we studied the intermittency phenomenon for the fixed point x01. With no loss
of generality, we move the map L3

µ(x), so the fixed point x01 coincides with the origin of
the coordinate system. Accordingly, the map results in:

F(x) = −x01 + µ3 (1− (x + x01)) (x + x01) (1 + µ (−1 + (x + x01)) (x + x01))

×(1 + µ2 (−1 + (x + x01)) (x + x01) (1 + µ (−1 + (x + x01)) (x + x01))) .
(3)

Figure 1 displays this map (blue line) and the pre-reinjection points (red points) for
c = 0.04 (Il = [−0.04, 0.04]) and µ = 3.828.

To calculate the RPD function, we utilized the M function methodology described in
Appendix B. The numerical data are generated by an iterative process for the map given
by Equation (3). The laminar interval is divided into Ns sub-intervals; subsequently, the
histogram of reinjections and the numerical RPD function are calculated. To evaluate the
histogram, at least 100 Ns reinjections were considered. On the other hand, the theoretical
RPD function can be written as (see Appendices A and B):

φ(x) = b (x− x̂)α, α =
2 m− 1
1−m

. (4)

We carried out several numerical tests evaluating the RPD functions using the M
function methodology. For c = 0.01, µ = 3.828, N = 100,000, and Ns = 500, the exponent of
the RPD function results in α = −0.483550438 (m = 0.340564945), and the lower boundary
of reinjection x̂ = −0.00240279. For c = 0.04, µ = 3.8284, N = 100,000 and Ns = 1000,
we obtained α = −0.494355923 and x̂ = −0.00273628. Figure 2 shows the numerical and
theoretical RPD functions for both tests. The blue lines and the red points are the theoretical
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and numerical RPDs, respectively. From the figure, we note a high accuracy between the
theoretical and numerical results.
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0.8

Figure 1. Map given by Equation (3) and pre-reinjection points for x01, c = 0.04, and µ = 3.828. Blue
line: map. Red points: pre-reinjection points. Green line: bisector.
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Figure 2. Theoretical and numerical RPDs for µ = 3.828. (a) c = 0.01, Ns = 500. (b) c = 0.04,
Ns = 1000. Blue lines: theoretical RPDs. Red points: numerical RPDs.

Furthermore, we used µ = 3.8275, 3.8278, 3.828, 3.8282, 3.8284, c = 0.01, N = 100,000,
and Ns = 500. Table 1 shows the exponent α, the numerical lower boundary of reinjection
x̂, and the control parameter ε for the numerical tests. We highlight that in all tests, the
accuracy between numerical and theoretical RPD functions was very high. Furthermore,
we note that α does not depend on ε as the M function methodology assumes.

Table 1. α, x̂, and ε for different µ.

µ α x̂ ε

3.8275 −0.496245 −0.0019861 0.000722453
3.8278 −0.495948 −0.0022361 0.000488713
3.828 −0.483550 −0.0024028 0.000332869
3.8282 −0.497103 −0.0025695 0.000177012
3.8284 −0.508062 −0.0027363 0.000021141

To evaluate the control parameter ε, the map given by Equation (3) is approximated
around the vanished fixed point by a second-order polynomial:

P(x) = ε + q x + a x2 , (5)
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where the coefficients ε, q, and a depend on the value of µ.
Equation (5) can be used as the local map around the vanished fixed point. Note that

this map differs from the classic one used in type-I intermittency, where q = 1. However,
when we calculate Equation (5), the value for q is very close to one. Table 2 shows ε, q, and
a for the five studied tests. Note that for µ = µc, qc = 1 and εc = 0.

Table 2. ε, q, and a for different µ.

µ ε q a

3.8275 0.000722453 0.9901298 88.7993
3.8278 0.000488713 0.9933212 88.8352
3.828 0.000332869 0.9954501 88.8591

3.8282 0.000177012 0.9975800 88.8830
3.8284 0.000021141 0.9997101 88.9069

The laminar length, l(x, c), is the number of iterations that a trajectory spends inside
the laminar interval. It depends on the reinjection point, x, and the length of the laminar
interval, Il . To evaluate the laminar length, we used Equation (5) and the classical local
map for type-I intermittency [1,3], and we compared the results.

