
OPTIMAL CONTROL APPLICATIONS AND METHODS
Optim. Control Appl. Meth. (in press)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/oca.798

Parametric uncertainty and disturbance attenuation in the
suboptimal control of a non-linear electrochemical process
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SUMMARY

The optimal control of the hydrogen evolution reactions is attempted for the regulation and change of set-
point problems, taking into account that model parameters are uncertain and I/O signals are corrupted by
noise. Bilinear approximations are constructed, and their dimension eventually increased to meet accuracy
requirements with respect to the trajectories of the original plant. The current approximate model is used to
evaluate the optimal feedback through integration of the Hamiltonian equations. The initial value for the
costate is found by solving a state-dependent algebraic Riccati equation, and the resulting control is then
suboptimal for the electrochemical process. The bilinear model allows for an optimal Kalman–Bucy filter
application to reduce external noise. The filtered output is reprocessed through a non-linear observer in
order to obtain a state-estimation as independent as possible from the bilinear model. Uncertainties on
parameters are attenuated through an adaptive control strategy that exploits sensitivity functions in a novel
fashion. The whole approach to this control problem can be applied to a fairly general class of non-linear
continuous systems subject to analogous stochastic perturbations. All calculations can be handled on-line
by standard ordinary differential equations integration software. Copyright # 2007 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The hydrogen evolution reactions (HER) system has received increasing attention in recent
literature due to its basic role in modelling the dynamics of electrochemical devices. These
reactions were widely used to study and experiment on water electrolysis and batteries’
dynamics [1], but since the opposite directions of the kinetics can occur upon changing
conditions, the same equations also model hydrogen consuming processes as in fuel-cells-type
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reactors [2]. Also H2 -decontamination and corrosion prevention processes for heavy metals [3],
and cold nuclear fusion [4, 5], include HER mechanisms in their dynamics.

The structure of the HER system is non-linear. Experiments show qualitative behaviours only
possible for non-linear systems (see the extensive review by Hudson and Tsotsis [6]). So, usual
linearizations around steady states are insufficient to reflect the characteristics of the flow for
significative departures from a single equilibrium point, as those occurring in change of set-point
operations. Moreover, for control systems it is well known that the same accuracy on
trajectories for all admissible input functions cannot been guaranteed during a fixed period of
time, however small [7].

In its simplest form, the HER system is a combination of several chemical reactions
conducting to hydrogen deposition on the electrode of most electrochemical devices, and its
ulterior desorption to reach molecular gaseous form. The model adopted here reduces to a series
of three ‘steps’, each one known after the names of the distinguished chemists Volmer–
Heyrovsky–Tafel (see [6, 8]), or globally as the VHT reaction mechanisms.

The control of fuel cells operation has begun to be studied recently, specially for non-
isothermal proton exchange membrane prototypes (see [9, 10], and the references therein). In all
cases dynamic non-linearities have been confirmed experimentally, which suggests that fuel cell
technology would require non-linear control techniques for conducting changes in their
operational conditions. Other aspects of control of electrochemical reactions attempt to avoid
chaotic behaviour [11, 12], or to minimize the dissipation of electrical power during the process
control [13].

Concern has also arisen with respect to the stochastic aspects of the problem, mainly the
uncertainties on the parameters of the system and noise corruption of input/output signals, both
approached in this paper. For the electrochemical system under study the output does not
coincide with the state, and therefore an implicit stochastic tracking objective is involved, which
in principle should be solved in the non-linear context. This problem has been addressed [14]
through power series expansions of the Hamilton–Jacobi–Bellman equation, and by rearranging
the resulting terms to construct two suboptimal (state and output) feedbacks. Unfortunately
such an approach requires system stability in the whole range of the process, that in general
cannot be guaranteed for changes of set-point requests. Also, it assumes conditions of
invertibility or non-vanishing of coefficients on the matrices of the approximation, which neither
can be assumed in the present case, above all when increasing the dimension of the model
becomes necessary.

For these reasons, in this paper a novel approach to the combined problem of updating
parameters and filtering noise is designed. A non-linear continuous updating algorithm through
sensitivity matrices is devised along the course of non-linear least-squares strategies (see [15]),
but using state instead of output deviations as the relevant data acquired on-line. Therefore, the
design of a filter and an observer, both non-linear, becomes necessary. This approach is chosen
given the highly non-linear control-dependent character of the observation function from one
side, and the relatively simple initial-value dynamics governing the sensitivity matrices and the
filtering problem for the bilinear model on the other.

Summarizing, the main contributions reside in (i) the development of new formulae for the
continuous updating of coefficients in non-linear dynamics, based on sensitivity matrices; (ii) the
algorithm to refine approximate realizations by adding only two new coefficients to the model
matrices for each dimension increase; and (iii) the combination of these new results with non-
linear optimal control, observers and filtering techniques to produce a control strategy robust
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with respect to signal noise and parameter uncertainty. This strategy is also suboptimal with
respect to a classical quadratic cost and may be constructed completely on-line.

