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Abstract: In this recent work, the continuous dependence of double diffusive convection was studied
theoretically in a porous medium of the Forchheimer model along with a variable viscosity. The
analysis depicts that the density of saturating fluid under consideration shows a linear relationship
with its concentration and a cubic dependence on the temperature. In this model, the equations
for convection fluid motion were examined when viscosity changed with temperature linearly.
This problem allowed the possibility of resonance between internal layers in thermal convection.
Furthermore, we investigated the continuous dependence of this solution based on the changes
in viscosity. Throughout the paper, we found an “a priori estimate” with coefficients that relied
only on initial values, boundary data, and the geometry of the problem that demonstrated the
continuous dependence of the solution on changes in the viscosity, which also helped us to state
the relationship between the continuous dependence of the solution and the changes in viscosity.
Moreover, we deduced a convergence result based on the Forchheimer model at the stage when
the variable viscosity trends toward a constant value by assuming a couple of solutions to the
boundary-initial-value problems and defining a difference solution of variables that satisfy a given
boundary-initial-value problem.

Keywords: Forchheimer model; double diffusive; salinization; stability; variable viscosity; convergence

1. Introduction

The structural stability of porous media or the study of the continuous dependence of a
model itself is considered a prime and challenging problem. As a result, many authors have
started intensively studying the subject of double diffusive convection in many different
aspects, such as the horizontal layer of porous material saturated with a fluid whose density
or volume does not change with pressure, see [1]. Generally, in the domain of partial
differential equations, the structural stability and continuum mechanics are noticeable in
many areas, see [2]. The reliance of the elasticity field on modeling began with a major
publication by Knops and Payne [3,4]. An extensive research of Payene [5–7] in the area of
structural stability enhanced it, and, since then, numerous papers have been published in
this direction. Resources of this direction can be obtained in an intensive study that was first
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conducted by Straughan [1]. In addition, new elaborations of this study were conducted by
Aulisa et al. [8], Ciarletta et al. [9], Hoang and Ibragimov [10], Liu [11], Liu et al. [12,13],
and Ghazi and Ali [14–17]. Our current paper is an advancement of the work conducted by
Straughan [18] and Gentile and Straughan [19] who studied the continuous dependence
and the structural stability of the supplier of heat in a penetrating convection type and in
the porous medium of Forchheimer, such that the density relies quadratically or cubically
on the temperature field. In most of the applications, cubic dependence is obligatory, while
quadratic dependence has been observed to be insufficient, see McKay and Straughan [20]
and Straughan ([21], pp. 143–144). In case where the fluid flow is not small, we can
introduce Forchheimer coefficients in the Darcy Equations (see [22,23]) because the pressure
gradient is no longer proportional to velocity, see Straughan ([1], p. 12) and Néel [24]. In
our present paper, we are dealing with the Forchheimer model of quadratic degree, where
we first took into consideration the changes on the supplier of the heat, so we had the
ability to obtain the solution of its continuous dependence, and then we analyzed it on
the coefficients of the presented Forchheimer model. In fact, each of the parameters were
analyzed separately because the bounds that resulted in every stage were different. Usually,
in case of liquids, viscosity varies significantly in comparison with other thermo-physical
properties. Most of the real liquids are highly viscous, and, consequently, they can be
affected functionally by temperature. The variability of viscosity can be easily observed
from the tabulated data included in [25–27]. Rossby ([26], p. 334) created a table with the
viscosity values of water as well as a 20 centistoke silicone oil at temperatures ranging
from 20 to 25 ◦C. While doing so, the authors observed that, in case of water, the kinematic
viscosity varies from 0.01008 cm2/s at 20 ◦C to 0.00896 cm2/s at 25 ◦C, which is almost a
10% change. On the other hand, its thermal conductivity varies by only around 1.5% over
the same range of temperatures. Moreover, in the case of 20 cSt silicone oil, the kinematic
viscosity decreases from 0.2137 cm2/s to 0.1904 cm2/s from 20 degrees to 25 degrees, which
is almost a 20% variation, while the thermal conductivity remains constant over the same
interval of temperatures. Over a wide range of temperatures, the viscosity variation may
be extremely large. For instance, Weast [27] stated that the viscosity of olive oil varies from
138.0 cP at 10 ◦C to 12.4 cP at 70 ◦C. Tippelskirch [28], Palm [29], and Palm et al. [30] started
the study of thermal convection in temperature-based viscosity fluids. Generally, there
is a non-linear relationship between viscosity and temperature in numerous convection
problems, but the linear relationship was adopted in [30]. In another expression, Palm
stated that when µ(T) is the kinetic viscosity, we have

µ(T) = µ0(1− γ0(T − T0)), (1)

where µ0 and γ0 are constants (µ0, γ0 > 0).
The phenomenon of double-diffusive convection, in which scalar fields are involved,

such as the heat and concentration of a solute, affects the density distribution in a fluid-
saturated porous medium and has a wide range of applications, including processes arising
in chemical engineering, energy technology, geophysics, and oceanography. In particular,
some applications include groundwater systems in “karst aquifers”, chemical processing,
the convective flow of carbon nanotubes, the propagation of biological fluids, and the
simulation of bacterial bio-convection and thermohaline circulation problems; see [31–35].

In this regard, the goal of the present paper was to develop and analyze the double
diffusive convection problem in a porous medium layer using a Forchheimer model where
viscosity depends linearly on temperature. Furthermore, we took into consideration the
density of fluid in such a manner that it depended linearly on the concentration and cubi-
cally on the temperature. A priori estimates were derived for a solution to the governing
partial differential equations, and these were employed in an analysis of continuous depen-
dence and of convergence. We also proved a convergence result by demonstrating that the
solution converges appropriately as the coupling coefficient vanishes.