For the first alternative, we used Equation (5), then for very small ε and c, we can
write [1,3]:

d x
d l

= ε + (q− 1) x + a x2 . (6)

If we integrate this equation, we obtain:

l(x, c) = 1 +
2 arctan[ q−1+2 a c√

4 a ε−(q−1)2
]√

4 a ε− (q− 1)2
−

2 arctan[ q−1+2 a x√
4 a ε−(q−1)2

]√
4 a ε− (q− 1)2

. (7)

On the other hand, if we consider the classical local map for type-I intermittency [1,3],
we have:

l(x, c) = 1 +
arctan[ 2

√
a c√
ε
]

√
a ε

−
arctan[ 2

√
a x√
ε
]

√
a ε

. (8)

Figure 3 shows the comparison of Equations (7) and (8) with numerical data for
µ = 3.8275 and c = 0.01 and for µ = 3.8284 and c = 0.01. Blue and green points correspond
to Equations (7) and (8), respectively, and the red points are the numerical data. Note that
both theoretical approximations are very close to each other. To evaluate quantitatively the
error introduced by Equations (7) and (8), we used the following equation:

Er =
∑

j=N
j=1

|ln(j)−l(j)|
ln(j)

N
. (9)

For µ = 3.8275 and c = 0.01, we obtained Er = 0.1181 for Equation (7) and Er = 0.1231
for Equation (8). For µ = 3.8284 and c = 0.01, we obtained Er = 0.0949 and 0.0953
respectively. We note that Equation (7) approximates more accurately the numerical data.
However, as the difference is small, the assumption q = 1 for 0 < ε � 1 can be used
without significantly increasing the error.

Now, we can calculate the average laminar length, L, and the characteristic relation,
L ∝ εβ. We note that previous works reported an exponent β = −1/2 for type-I intermit-
tency with x̂ < x0 and α < 0, where x0 is a fixed point [3,42].
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Figure 3. Comparison of Equations (7) and (8) with the numerical data. (a) µ = 3.8275 and c = 0.01.
(b) µ = 3.8284 and c = 0.01. Blue points: Equation (7). Green points: Equation (8). Red points:
numerical data.

Figure 4 shows the characteristic relation for the map (3) and c = 0.01. The red points
are the numerical data, and the blue line is the linear fit, which obtains β = −0.52. It is very
close to the theoretical value given in [3,42].
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ln
(L

)

Figure 4. Characteristic relation. Blue line: linear approximation. Red points: numerical data.

Furthermore, in a previous paper, a theoretical method to determine the exponent α
was introduced [32]. It uses that the RPD function developed around the extreme points of
the map. Supported by this concept, an equation that expresses the exponent α as a function
of the number of null derivatives at the map extreme point was found. If we apply this
method and evaluate the non-zero lower-order derivative of the map at the pre-reinjection
points, we find α = −0.5, which is very close to the numerical α (see Table 1).

From the previous results, we highlight that the third iterate of the logistic map
generates non-uniform RPD functions, which are described accurately for the M func-
tion methodology.

3.2. Fixed Point x02

Here, we evaluate the intermittency reinjection around the fixed point x02. We moved
the map L3

µ(x) so that the fixed point x02 coincides with the origin of the coordinate system:

F(x) = −x02 + µ3 (1− (x + x02)) (x + x02) (1 + µ (−1 + (x + x02)) (x + x02))

×(1 + µ2 (−1 + (x + x02)) (x + x02) (1 + µ (−1 + (x + x02)) (x + x02))) .
(10)
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Different reinjection processes can occur. They depend on the laminar interval am-
plitude, c (Il = [−c, c]), and its relation with cl and cd. The parameter cl determines the
existence or not of reinjection from neighboring points to −c, and it is the limit of the
laminar interval length where there are pre-reinjection points close to −c. For c > cl ,
there is no reinjection from neighboring points to points to −c, where cl is obtained from
F(−cl)− cl = 0. As an example, for µ = 3.8275, cl results in cl

∼= 0.057733. The reinjection
process also depends on the relation between c and cd, where d F(x)

d x

∣∣∣
x=cd

= 0 and F(cd) ∈ Il .