The organization of the paper is as follows: Section 2 describes the electrochemical system, its
bilinear approximation near equilibrium points, and the optimal control objectives imposed,
and also there are two subsections describing the Hamiltonian approach to the infinite-horizon
suboptimal control solution, for the cases of regulation and changes of set-point. Section 3
shows how the sensitivity functions are employed in updating parameters of the bilinear
approximations. Section 4 describes the method for increasing the dimension (but keeping the
bilinear structure) of the approximating model before accuracy failures, and Section 5 the
implementation of a Kalman–Bucy filter to attenuate disturbances in I/O signals, in parallel
with a non-linear observer used to update the linear parameter of the filter. All steps are
combined in an on-line calculation strategy, shown in a flowchart and explained in Section 6.
Conclusions and final comments are included in Section 7.

2. SYSTEM DYNAMICS AND APPROXIMATIONS. THE SUBOPTIMAL
CONTROL PROBLEM

The VHT reactions and their kinetics are modelled as (see for instance [16])

Volmer :H2Oþ e� Ð HðadsÞ þOH�

vV ¼ veV
1� y
1� ye

e�ð1�aÞ f Z �
y
ye

ea f Z
� �

ð1Þ

Heyrovsky :H2OþHðadsÞ þ e� Ð H2ðgÞ þOH�

vH ¼ veH
y
ye

e�ð1�aÞ f Z �
1� y
1� ye

ea f Z
� �

ð2Þ

Tafel :HðadsÞ þHðadsÞ Ð H2ðgÞ

vT ¼ veT
y
ye

� �2

�
1� y
1� ye

� �2
( )

ð3Þ

By taking all three routes into account, and assuming that the electrode’s surface coverage is
proportional to the number of atoms of HðadsÞ; then the HER stoichiometric balance translates
into a y accumulation rate equation

’y ¼
F

s
ðvV � vH � 2vTÞ; ð¼

4

gðy; ZÞÞ ð4Þ

where the main variables involved are: y is the surface coverage (the fraction of the electrode
surface covered by adsorbed atomic hydrogen HðadsÞ); ’y denotes the time ðtÞ derivative of y (t in
seconds); and Z; the overpotential imposed on the system to run the reaction. The variable Z will
be identified with the control input of the system. Other symbols and parameters used mean:

H2ðgÞ; gaseous (desorbed) molecular hydrogen; ye; specific equilibrium surface coverage
(ye ¼ 0:1 in numerical calculations and graphics of this paper); a; adsorption symmetric factor
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(¼ 0:5 in calculations); R; gas constant ¼ 8:3145 J mol�1 K�1; F ; Faraday constant ¼ 96484:6
Cmol�1; T ; absolute temperature, here taken equal to 303.15K; f ¼ F=RT ¼ 38:2795 C J�1;
and s is the experimentally measured surface density of electric charge needed to complete a
monolayer coverage of adsorbed hydrogen atoms. In the numerical results of this paper a value
of s ¼ 2:21� 10�4 C cm�2 will be adopted, corresponding to a standard Pt electrode (see [8]),
and

veV; v
e
H; v

e
T: equilibrium reaction rates of each step. The nominal values for these parameters

were chosen as to produce a dynamic response in the order of seconds, and at the same time to
maintain both the Volmer–Heyrovsky and the Volber–Tafel reaction routes active (see [17])

veT ¼ 10�12 mol cm�2 s�1

veH ¼ 10�13 mol cm�2 s�1

veV ¼ 10�10 mol cm�2 s�1

Equation (4) (after the expressions of the three velocities are inserted) reflects the non-
linearity of the problem. The generating function g takes the form of a second order polynomial
on the state variable y when controls are kept constant. This quadratic dependence may result in
undesirable high velocities when the Tafel step dominates, and theoretically an explosive
behaviour is possible in finite time, which never happens in linear systems. Also, the y2 terms are
responsible for the hysteresis loops appearing for sawtooth-like forcings applied to the
overpotential Z (see [13, 14]), that cannot be handled with linear approximations. The
exponential dependence of g on Z shows that all powers of the control values will affect the
dynamics to some extent. No simplifying change of variables of the type Z! m ¼ ekZ or similar
has been found to render Equation (4) into an affine (linear plus a constant term) expression on
such artificial control m: Therefore, in this paper a non-linear system point of view will be
pursued, and the control effort will be present in the objectives to optimize.

In general, optimal control problems do not have close solutions for non-linear systems S and
arbitrary cost objectives J: The subclass of bilinear systems *S may be used as universal
approximations to non-linear systems in the following sense: if the admissible values for the
control variable uð:Þ are bounded during a fixed finite period of time Ta ¼ ½0; ta�; then a bilinear
system *S can be found such that its state trajectories differ from the trajectories of the original S
(corresponding to the same control functions applied during the period Ta) in less than an
arbitrary tolerance tol > 0, fixed a priori (see [18, 19]). It is well-known that a similar result
cannot be obtained by using linear approximations, and since it is crucial to count with a period
Ta where the quality of the approximation is guaranteed, in this paper bilinear models will be
used. ‘Suboptimal control’ will then mean in this context that the optimal control strategies
constructed for a bilinear approximation *S and a given cost objective J; will only approximate
the solution to the optimal control problem for ðS;JÞ: But the main advantage of using this
type of approximations comes from the fact that many control situations have been clarified and
solved for the class of bilinear systems, as it is the case for the optimal bilinear-quadratic control
and the Kalman–Bucy filtering problems, both discussed below.