The structure of this work is organized as follows. In Section 2, we present the basic
governing equations. In Section 3, we develop a priori estimates by introducing some given
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functions as solutions to a group of boundary value problems and continue the process with
the aid of the mathematical analysis. In Section 4, we analyze the continuous dependence
of a solution to our presented model and check the effective viscosity coefficient, γ. Finally,
we deal with the convergence of the solution to the same presented model and check how
its system affects the viscosity coefficient.

2. Governing Equations

In this section, similar to [18,36], we study double-diffusive convection by considering
a porous medium that fills the three-dimensional region and is governed by the following
Forchheimer equations:

aui|u|+ bui|u|2 + (1 + γT)ui = −p, i + giT + hiT2 + IiT3 + LiC,

ui,i = 0,

T,t + uiT,i = ∆T,

C,t + uiC,i = ∆C.

(2)

For an explanation of the nomenclature, see Table 1.

Table 1. Nomenclature used in this study.

Symbol Definition

ui Velocity
T Temperature
p Pressure
C Concentration
µ A constant
γ A positive constant (viscosity coefficient)
r A positive integer

a and b Forchheimer coefficients
gi, hi, Ii, and Li Vectors for incorporating the gravity field

n A unit outward vector
h, k, T0, and C0 Maps

V A bounded domain in R3

µ(T) A kinetic viscosity
µ0 and γ0 Positive constants

Γ A boundary of the domain V
q A non-zero eigenvalue

ϕ
A solution to the Neumann problem with data

f
F A space of admissible functions
υ The volume of the domain V
∇ The gradient
∇s The surface gradient over the boundary Γ
∆ Laplace operator

m(Γ) The surface measure of Γ
‖ · ‖n Ln(Ω) norm
‖ · ‖ L2(Ω) norm
(·, ·) Inner product

,i ∂/∂xi
,t ∂/∂t

ui,i = 0 The balance of mass equation

We assume, without loss of generality for the present discussion, that

|g| ≤ 1, |h| ≤ 1, |I| ≤ 1 and |L| ≤ 1.
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Let V be a bounded domain in R3 with the boundary Γ. Then, system (2) is defined on
V × (0, T ), for T < ∞, the boundary, and the initial conditions

uini = f (x, t), on Γ× (0, T ), (3)

T(x, t) = h(x, t), C(x, t) = k(x, t), x on Γ, t ∈ (0, T ), (4)

and
T(x, 0) = T0(x), C(x, 0) = C0(x), x ∈ V, (5)

where n is defined as a unit outward vector that is perpendicular to Γ, and h, k, T0, and
C0 are given maps. A collection of many different models with their presentations can be
obtained from [1].

3. A Priori Estimates

To drive the a priori estimates for T and C, we introduce the functions G(x, t), K(x, t),
I(x, t), F(x, t), H(x, t), and M(x, t) as a means of resolving the following boundary value problems:{

∆G(x, t) = 0, in V,

G(x, t) = h(x, t), on Γ,
(6)

{
∆K(x, t) = 0, in V,

K(x, t) = k(x, t), on Γ,
(7)

{
∆I(x, t) = 0, in V,

I(x, t) = h3(x, t), on Γ,
(8)

{
∆F(x, t) = 0, in V,

F(x, t) = h5(x, t), on Γ,
(9)

{
∆H(x, t) = 0, in V,

H(x, t) = h2r−1(x, t), on Γ,
(10)

{
∆M(x, t) = 0, in V,

M(x, t) = k2r−1(x, t), on Γ,
(11)

where r is a positive integer to be determined later. Multiplying Equation (2) by ui and
integrating over V, we obtain

a‖u‖3
3 + b‖u‖4

4 +
∫

V
(1 + γT)|u|2dx (12)

= −
∮

Γ
p, i f dA + gi(T, ui) + hi(T2, ui) + Ii(T3, ui) + Li(C, ui)

≤ −
∮

Γ
p f dA +

1
4
‖u‖2 + 4

(
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
.

To treat the pressure term in (12), we assume that ϕ is the solution to the Neumann
problem with data f , i.e.,

∆ϕ = 0, in V,
∂ϕ

∂n
= f , on Γ,∮

Γ
ϕdA = 0.

(13)

Employing (13) in a pressure term, we obtain
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−
∮

Γ
p f dA = −

∮
Γ

p
∂ϕ

∂n
dA = −

∫
V

p, i ϕ, idx (14)

=
∫

V
ϕ, i

[
aui|u|+ bui|u|2 + (1 + γT)ui − giT − hiT2 − IiT3 −LiC

]
dx

≤ a
( ∫

V
|∇ϕ|3dx

)1/3( ∫
V
|u|3dx

)2/3

+ b
( ∫

V
|∇ϕ|4dx

)1/4( ∫
V
|u|4dx

)3/4

+

( ∫
V
(1 + γT)uiuidx

)1/2( ∫
V
(1 + γT)ϕ, i ϕ, idx

)1/2

+ ‖∇ϕ‖
(
‖T‖+ ‖T‖2 + ‖T‖3

3 + ‖C‖
)

,

where the Cauchy–Schwarz and Hölder’s inequalities are employed. From the Stekloff
inequality, we obtain ∮

Γ
ϕ2dA ≤ 1

q
‖∇ϕ‖2, (15)

where q is the first non-zero eigenvalue, such that

q = min
ξ∈F

‖∇ξ‖2∮
Γ ξ2dA

. (16)

Here, F is the space of admissible functions. Since ∆ϕ = 0 in V, it follows that

‖∇ϕ‖2 =
∮

Γ
ϕ

∂ϕ

∂n
dA.