For µ = 3.8275, we obtained cd
∼= −0.014355277.

To analyze the influence of the relation between c and cl on the reinjection process,
two cases are shown in Figures 5 and 6 for µ = 3.8275 and c = 0.04 and µ = 3.8275 and
c = 0.06, respectively. The blue line is the map; the red points are the pre-reinjection
points; the green straight lines show the limits of the laminar interval. In Figure 5, there are
neighboring pre-reinjection points to the laminar interval. However, these points do not
exist in Figure 6.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Figure 5. Map and pre-reinjection points for µ = 3.8275 and c = 0.04. Blue line: map. Red points:
pre-reinjection points. Green lines: limits of the laminar interval. Black line: bisector.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Figure 6. Map and pre-reinjection points for µ = 3.8275 and c = 0.06. Blue line: map. Red points:
pre-reinjection points. Green lines: limits of the laminar interval. Black line: bisector.
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In addition, for c < |cd|, the RPD function verifies [32]:

φ(x)→ ∞, x → F(cd) . (11)

Remember that cd verifies d F(x)
d x

∣∣∣
x=cd

= 0 and F(cd) ∈ Il .

Therefore, we can split the domain of c into three sub-intervals: (a) |cd| < cl < c, (b)
|cd| ≤ c ≤ cl , and (c) c < |cd| < cl .

We studied the reinjection mechanisms for the three sub-intervals. We start with the
simplest case, |cd| < cl < c.

3.2.1. Sub-Interval |cd| < cl < c

For this interval, the pre-reinjection points are displayed in Figure 6. Note there is no
reinjection from points close to the laminar interval.

Figure 7 shows the RPD obtained by the M function methodology and numerically
for µ = 3.8275 and c = 0.06. The blue line is the theoretical RPD, and the red points are the
numerical data. We can observe that the RPD is uniform. The exponent α evaluated using
the M function methodology is −0.00976; therefore, α ∼= 0, following uniform reinjection.

-0.06 -0.04 -0.02 0 0.02 0.04
0

5

10

15

20

Figure 7. RPD functions for µ = 3.8275 and c = 0.06. Blue line: the RPD calculated by the M function
methodology. Red points: numerical results.

From Figure 6, we observe that the map derivatives at the pre-reinjection points are
finite and non-zero. Then, following the theoretical development introduced in Ref. [32],
we obtained α = 0. Thus, we found using the M function methodology and theoretically
that the RPD should be uniform, which was verified by the numerical results.

3.2.2. Sub-Interval |cd| ≤ c ≤ cl

We highlight in this interval that the map derivative at the pre-reinjection points in
the neighborhood of the laminar interval changes rapidly. Therefore, the RPD function is
not uniform. To observe it, we can use the Perron–Frobenius technique, which evaluate the
RPD function from the derivative at pre-reinjection points [3,46]:

φ(x) =
ρ(F−1(x))∣∣∣ d F−1(x)

d x

∣∣∣ , (12)

where ρ(F−1(x)) is the trajectories’ density at pre-reinjection points.
Therefore, for c ∈ [|cd|, cl ], the RPD has two components. One component is generated

by pre-reinjection points distant from the laminar interval. The trajectories passing through
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these points are reinjected inside the complete laminar interval, Il = [−c, c]. The second
component is generated by neighboring pre-reinjection points to the lower limit of the
laminar interval, (xn−1 close to −c). These points verify that F(xn−1) ∈ (F(−c), c] (see
Figure 5).

To study the reinjection processes, we considered the following test: µ = 3.8275 and
|cd| = 0.014355277 < c = 0.04 < cl = 0.057733. Figure 8 shows the RPD function. The blue
line is the theoretical RPD, and the red points are the numerical data.

-0.04 -0.02 0 0.02 0.04

10

15

20

Figure 8. RPD functions for µ = 3.8275 and c = 0.04. Blue line: the RPD calculated by the M function
methodology. Red points: numerical results. αa = −0.00598, αb = −0.1011469.

From this figure, we observe two different behaviors of the RPD function:
(a) For xn ∈ [−c, F(−c)], where F(−c) = 0.0173829. This sub-interval receives the

trajectories from |xn−1| > cl , and the RPD function is similar to those described in the
previous subsection;

(b) For xn ∈ (F(−c), c]. Two mechanisms generate the RPD function. One of them
is given by trajectories coming from |xn−1| > cl , and the second one is produced by
trajectories from points xn−1 ∈ [−cl ,−c).

Points from |xn−1| > cl are reinjected inside the complete laminar interval [−c, c].
However, points from xn−1 ∈ [−cl ,−c) are reinjected in (F(−c), c].

Figure 9 shows the M(x) function for the same test as Figure 8. Note that the M(x)
function possesses a non-differentiable point at F(−c), where the RPD is discontinuous.

With φ1(x), we restrict the analysis to the interval (F(−c), c], and φ2(x) is the RPD
function inside the interval [−c, F(−c)]. Therefore, the RPD can be written as follows.

φ(x) =
{

φ1(x) = φa(x) + φb(x), x > F(−c)
φ2(x) = φa(x), x ≤ F(−c) ,

(13)

where:
φa(x) = b (x + c)αa

φb(x) = b k (x− F(−c))αb .
(14)

The RPD, φ(x), is obtained by adding two reinjection processes described by φa(x)
and φb(x).
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0
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 F(-c)

Figure 9. M function for µ = 3.8275 and c = 0.04. The green line corresponds to x = F(−c).

To find the parameters ma and mb, we studied each reinjection process individually.
We ordered the numerical data and applied the M function methodology as explained
previously. Therefore, the exponents αa and αb are obtained from:

αa,b =
2ma,b − 1
1−ma,b

, (15)

mb being the slope of the following function:

Mb(x) = mb(x− F(−c)) + F(−c) , (16)

which is defined in (F(−c), c], and it considers only reinjected points coming from [−cl , c);
ma is the slope of:

Ma(x) = ma(x + c)− c , (17)

which is evaluated employing only reinjected points’ arrival from |xn−1| > cl , and it is
determined in the entire laminar interval, Il = [−c, c]. Consequently, we can calculate
the functions φa(x) and φb(x) using Equation (14), where the factor b is the normalization
parameter, resulting in:

b =

(
(2 c)1+αa

1 + αa
+ k

(c− F(−c))1+αb

1 + αb

)−1

. (18)

To obtain the complete M(x) function, we again used the M function methodology
explained in Appendix B. The complete M(x) function is provided by Equations (19)
and (20). We note that this function possesses a non-differentiable point at x = F(−c).

For x > F(−c):

M(x) =

∫ x
−c τ φa(τ) dτ +

∫ x
F(−c) τ φb(τ) dτ∫ x

−c φa(τ) dτ +
∫ x

F(−c) φb(τ) dτ

= (c+x)1+αa (−c+x(1+αa)) (1+αb)(2+αb)+k(x−F(−c))1+αb (F(−c)+x(1+αb)) (1+αa)(2+αa)

(2+αa)(2+αb) ((c+x)1+αa (1+αb)+k(x−F(−c))1+αb (1+αa))
.

(19)

For x ≤ F(−c):

M(x) =

∫ x
−c τ φa(τ) dτ∫ x
−c φa(τ) dτ

= x(1+αa)−c
2+αa

. (20)
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The factor k is included to take into account the different number of reinjections inside
the intervals [−c, F(−c)] and (F(−c), c]. This factor is calculated from the definition of
M(x). From Equation (19), we note that the M(x) function is independent of the parameter
b, then we can evaluate k from it:

k =

(−c+x(1+αa)) (x+c)1+αa

(1+αa) (2+αa)
− M(x) (x+c)1+αa

(1+αa)

M(x) (x−F(−c))1+αb

(1+αb)
− (F(−c)+x(1+αb)) (x−F(−c))1+αb

(1+αb) (2+αb)

. (21)

We calculated Equation (21) for all reinjected points in (F(−c), c], and we obtained k
by the arithmetic average of them.

The laminar length can be obtained from Equation (6). Due to the map symmetry
around a vertical line passing through cd, there are two intervals. The first one is given for
x ∈ [cd, c] and the second one for x ∈ [−c, cd).