Adopting (15) and using the Cauchy–Schwarz inequality, we have

‖∇ϕ‖2 ≤ 1
q

∮
Γ

(
∂ϕ

∂n

)2

dA. (17)

Then, inserting (13) and (17) in (3), with the further use of the Cauchy–Schwarz
inequality, we have

−
∮

Γ
p f dA ≤ aυ1/6‖∇ϕ‖6‖u‖2

3 + bυ1/8‖∇ϕ‖8‖u‖3
4 (18)

+

( ∫
V
(1 + γT)uiuidx

)1/2(
‖∇ϕ‖2 + γ‖T‖

√∫
V
|∇ϕ|4dx

)1/2

+
1
√

q

( ∮
Γ

f 2dA
)1/2(

‖T‖+ ‖T‖2 + ‖T‖3
3 + ‖C‖

)
,

where υ is the volume of V. We next use the Sobolev inequalities

‖ψ‖6 ≤ C‖ψ‖H1(V), ‖ψ‖2
4 ≤ C̃‖ψ‖2

H1(V), ‖ψ‖8 ≤ C‖ψ‖H1(V),

with (17), to obtain
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−
∮

Γ
p f dA ≤ aυ1/6C‖u‖2

3

( ∫
V

[
|∇ϕ|2 + ϕ,ij ϕ,ij

]
dx

)1/2

(19)

+ bυ1/8C‖u‖3
4

( ∫
V

[
|∇ϕ|2 + ϕ,ij ϕ,ij

]
dx

)1/2

+

( ∫
V
(1 + γT)uiuidx

)1/2
{

1
q

∮
Γ

f 2dA + γC̃‖T‖
( ∫

V

[
|∇ϕ|2 + ϕ,ij ϕ,ij

]
dx

)}1/2

+
1
√

q

( ∮
Γ

f 2dA
)1/2(

‖T‖+ ‖T‖2 + ‖T‖3
3 + ‖C‖

)
.

Now, let d1, d2, and d3 be the data terms, see [37],∫
V

ϕ,ij ϕ,ijdx = d1(t) + d2(t),

1
q

∮
Γ

f 2dA = d3(t). (20)

Then, we have

‖∇ϕ‖2 ≤ d3(t). (21)

Next, by (19), (20), and (21), we obtain

−
∮

Γ
p f dA ≤

√
d4‖u‖2

3 +
√

d5‖u‖3
4 + (d3 + d6‖T‖)1/2

( ∫
V
(1 + γT)uiuidx

)1/2

+
√

d3

(
‖T‖+ ‖T‖2 + ‖T‖3

3 + ‖C‖
)

, (22)

where
d4 = aυ1/6C(d1 + d2 + d3),

d5 = bυ1/8C(d1 + d2 + d3),

d6 = γC̃(d1 + d2 + d3).

Hence, using (22) in (12), together with Young’s inequality, we obtain

a‖u‖3
3 + b‖u‖4

4 +
∫

V
(1 + γT)|u|2dx

≤ a
2
‖u‖3

3 +
64

81a2 d3/2
4 +

b
2
‖u‖4

4 +
27

32b3 d2
5 +

1
4
‖u‖2

+4
(
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
+ d6‖T‖

+
1
4

∫
V
(1 + γT)|u|2dx + 2d3 + ‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

≤ a
2
‖u‖3

3 +
64

81a2 d3/2
4 +

b
2
‖u‖4

4 +
27

32b3 d2
5 +

1
4

d2
6 + 2d3

+
1
2

∫
V
(1 + γT)|u|2dx + 6‖T‖2 + 5

(
‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
, (23)
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and so

a‖u‖3
3 + b‖u‖4

4 +
∫

V
(1 + γT)|u|2dx ≤ d7 + 10

(
6
5
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
, (24)

where the data term d7 is given by

d7 =
128
81a2 d3/2

4 +
27

16b3 d2
5 +

1
2

d2
6 + 4d3.

Due to (24), we obtain

‖u‖3
3 ≤

1
a

[
d7 + 10

(
6
5
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)]
,

‖u‖4
4 ≤

1
b

[
d7 + 10

(
6
5
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)]
,

∫
V
(1 + γT)|u|2dx ≤ d7 + 10

(
6
5
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
.

(25)

Now, we form the following expressions:∫ t

0

∫
V
(T − G)(T,s + uiT,i − ∆T)dxds = 0, (26)

∫ t

0

∫
V
(C− K)(C,s + uiC,i − ∆C)dxds = 0, (27)

∫ t

0

∫
V
(T3 − I)(T,s + uiT,i − ∆T)dxds = 0, (28)

∫ t

0

∫
V
(T5 − F)(T,s + uiT,i − ∆T)dxds = 0, (29)

where t is a number, such that 0 ≤ t ≤ T .
Next, integrating by part in (29) and employing the boundary condition (6), we obtain

‖T‖2 + 2
∫ t

0
‖∇T‖2ds ≤ ‖T0‖2 + 2(G, T) + 2

∣∣∣∣(G0, T0)

∣∣∣∣+ 2
∣∣∣∣ ∫ t

0
(G,s, T)ds

∣∣∣∣
+2

∫ t

0

∫
V

GuiT,idxds + 2
∫ t

0

∮
Γ

h
(

∂G
∂n

)
dAds +

∫ t

0

∮
Γ
| f |h2dAds.

Using the Cauchy–Schwarz and arithmetic-geometric mean inequalities on the right,
we obtain

1
2
‖T‖2 +

∫ t

0
‖∇T‖2ds ≤ 2‖T0‖2 + 2‖G‖2 + ‖G0‖2 +

∫ t

0
‖G,s‖2ds (30)

+G2
m

∫ t

0
‖u‖2ds +

∫ t

0
‖T‖2ds +

∫ t

0

∮
Γ

h2dAds

+
∫ t

0

∮
Γ

(
∂G
∂n

)2

dAds +
∫ t

0

∮
Γ
| f |h2dAds.