Therefore, we obtained for [cd, c]:

l(x, c) = 1 +
2 arctan[ q−1+2 a c√

4 a ε−(q−1)2
]√

4 a ε− (q− 1)2
−

2 arctan[ q−1+2 a x√
4 a ε−(q−1)2

]√
4 a ε− (q− 1)2

(22)

and for [−c, cd)

l(x, c) = 1 +
2 arctan[ q−1+2 a c√

4 a ε−(q−1)2
]√

4 a ε− (q− 1)2
−

2 arctan[ q−1+2 a (cd+|x−cd |)√
4 a ε−(q−1)2

]√
4 a ε− (q− 1)2

. (23)

Figure 10 shows the numerical and theoretical laminar length. The last one is calculated by
Equations (22) and (23). Note the symmetry around x = cd, where cd = −0.014355277061990445
for µ = 3.8275 and cd = −0.014355277061990473 for µ = 3.8284.
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0
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60

80

(a) (b)

Figure 10. Theoretical and numerical laminar length for c = 0.04. (a) µ = 3.8275. (b) µ = 3.8284. Blue
points: theoretical evaluation. Red points: numerical data.

The probability density of the laminar lengths, ψ(l, c), is calculated as [3]:

ψ(l, c) = φ(x(l, c))
∣∣∣∣d x(l, c)

d l

∣∣∣∣ , (24)

where φ(x(l, c)) is given by Equations (13) and (14), and
∣∣∣ d x(l,c)

d l

∣∣∣ for Equation (6). Figure 11
shows ψ(x(l, c)) for two tests with µ = 3.8275, and µ = 3.828. Blue points are the theoretical
evaluation (Equation (24)), and the red points are the numerical data. Note the accuracy
between the numerical and theoretical results. Furthermore, these results verify previous
works for type-I intermittency [3,42].
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Figure 11. The probability density of the laminar lengths for c = 0.004. (a) µ = 3.8275. (b) µ = 3.8280.
Blue points: theoretical evaluation. Red points: numerical data.

The characteristic relation, L = L(ε), is shown in Figure 12. The red points are the
numerical results, and the blue line is the linear fit of the numerical data. The slope of the
straight blue line is −0.45.
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Figure 12. Characteristic relation. Red points: numerical data. Blue line: linear interpolation.

3.2.3. Sub-Interval c < |cd| < cl

In this case, the reinjection process has two contributions as described in Section 3.2.2.
However, there are some differences.

The first difference happens for a trajectory passing through cd. It is reinjected in F(cd),
where the RPD tends to infinity (see Equation (12)). Then, the RPD is a discontinuous
function at x = cd, and it can be written as:

φ(x) =
{

φ1(x) = φa(x) + φb(x), x > F(cd)
φ2(x) = φa(x), x ≤ F(cd) ,

(25)

where:
φa(x) = b (x + c)αa

φb(x) = b k (x− F(cd))
αb .

(26)

Note that φb(x) is determined by x > F(cd). This happens because d F(x)
d x

∣∣∣
x=cd

= 0,

but d F(x)
d x

∣∣∣
x=−c

> 0 and bounded. Therefore, by Equation (12), the derivative d F(x)
d x

∣∣∣
x=cd

has a greater influence on the RPD function [46]. Furthermore, F(cd) is less than F(−c),
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but very close to it. As an example, for µ = 3.8284, we obtained F(cd) = −0.0071572 <
F(−c) = −0.00649038.

The second difference occurs when we analyze the laminar length. As cd is outside
the laminar interval, we did not observe the symmetry around the cd as in the previous
subsection. Then, the theoretical laminar length verifies d l(x)

d x < 0 inside the complete
laminar interval.

To analyze these differences, we studied theoretical and numerically a test verifying
c < |cd|. We used µ = 3.8284 and c = 0.01, for these values cd = −0.014355277. Figure 13
shows the map and the pre-reinjected points. There is reinjection from points close to the
lower boundary of the laminar interval, one of these pre-reinjection points being x = cd.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Figure 13. Map and the pre-reinjection points for µ = 3.8284 and c = 0.01. The pre-reinjection points
are in red and the map in blue. The green lines show the limits of the laminar interval, and the black
line is the bisector.