By (25)3 and (30), we have
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‖T‖2 + 2
∫ t

0
‖∇T‖2ds ≤ 4‖T0‖2 + 4‖G‖2 + 2‖G0‖2 + 2

∫ t

0
‖G,s‖2ds

+ 2(1 + 12G2
m)
∫ t

0
‖T‖2ds + 2G2

m

∫ t

0

[
d7 + 10

(
‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)]
ds

+ 2
∫ t

0

∮
Γ

(
∂G
∂n

)2

dAds + 2
∫ t

0

∮
Γ
(1 + | f |)h2dAds. (31)

Now, by (27) and by performing an integration by parts along with using the inequali-
ties of the Cauchy–Schwarz and arithmetic-geometric mean, we obtain

1
4
‖C‖2 +

3
4

∫ t

0
‖∇C‖2ds ≤ ‖C0‖2 +

1
2
‖K0‖2 + ‖K‖2 +

1
2

∫ t

0
‖C‖2ds (32)

+K2
m

∫ t

0
‖u‖2ds +

1
2

∫ t

0

∮
Γ
(1 + | f |)k2dAds

1
2

∫ t

0
‖K,s‖2ds +

1
2

∫ t

0

∮
Γ

(
∂K
∂n

)2

dAds.

Using (25)3, we obtain

‖C‖2 + 3
∫ t

0
‖∇C‖2ds ≤ 4‖C0‖2 + 2‖K0‖2 + 4‖K‖2 + 2(1 + 20K2

m)
∫ t

0
‖C‖2ds

+ 4K2
m

∫ t

0

[
d7 + 10

(
6
5
‖T‖2 + ‖T‖4

4 + ‖T‖6
6

)]
ds + 2

∫ t

0

∮
Γ
(1 + | f |)k2dAds

+2
∫ t

0
‖K,s‖2ds + 2

∫ t

0

∮
Γ

(
∂K
∂n

)2

dAds. (33)

Furthermore, employing the same previous procedure on (28) and (29), respectively,
we obtain

‖T‖4
4 + 3

∫ t

0
‖∇T2‖2ds ≤ ‖T0‖4

4 + 2‖I0‖2 + 2‖T0‖2 + 16‖I‖2 +
1
4
‖T‖2 (34)

+ 2
∫ t

0
‖I,s‖2ds +

∫ t

0

∮
Γ
| f |h4dAds + 2(1 + 24I2

m)
∫ t

0
‖T‖2ds

+
∫ t

0
‖∇T‖2ds + 4I2

m

∫ t

0

[
d7 + 10

(
‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)]
ds

+ 2
∫ t

0

∮
Γ

h2dAds + 2
∫ t

0

∮
Γ

(
∂I
∂n

)2

dAds,

‖T‖6
6 +

5
3

∫ t

0
‖∇T3‖2ds ≤ ‖T0‖6

6 + 3‖F0‖2 + 3‖T0‖2 + 36‖F‖2 +
1
4
‖T‖2 (35)

+ 3
∫ t

0
‖F,s‖2ds +

∫ t

0

∮
Γ
| f |h6dAds + 3(1 + 72F2

m)
∫ t

0
‖T‖2ds

+
1
2

∫ t

0
‖∇T‖2ds + 18F2

m

∫ t

0

[
d7 + 10

(
‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)]
ds

+ 3
∫ t

0

∮
Γ

h2dAds + 3
∫ t

0

∮
Γ

(
∂F
∂n

)2

dAds,

where Gm, Km, Im, and Fm are the maximum values of G, K, I, and F, respectively, on Γ×
(0, T ).

Next, by (31)–(35), we obtain
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1
2
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2 +

1
2

∫ t

0
‖∇T‖2ds + 3

∫ t

0
‖∇C‖2ds + 3

∫ t

0
‖∇T2‖2ds

+
5
3

∫ t

0
‖∇T3‖2ds ≤

(
7 + 24G2

m + 48K2
m + 48I2

m + 216F2
m

) ∫ t

0
‖T‖2ds

+

(
2 + 20G2

m + 40K2
m + 40I2

m + 180F2
m

) ∫ t

0
‖C‖2ds (36)

+

(
20G2

m + 40K2
m + 40I2

m + 180F2
m

) ∫ t

0
‖T‖4

4ds

+

(
20G2

m + 40K2
m + 40I2

m + 180F2
m

) ∫ t

0
‖T‖6

6ds + E(t)

≤ B
∫ t

0

(
1
2
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
ds + E(t),

where

B = 2
(

7 + 24G2
m + 48K2

m + 48I2
m + 216F2

m

)
and E(t) is a term that is bounded by data and is given by

E(t) = 9‖T0‖2 + ‖T0‖4
4 + ‖T0‖6

6 + 2‖G0‖2 + 4‖C0‖2 + 2‖K0‖2 + 2‖I0‖2 + 3‖F0‖2

+ 4‖G‖2 + 4‖K‖2 + 16‖I‖2 + 36‖F‖2 +

(
2G2

m + 4K2
m + 4I2

m + 18F2
m

) ∫ t

0
d7ds

+2
∫ t

0
‖G,s‖2ds + 2

∫ t

0
‖K,s‖2ds + 2

∫ t

0
‖I,s‖2ds + 3

∫ t

0
‖F,s‖2ds (37)

+
∫ t

0

∮
Γ
(7 + 2| f |)h2dAds + 2

∫ t

0

∮
Γ
(1 + | f |)k2dAds +

∫ t

0

∮
Γ
| f |h4dAds

+
∫ t

0

∮
Γ
| f |h6dAds + 2

∫ t

0

∮
Γ

(
∂G
∂n

)2

dAds + 2
∫ t

0

∮
Γ

(
∂K
∂n

)2

dAds

+2
∫ t

0

∮
Γ

(
∂I
∂n

)2

dAds + 3
∫ t

0

∮
Γ

(
∂F
∂n

)2

dAds.