We used the M function methodology to evaluate the exponents αa = −0.007144
and αb = −0.621795. Figure 14 shows the theoretical and numerical RPD functions for
N = 100, 000 and Ns = 500. Note that αa ≈ 0, as was described previously [3,32].
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0

50

100

150

200

250

Figure 14. RPD functions for µ = 3.8284 and c = 0.01. Red points: numerical data. Blue line: the
RPD calculated by the M function methodology.
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The laminar length is shown in Figure 15. We did not observe two intervals in the
laminar length distribution because cd is outside the laminar interval. In all figures, we can
note a good accuracy between the numerical data and the theoretical approximation.
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Figure 15. Laminar length for µ = 3.8284 and c = 0.01. Red points: numerical data. Blue line:
theoretical result.

4. Conclusions

In this paper, we studied the intermittency reinjection processes for the logistic map.
This map exhibits intermittency for µ just below the Period-3 window. For the third
iterate map with µ < µc = 1 +

√
8, type-I intermittency occurs around three fixed points

x01
∼= 0.15992881844625645, x02 ∼= 0.5143552770619905, and x03 ∼= 0.9563178419736238.

By the map symmetry, the reinjection process has different characteristics for x01 and
x02. To describe the reinjection mechanisms, we evaluated by means of the M function
methodology the following statistical variables: the reinjection probability density function,
φ(x), the laminar length, l(x, c), the probability density of the laminar lengths, ψ(l), and
the characteristic relation, L(ε).

For x01, we verified that the RPD function is given by Equation (4) with α < 0 because
the derivative of the map at a pre-reinjection point is zero, as shown in Figure 1. Therefore,
the RPD is far away from the uniform reinjection widely used in classical intermittency. To
calculate the laminar length, we approximated the map as a quadratic polynomial around
the vanished fixed point (see Equation (5)). As previous studies have established, the linear
coefficient was very close to one for small ε. Furthermore, for all tests, we found that the
lower boundary of reinjection was less than zero, x̂ < 0 (see Table 1). Finally, we obtained
the characteristic relation verifying L ∝ εβ with β ' −0.5, even though the RPD function
was not uniform.

On the other hand, the reinjection process for x02 depends on the length of the lam-
inar interval and its relationship with both cl and cd, where cl = F(−cl), and cd verifies
d F(x)

d x

∣∣∣
x=cd

= 0 with F(cd) ∈ Il . We found that there were three sub-intervals: (a) cl < c,

(b) |cd| < c ≤ cl , and (c) c < |cd| < cl .
In Sub-interval (a), there is no reinjection from points close to the laminar interval, and

the derivative is non-zero and finite at the pre-reinjection points. Then, the RPD function is
uniform (constant RPD).

In Sub-interval (b), the RPD function has two components. One of them is generated
at pre-reinjection points distant from the laminar interval. These points are reinjected inside
the entire laminar interval, Il . The second one is produced by neighboring pre-reinjection
points to the lower limit of the laminar interval, −c. These points are reinjected in the sub-
interval (F(−c), c]. Therefore, the RPD function has two different behaviors, one inside the
sub-interval [c, F(−c)], where the RPD is constant, and the another inside the sub-interval
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(F(−c), c], where the RPD is not constant. Another distinctive behavior occurs for the
laminar length, l(x, c), which shows symmetry around cd (see Figure 10). We found that
the characteristic relation is L ∝ ε−0.45.

In Sub-interval (c), the RPD function is discontinuous at F(cd), and it shows two
different behaviors. The RPD is constant in the sub-interval [−c, F(cd)], and φ(x) ∝ xα with
α < 0 in the sub-interval (F(cd), c]. In the latter case, the RPD function verifies φ(x)→ ∞
when x+ → F(cd) (see Figure 14).

We found that the reinjection process depends on the fixed point. The RPD function
and other statistical variables can be calculated accurately by the M function methodology.
The reinjection mechanism and the RPD function show a more complex behavior than
the uniform reinjection. Therefore, for the third iterate of the logistic map, the uniform
reinjection assumption can introduce errors in evaluating type-I intermittency.