Straughan and Payne proved in [38] that for a given function φ that satisfies

∆φ = 0, in V,

φ = M, on Γ, (38)

one may use a Rellich identity [39] to determine c1 and c2, such that

‖∇φ‖2 + c1

∮
Γ

(
∂φ

∂n

)2

dA ≤ c2

∮
Γ
|∇s M|2dA, (39)

where∇s represents the surface gradient over the boundary Γ. Furthermore, they showed that

2(ψ∇φ,∇φ) + ‖φ‖2 ≤ ψ1

∮
Γ

M2dA, (40)

where

ψ1 = max
Γ

∣∣∣∣∂ψ

∂n

∣∣∣∣
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with the boundary value condition

∆ψ = −1, in V,

ψ = 0, on Γ. (41)

Thus, (39) and (40) result in bounds for E(t) represented by data. We now can directly
state that

E(t) ≤ D(t) (42)

such that

D(t) = 9‖T0‖2 + ‖T0‖4
4 + ‖T0‖6

6 + 4‖C0‖2 +

(
2G2

m + 4K2
m + 4I2

m + 18F2
m

) ∫ t

0
d7ds

+2ψ1

∮
Γ

h2
0dA + 2ψ1

∮
Γ

k2
0dA + 2ψ1

∮
Γ

h6
0dA + 3ψ1

∮
Γ

h10
0 dA + 4ψ1

∮
Γ

h2dA (43)

+4ψ1

∮
Γ

k2dA + 16ψ1

∮
Γ

h6dA + 36ψ1

∮
Γ

h10dA + 2ψ1

∫ t

0

∮
Γ

h2
,ηdAdη

+2ψ1

∫ t

0

∮
Γ

k2
,ηdAdη + 2ψ1

∫ t

0

∮
Γ

h4h2
,ηdAdη + 3ψ1

∫ t

0

∮
Γ

h8h2
,ηdAdη

+
∫ t

0

∮
Γ
(7 + 2| f |)h2dAdη + 2

∫ t

0

∮
Γ
(1 + | f |)k2dAdη +

∫ t

0

∮
Γ
| f |h4dAdη

+
∫ t

0

∮
Γ
| f |h6dAdη +

2c2

c1

∫ t

0

∮
Γ
|∇sh|2dAdη +

2c2

c1

∫ t

0

∮
Γ
|∇sk|2dAdη

+
2c2

c1

∫ t

0

∮
Γ
|∇sh3|2dAdη +

3c2

c1

∫ t

0

∮
Γ
|∇sh5|2dAdη

and then, from (36), we may have

U′ −BU ≤ D(t), (44)

where U is a function defined by

U(t) =
∫ t

0

(
1
2
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
ds.

Next, setting

D1(t) =
∫ t

0
D(s) exp(B[t− s])ds, (45)

and integrating (44) to show
U(t) ≤ D1(t). (46)

Furthermore, taking D2 = BD1 +D and using (44), we have

1
2
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2 ≤ D2(t). (47)

By (36), (46), and (47), we obtain∫ t

0
‖T‖2ds ≤ 2D1,

∫ t

0
‖T‖4

4ds ≤ D1,
∫ t

0
‖T‖6

6ds ≤ D1,
∫ t

0
‖C‖2ds ≤ D1(t),

‖T‖2 ≤ 2D2, ‖T‖4
4 ≤ D2, ‖T‖6

6 ≤ D2, ‖C‖2 ≤ D2(t), (48)∫ t

0
‖∇T‖2ds ≤ 2D2,

∫ t

0
‖∇C‖2ds ≤ 1

3
D2,

∫ t

0
‖∇T2‖2ds ≤ 1

3
D2,

∫ t

0
‖∇T3‖2ds ≤ 3

5
D2.
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We could now start the way of deriving a bound for supV×[0,T] |T|, such that

∫ t

0

∫
V
(T2r−1 − H)(T,s + uiT,i − ∆T)dxds = 0. (49)

By integration by parts, we obtain

∫
V

T2rdx +
2(2r− 1)

r

∫ t

0

∫
V
∇Tr∇Trdxds =

∫
V

T2r
0 dx + 2r(T, H)− 2r(T0, H0)

−2r
∫ t

0

∫
V

TH,sdxds + 2r
∫ t

0

∫
V

T,i Huidxds + 2r
∫ t

0

∮
Γ

h
∂H
∂n

dAds−
∫ t

0

∮
Γ

f T2rdAds

≤
∫

V
T2r

0 dx + 2r(‖T‖‖H‖+ ‖T0‖‖H0‖) + 2r
( ∫ t

0
‖H,s‖2ds

∫ t

0
‖T‖2ds

)1/2

(50)

+2rh2r−1
m

( ∫ t

0

[
d7 + 12‖T‖2 + 10

(
‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)]
ds
∫ t

0
‖∇T‖2ds

)1/2

+2r
( ∫ t

0

∮
Γ

h2dAds
∫ t

0

∮
Γ

(
∂H
∂n

)2

dAds
)1/2

+
∫ t

0

∮
Γ
| f |h2rdAds.

Hence, using the arithmetic-geometric mean inequality and the inequalities (39)
and (40) together with (48), we obtain

∫
V

T2rdx ≤
∫

V
T2r

0 dx + 2r(
√

2D2 + ‖T0‖)
(

ψ1

∮
Γ

h4r−2dA
)1/2

(51)

+ 2r
(

2D1ψ1

∫ t

0

∮
Γ

[
h2r−1

,η

]2

dAdη

)1/2

+ rh2r−1
m

( ∫ t

0
d7dη + 54D1 + 2D2

)
+2r

(
c2

c1

∫ t

0

∮
Γ

[
∇ηh

]2

dAdη
∫ t

0

∮
Γ

h2dAdη

)1/2

+
∫ t

0

∮
Γ
| f |h2rdAdη.