Finally, we note that the study carried out here can be used to describe the intermittency
reinjection process in other maps with several fixed points. Additionally, future works can
use this methodology to evaluate the time spent by trajectories around different fixed points.

Author Contributions: Conceptualization, S.E. (Sergio Elaskar); methodology, S.E. (Sergio Elaskar)
and E.d.R.; software, S.E. (Sergio Elaskar) and S.E. (Silvina Elaskar); validation, S.E. (Sergio Elaskar)
and S.E. (Silvina Elaskar); formal analysis, S.E. (Sergio Elaskar) and E.d.R.; investigation, S.E. (Sergio
Elaskar) and E.d.R.; resources, S.E. (Sergio Elaskar) and E.d.R.; writing—original draft preparation,
S.E. (Sergio Elaskar); writing—review and editing, S.E. (Sergio Elaskar) and E.d.R.; visualization,
S.E. (Sergio Elaskar) and S.E. (Silvina Elaskar); supervision, S.E. (Sergio Elaskar) and E.d.R.; project
administration, S.E. (Sergio Elaskar); funding acquisition, S.E. (Sergio Elaskar) and E.d.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by SECyT of Universidad Nacional de Córdoba and Ministerio
de Ciencia, Innovación y Universidades of Spain under Grant No. RTI2018-094409-B-I00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to Universidad Nacional de Córdoba and Universidad
Politécnica de Madrid.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RPD Reinjection probability density function
LBR Lower boundary of reinjection

Appendix A. The Reinjection Probability Density Function

The RPD function gives the statistical distribution of trajectories returning from the
chaotic zone to the laminar region. It is the most significant function to describe the
intermittency behavior of the system.

Let us consider the following one-dimensional map, which exhibits intermittency:

xn+1 = F(xn), F : R→ R , (A1)

where R is the one-dimensional space. Note that the probability measure of an interval
S ⊂ [0, 1] is:

P(S) = lim
N→∞

1
N

N

∑
n=0

JS(xn) , (A2)
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where JS(x) is the characteristic function of the interval S:

JS(x) =
{

1, if x ∈ S
0, if x 6∈ S .

(A3)

Accordingly, the probability measure exhibits the frequency at which the trajectories
arrive in the interval. The invariant density, ρ(x), and the probability measure, P(S), are
related by:

P(S) =
∫

S
ρ(x)dx . (A4)

We split the complete data series into three subsets:

{xn} = {xn′} ∪ {xn′′} ∪ {xn′′′} . (A5)

where:
JS(xn′+1) = 1 and JS(xn′) = 1
JS(xn′′+1) = 1 and JS(xn′′) = 0
xn′′′ 6∈ S .

(A6)

Consequently, the probability measure P(S) results [46]:

P(S) = lim
N→∞

1
N

N

∑
n′′=0

JS(xn′′) + lim
N→∞

1
N

N

∑
n′=0

JS(xn′) (A7)

If S is the laminar interval, S = IL, then only the RHS first term defines the RPD
function, φ(x), by the following relation:

lim
N→∞

1
N

N

∑
n=0

JIL(xn′′) = w
∫

IL

φ(x)dx . (A8)

The weight w is included because it is current to normalize the RPD function over the
laminar interval IL as

∫
IL

φ(x)dx = 1.
Note that φ(x) determines the fundamental statistical variables of chaotic intermit-

tency, as the probability density of the laminar length ψ(l) and the characteristic exponent β.
We introduce a map displaying type-II intermittency:

xn+1 = F(xn) ≡


F1(xn) = (1 + ε)xn + (1− ε)xp

n, xn < xr

F2(xn) = (F1(xn)− 1)γ, xn ≥ xr

(A9)

xr verifies F1(xr) = 1. Note that F1(x) drives the laminar dynamics, whereas F2(x) deter-
mines the reinjection process from the chaotic behavior to the laminar one. The reinjection
probability density function, φ(x), specifies the statistical distribution of the reinjected
trajectories. It depends on the specific form of the map in the nonlinear region, that is F2(x).