Using the Cauchy–Schwarz inequality again, we obtain( ∮
Γ

h4r−2dA
)1/2

≤ h2r−1
m

( ∮
Γ

dA
)1/2

=
h2r

m
hm

√
[m(Γ)], (52)

( ∫ t

0

∮
Γ

h4r−4h2
,ηdAdη

)1/2

≤ h2r
m

h2
m

( ∫ t

0

∮
Γ

h2
,ηdAdη

)1/2

, (53)

( ∫ t

0

∮
Γ

h4r−4
[
∇ηh

]2

dAdη

)1/2

≤ h2r
m

h2
m

( ∫ t

0

∮
Γ

[
∇ηh

]2

dAdη

)1/2

, (54)

where m(Γ) is the surface measure of Γ.
Employing (53) and (54) in (51), we obtain

∫
V

T2rdx ≤
∫

V
T2r

0 dx +
2rh2r

m
hm

(
√

2D2 + ‖T0‖)
√

ψ1[m(Γ)] (55)

+
2r(2r− 1)h2r

m
hm

(
2D1ψ1

∫ t

0

∮
Γ

h2
,ηdAdη

)1/2

+
rh2r

m
hm

( ∫ t

0
d7dη + 54D1 + 2D2

)
+ h2r

m

∫ t

0

∮
Γ
| f |dAdη

+
2r(2r− 1)h2r

m
h2

m

(
c2

c1

∫ t

0

∮
Γ

[
∇ηh

]2

dAdη
∫ t

0

∮
Γ

h2dAdη

)1/2

.
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Taking the power 1/2r of (55), we obtain

‖T‖2r ≤
(
‖T0‖2r

2r + h2r
m

5

∑
i=1

αi

)1/2r

, (56)

where αi can be obtained from (55) and

hm = max
Γ×[0,T ]

|h|.

Taking the limit as r → ∞, we obtain the a priori bound

sup
V×[0,T ]

|T| ≤ max{|T0|m, sup
[0,T ]

hm}, (57)

where
|T0|m = max

V
|T0|.

Finally, we have to find a bound for supV×[0,T ] |C|. Now, we form the expression

∫ t

0

∫
V
(C2r−1 −M)(C,s + uiC,i − ∆C)dxds = 0. (58)

Following the same procedure in (49)–(57), we have that

sup
V×[0,T ]

|C| ≤ max{|C0|m, sup
[0,T ]

km}, (59)

where
|C0|m = max

V
|C0|.

4. Continuous Dependence on γ

In order to study the continuous dependence on the coefficient γ of the viscosity in
the Forchheimer equations that govern the fluid flow defined in (2), we first assume that
(ui, T, C1, and p) and (vi, S, C2, and q) are solutions of (2)–(5) for the identical data functions
f , h, and T0 but for not the same coefficients of the viscosity, γ1 and γ2. Next, we introduce
the definition of the difference solution (wi, θ, φ, and π) as

wi = ui − vi, θ = T − S, φ = C1 − C2, π = p− q, γ = γ1 − γ2. (60)

Moreover, by using (2)–(5), it is obvious that this solution holds for the following
boundary-initial-value problem

a[|u|ui − |v|vi] + b[|u|2ui − |v|2vi] + wi + γTui + γ2θui + γ2Swi

= −π,i + giθ + hiθ(T + S) + Iiθ(T2 + TS + S2) + Liφ,

wi,i = 0,

θ,t + wiS,i + uiθ,i = ∆θ,

φ,t + wiC2,i + uiφ,i = ∆φ,

wini = θ = φ = 0 on Γ× (0, T ),
θ(x, 0) = φ(x, 0) = 0, x ∈ V.

(61)

Obviously, (61)1 can be rearranged as

a[|u|ui − |v|vi] + b[|u|2ui − |v|2vi] + wi + γTvi + γ2θvi + γ1Twi

= −π,i + giθ + hiθ(T + S) + Iiθ(T2 + TS + S2) + Liφ. (62)
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To achieve this, multiplying (61)1 by wi and integrating over V, we obtain

a
∫

V
[|u|ui − |v|vi]widx + b

∫
V
[|u|2ui − |v|2vi]widx +

∫
V
(1 + γ2S)wiwidx (63)

≤ −γ
∫

V
Tuiwidx− γ2

∫
V

θuiwidx + gi(θ, wi) + hi[Tm + Sm](θ, wi)

+Ii[T2
m + TmSm + S2

m](θ, wi) + Li(φ, wi),

where Tm and Sm are the maximum values of T and S, respectively.
Now, we observe, with the aid of the triangle inequality, that

a
∫

Ω
[|u|ui − |v|vi]widx =

a
2

∫
Ω
[|u|+ |v|]wiwidx +

a
2

∫
Ω
[|u| − |v|]2(|u|+ |v|)dx

≥ a
2

∫
Ω
[|u|+ |v|]wiwidx. (64)

Similarly,

b
∫

Ω
[|u|2ui − |v|2vi]widx =

b
2

∫
Ω
[|u|2 + |v|2]wiwidx +

b
2

∫
Ω
[|u|2 − |v|2]2(|u|+ |v|)dx

≥ b
2

∫
Ω
[|u|2 + |v|2]wiwidx ≥ b

4

∫
Ω
[|u|+ |v|]2wiwidx

≥ b
4

∫
Ω
|ui − vi|2wiwidx =

b
4
‖w‖4

4. (65)

Substituting (64) and (65) in (63) and applying the arithmetic-geometric mean and the
Hölder’s and Cauchy–Schwarz inequalities, we have

a
2

∫
V
[(|u|+ |v|)wiwidx +

b
4
‖w‖4

4 +
∫

V
(1 + γ2S)wiwidx (66)

≤ 1
3
‖w‖2 +

3γ2T2
m

2
‖u‖2 + a

∫
V
|u|wiwidx +

γ2
2

4a

∫
V
|u|θ2dx +R‖θ‖‖w|‖+ 3

2
‖φ‖2

≤ 1
2
‖w‖2 +

3γ2T2
m

2
‖u‖2 + a

∫
V
|u|wiwidx +

γ2
2

4a

( ∫
V
|u|3dx

)1/3( ∫
V
|θ|3dx

)2/3

+
3R2

2
‖θ‖2 +

3
2
‖φ‖2,

where R = 1 + Tm + Sm + T2
m + TmSm + S2

m. Using the Sobolev inequality together with
the Cauchy–Schwarz inequality in (66), we obtain

a
2

∫
V
[(|u|+ |v|)wiwidx +

b
4
‖w‖4

4 +
∫

V
(

1
2
+ γ2S)wiwidx (67)

≤ 3γ2T2
m

2
‖u‖2 + a

∫
V
|u|wiwidx +

γ2
2C2/3

4a
‖u‖3‖θ‖‖∇θ‖+ 3R2

2
(‖θ‖2 + ‖φ‖2).

Repeating the same argument starting from (63) to obtain

a
2

∫
V
[(|u|+ |v|)wiwidx +

b
4
‖w‖4

4 +
∫

V
(

1
2
+ γ1T)wiwidx (68)

≤ 3γ2T2
m

2
‖v‖2 + a

∫
V
|v|wiwidx +

γ2
2C2/3

4a
‖v‖3‖θ‖‖∇θ‖+ 3R2

2
(‖θ‖2 + ‖φ‖2).

Combining (67) and (68), we have
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b
2
‖w‖4

4 +
∫

V
(1 + γ2S + γ1T)wiwidx (69)

≤ 3γ2T2
m

2
(‖u‖2 + ‖v‖2) +

γ2
2C2/3

4a
(‖u‖3 + ‖v‖3)‖θ‖‖∇θ‖+ 3R2(‖θ‖2 + ‖φ‖2).

For λ > 0, dropping the first terms on the left hand side, we conclude∫
V
(1 + γ2S + γ1T)wiwidx (70)

≤ 3γ2T2
m

2
(‖u‖2 + ‖v‖2) +

γ4
2C4/3

64λa2 (‖u‖3 + ‖v‖3)
2‖θ‖2 + λ‖∇θ‖2 + 3R2(‖θ‖2 + ‖φ‖2)

≤ 3γ2T2
m(d7 + 54D2) +

γ4
2C4/3

16λa8/3 (d7 + 54D2)
2/3‖θ‖2 + λ‖∇θ‖2 + 3R2(‖θ‖2 + ‖φ‖2)

≤ Aγ2 + B(‖θ‖2 + ‖φ‖2) + λ‖∇θ‖2,

where A = 3T2
m(d7max + 54D2) and B = a−8/3γ4

2C4/3(d7max + 54D2)
2/3/16λ + 3R2.

Furthermore, multiplying (61)3 and (61)4 by θ and φ, respectively, and integrating over
V, we obtain

d
dt
‖θ‖2 + ‖∇θ‖2 ≤ S2

m‖w‖2, (71)

d
dt
‖φ‖2 + ‖∇φ‖2 ≤ C2

2 m‖w‖2. (72)

Collecting (71) and (72) and integrating the result, we have

‖θ‖2 + ‖φ‖2 +
∫ t

0
(‖∇θ‖2 + ‖∇φ‖2)ds ≤ (S2

m + C2
2 m)

∫ t

0
‖w‖2ds, (73)

which implies
‖∇θ‖2 ≤ (S2

m + C2
2 m)‖w‖2, (74)

where C2 m is the maximum value of C2.
Next, we assume that K = 2B(S2

m + C2
2 m), A = 2A(S2

m + C2
2 m), and λ = 1/2(S2

m +
C2

2 m). Then, from (70) and (73), we obtain

‖w‖2 ≤ Aγ2 +K
∫ t

0
‖w‖2ds. (75)

By (75), we have ∫ t

0
‖w‖2ds ≤ Aγ2t +K

∫ t

0
(t− s)‖w‖2ds (76)

and, thus, from (76), we obtain∫ t

0
(t− s)‖w‖2ds ≤ K2(t)γ2 (77)

and so ∫ t

0
‖w‖2ds ≤ K3(t)γ2, (78)

where

K2(t) =
∫ t

0
K1(s) exp(K[t− s])ds, K1(t) = At and K3(t) = K1 +KK2.
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Moreover, employing (78) in (73) we can have

‖θ‖2 + ‖φ‖2 +
∫ t

0
(‖∇θ‖2 + ‖∇φ‖2)ds ≤ γ2K3(S2

m + C2
2 m). (79)

The continuous dependence on the coefficient γ of the viscosity is shown by (79), and
it is clearly an a priori bound, such that γ2 only relies on the initial data and boundary data.

5. Convergence to the Constant Viscosity Solution

Let (ui, T, C1, and p) and (vi, S, C2, and q) be solutions satisfying the following boundary-
initial-value problems:

aui|u|+ bui|u|2 + (1 + γT)ui = −p, i + giT + hiT2 + IiT3 + LiC1,

ui,i = 0,

T,t + uiT,i = ∆T,

C1,t + uiC1,i = ∆C1,

}
in V × (0, T ) (80)

and
uini = f (x, t), on Γ× (0, T ),

T(x, t) = h(x, t), C1(x, t) = k(x, t), x on Γ, t ∈ (0, T ),
(81)

avi|v|+ bvi|v|2 + vi = −q, i + giS + hiS2 + IiS3 + LiC2,

vi,i = 0,

S,t + viS,i = ∆S,

C2,t + viC2,i = ∆C2,

}
in V × (0, T ) (82)

and
vini = f (x, t), on Γ× (0, T ),

S(x, t) = h(x, t), C2(x, t) = k(x, t), x on Γ, t ∈ (0, T ).
(83)

The variables wi, θ, φ, and π are introduced in (60) and satisfy the boundary-initial-
value problem:

a[|u|ui − |v|vi] + b[|u|2ui − |v|2vi] + wi + γTui = −π,i + giθ

+hiθ(T + S) + Iiθ(T2 + TS + S2) + Liφ,

wi,i = 0,

θ,t + wiS,i + uiθ,i = ∆θ,

φ,t + wiC2,i + uiφ,i = ∆φ,

wini = θ = φ = 0 on Γ× (0, T ),
θ(x, 0) = φ(x, 0) = 0, x ∈ V.