The point x = 0 is a fixed point of F1(x). This fixed point is stable for ε < 0 and is
unstable for ε > 0. Then, for ε > 0, the iterated points xn of an initial point x1 near x = 0
grow in a process determined by p and ε. If xn is larger than xr, a chaotic burst happens,
which will finish when xn is returned to the laminar region by F2(x). We highlight that
F2(x) determines the RPD function, and all reinjected points into the laminar interval come
from points around xr.

Using the Perron–Frobenius operator, we can approximate φ(x) as follows:

φ(x) = ρ(x′)
w

dF2(τ)
dτ

∣∣∣
τ=x′

. (A10)
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If we evaluate Equation (A10) using the map given by Equation (A9), we have:

φ(x) =
w ρ(x′)
γ F′1(x′)

x
1
γ−1 , (A11)

where F′1(x) is the F1(x) derivative. If we consider a linear approximation of F1(x) in the
interval (xr, F−1

2 (c)), the derivative F′1(x) is a constant. Furthermore, if the density ρ(x′) is
constant, we obtain:

φ(x) = b xα where α =
1
γ
− 1 (A12)

where b is a normalization constant. We highlight that the PRD function shall depend on
parameter γ, which determines the map curvature at pre-reinjection points.

Note Equation (A12) has been verified in several one-dimensional maps, including
some called pathological in classical theory [3,42].

The classical hypothesis of the uniform RPD function is correct for γ = 1, where xr
+

is not an extreme point. However, it is not correct for γ 6= 1 where the RPD function is
determined by Equation (A12).

To consider the effect of a lower boundary of reinjection (LBR) different from zero,
x̂ 6= 0, we utilized the following map:

xn+1 = G(xn) =


ε + xn + a xp

n if xn < xr

(1− x̂)
(

xn−xr
1−xr

)γ
+ x̂ otherwise .

(A13)

This map shows type-I intermittency, where xr is the root of the equation ε + xn + xp
n = 1.

Note that γ governs the nonlinear reinjection mechanism, and the LBR gives the limit value for
the reinjection from the chaotic zone to the laminar one.

For the map given by Equation (A13) where x̂ 6= 0, a similar analysis as those used for
type-II intermittency determines for the RPD function the same power law, however now
including x̂ as follows:

φ(x) = b (x− x̂)α . (A14)

The RPD (A14) contains the classical intermittency approach as the particular case
α = 0. The parameters α and x̂ depend on the dynamics of the chaotic region, and they
can be evaluated from experimental or numerical data by the M(x) function methodology,
which is explained in Appendix B.

Appendix B. M Function Methodology

As the RPD is given by the power law, Equation (A14), to find the solution for the
problem of model fitting, we define the function M(x) as:

M(x) =


∫ x

xt
τ φ(τ) dτ∫ x

xt
φ(τ) dτ

if
∫ x

xt
φ(τ)dτ 6= 0

0 otherwise
(A15)

where xt is some “initial” point. The function M(x) has a very interesting property: it is a
linear function for an RPD provided by Equation (A14). Then, the function M(x) is a very
useful tool to obtain the parameters x̂ and α and to determine the RPD function.

To approximate numerically M(x), we note it is an average over reinjection points in
the interval (xt, x), then we can write:

M(x) = Mj ≡
1
j

j

∑
k=1

xk, xj−1 < x ≤ , xj (A16)
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where the N reinjection points {xj}N
j=1 have been previously sorted, i.e., xj ≤ xj+1. For the

RPD determined by Equation (A14), the definition (A15) gives the following linear function
for M(x):

M(x) =
{

m(x− x̂) + x̂ if x ≥ x̂
0 otherwise ,

(A17)

where m ∈ (0, 1) is a free parameter and x̂ can be calculated as x̂ ≈ inf{xj}. Therefore, by
Equation (A15), we can evaluate the corresponding reinjection probability density function:

φ(x) = b(α)(x− x̂)α, with α =
2m− 1
1−m

, (A18)

b(α) is the normalization constant in the laminar interval.
We highlight that by a simple technique such as the least-squares fitting, we can obtain

the parameters of Equation (A17) and determine the RPD function given by Equation (A18).
A deeper description of the RPD function and the M function methodology can be

found in [3].
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