(84)

The proof of the maximum principle (57) and (59) for T and C may be shown to hold
here. Multiplying (84)1 by wi and integrating over V, and employing the Cauchy–Schwarz
and arithmetic-geometric-mean inequalities, we obtain

a‖w‖3
3 + b‖w‖4

4 + ‖w‖2 ≤ γTm‖w‖‖u‖+R‖θ‖‖w‖+ ‖φ‖‖w‖ (85)

≤ 1
2
‖w‖2 +

3
2

γ2T2
m‖u‖2 +

3
2
R2‖θ‖2 +

3
2
‖φ‖2.

We may drop the non-negative first and second terms in the left to obtain

‖w‖2 ≤ 3γ2T2
m‖u‖2 + 3R2(‖θ‖2 + ‖φ‖2). (86)
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Next, multiplying (80) by ui, and vs. integrating over V, we obtain

a‖u‖3
3 + b‖u‖4

4 +
∫

V
(1 + γT)|u|2dx (87)

= −
∮

Γ
p, i f dA + gi(T, ui) + hi(T2, ui) + Ii(T3, ui) + Li(C, ui)

≤ −
∮

Γ
p, i f dA +

1
4
‖u‖2 + 4

(
‖T‖2 + ‖T‖4

4 + ‖T‖6
6 + ‖C‖2

)
≤ −

∮
Γ

p, i f dA +
1
4

∫
V
(1 + γT)|u|2dx + 20D2.

Now, one could use the Cauchy–Schwarz and Hölder’s inequalities along with Young’s
inequality to obtain

−
∮

Γ
p, i f dA =

∫
V

ϕ, i

[
aui|u|+ bui|u|2 + (1 + γT)ui − giT − hiT2 − IiT3 −LiC

]
dx

≤ a
( ∫

V
|∇ϕ|3dx

)1/3( ∫
V
|u|3dx

)2/3

+ b
( ∫

V
|∇ϕ|4dx

)1/4( ∫
V
|u|4dx

)3/4

(88)

+

( ∫
V
(1 + γT)uiuidx

)1/2( ∫
V
(1 + γT)ϕ, i ϕ, idx

)1/2

+ ‖∇ϕ‖
(
‖T‖+ ‖T‖2 + ‖T‖3

3 + ‖C‖
)

≤ a‖u‖3
3 +

4a
27

∫
V
|∇ϕ|3dx + b‖u‖4

4 +
27b
256

∫
V
|∇ϕ|4dx

+
1
4

∫
V
(1 + γTm)|u|2dx +

∫
V
(1 + γTm)|∇ϕ|2dx +

1
4
‖∇ϕ‖2 + 20D2.

By (87) and (88), we obtain
‖u‖2 ≤M2, (89)

whereM2 is the data term, such that

M2 =
8a
27

∫
V
|∇ϕ|3dx +

27b
128

∫
V
|∇ϕ|4dx + 2

∫
V
(1 + γTm)|∇ϕ|2dx +

1
2
‖∇ϕ‖2 + 80D2.

Next, multiplying of (84)3 and (84)4 by θ and φ, respectively, we also obtain

‖θ‖2 + ‖φ‖2 ≤ 1
2
(S2

m + C2
2 m)

∫ t

0
‖w‖2ds. (90)

Thus, by (86) and (90), we have

‖w‖2 ≤ 3γ2T2
mM2 +

3
2
R2(S2

m + C2
2 m)

∫ t

0
‖w‖2ds. (91)

By (91), we obtain

∫ t

0
‖w‖2ds ≤

2γ2T2
mM2 exp

(
3
2R2(S2

m + C2
2 m)t

)
R2(S2

m + C2
2 m)

. (92)

The above inequality (92) shows that ui is convergent to vi as γ → 0. Adding (91)
and (92), one can clearly see the convergence of wi in the L2(Ω) norm, and from (90), one
can obtain the convergence of θ and φ in the L2(Ω) norm.

6. Conclusions

The continuous dependence and structural stability in the problem of double-diffusive
convection in a porous medium of the Forchheimer model was investigated throughout this
study when the fluid density and viscosity had cubic and linear temperature dependences,
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respectively. The a priori bound was derived and obtained for both of the temperature and
the concentration using coefficients that were dependent only on the boundary and initial
data. With the aid of these a priori bounds, we were able to demonstrate the continuous
dependence of the solutions on some coefficients. We further showed that the solution
depends continuously on a change in the viscosity coefficients. In addition, we studied the
continuous dependence on the coefficient γ of the viscosity in the Forchheimer equations
that govern fluid flow by assuming a couple of solutions to our boundary-initial-value
problems and defining a difference solution to the same problem. Then, with the aid of
the Cauchy–Schwarz inequality and the integration, we used these two assumed solutions
(ui, T, C1, and p) and (vi, S, C2, and q), and we proved that ui from the first solution
converges to vi from the second solution using the difference solution (wi, θ, φ, and π),
which indicates the difference between the two assumed solutions. Consequently, the first
solution converges to the second solution as the difference solution converges to zero.
Finally, we reached to an inequality that ensures the convergence on the Forchheimer
system when the variable viscosity coefficients trend toward a constant viscosity.
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