The original system is one-dimensional, but since the dimension of the approximating model
can increase, the notation is kept in matrix form for generality. The simplest one-dimensional
bilinear approximation to the VHT system may be constructed as follows. Around an
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equilibrium (a state/control pair ðy0; Z0Þ such that gðy0; Z0Þ ¼ 0), the dynamics admits a Taylor
expansion

gðy; ZÞ ¼ gðy0; Z0Þ þ
@g

@y
ðy0; Z0Þ

� �
ðy� y0Þ þ

@g

@Z
ðy0; Z0Þ

� �
ðZ� Z0Þ

þ
1

2!

@2g

@y2
ðy0; Z0Þ

� �
ðy� y0Þ

2
þ

@2g

@Z2
ðy0; Z0Þ

� �
ðZ� Z0Þ

2

�

þ 2
@2g

@y@Z
ðy0; Z0Þ

� �
ðy� y0ÞðZ� Z0Þ

�
þ

1

3!

@3g

@y3
ðy0; Z0Þ

� �
ðy� y0Þ

3
þ � � �

�
ð5Þ

After calling

A¼
4 @g

@y
ðy0; Z0Þ; B¼

4 @g

@Z
ðy0; Z0Þ; N¼

4 @2g

@y@Z
ðy0; Z0Þ ð6Þ

x¼
4 y� y0; u¼

4 Z� Z0 ð7Þ

then the bilinear system
’x ¼ Axþ BuþNxu ¼ *gðx; uÞ ð8Þ

is clearly an approximation in the sense that *gðx; uÞ � gðy; ZÞ near the selected equilibrium point.
Figure 1 shows the responses to step controls of different sizes and signs near the equilibrium

ðy0; Z0Þ ¼ ð0:38545805;�0:05Þ

when applied to the non-linear VHT dynamics and to its first bilinear approximation with
coefficients

A ¼ �363:7724; B ¼ �2714:1; N ¼ �770:1951 ð9Þ
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Figure 1. Step responses of the non-linear system and its one-dimensional bilinear approximation,
for Z ¼ �0:02;�0:095:
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The resulting trajectories show that for small-size input steps ð�0:02Þ the one-dimensional
bilinear approximation is good enough (the dashed line coincides with the solid line). But for
bigger changes (�0:095) the two state trajectories depart significantly, after a certain time the
bilinear response going even beyond the operational range (y 2 ½0; 1�). The non-linearity of the
system reflects in the sizes of the asymptotic changes for state y due to changes in Z of opposite
sign (for Z ¼ 0:095 the change is around 50% bigger than for Z ¼ �0:095).

The VHT system admits a continuous locus of equilibrium points (see [13] for an explicit
formula), all of them with negative coefficients A but with sign-changing coefficients N:

2.1. Regulation

The optimal control of bilinear systems under a quadratic criterion and an infinite horizon

JðuÞ ¼

Z 1
0

ðQx2 þ Ru2Þ dt ð10Þ

will be posed and solved in what follows. Clearly the desired state is the origin, so the problem
consists in abating perturbations x0 ¼ yð0Þ � y0=0 with optimal cost. The usual assumptions
Q50;R > 0; are kept. The control will remain unidimensional, but higher dimensions for the
state will be allowed to take into account an eventual increase on the dimension of the matrices
for better accuracy (discussed in Section 4 below).

See [20] for the foundations of the initial-value Hamiltonian equations for this problem,
namely

’x ¼
@H0

@l
¼ Ax�

1

2R
ðBþNxÞðBþNxÞ0l; xð0Þ ¼ x0 ð11Þ

’l ¼ �
@H0

@x
¼ �2Qx� A0lþ

1

2R
N 0lðBþNxÞ0l; lð0Þ ¼ 2pðx0Þx0 ð12Þ

where H0ðx; lÞ is the Hamiltonian of the system along the optimal trajectory, and l is the
adjoint or costate variable, that in the bilinear case verifies

l ¼ 2pðxÞx ð13Þ

with pðxÞ denoting the unique positive-definite solution to the state-dependent Riccati equation

Qþ pðxÞAþ A0pðxÞ � pðxÞ
ðBþNxÞðBþNxÞ0

R
pðxÞ ¼ 0 ð14Þ

Since the Hamiltonian equations can be solved on-line in this case, then the optimal control
can be evaluated in a state/costate feedback fashion

u ¼ �
1

2R
ðBþNxÞ0l; Z ¼ Z0 þ u ð15Þ

Figure 2 illustrates the non-linear and bilinear state evolutions corresponding to the optimal
control calculated through Equation (15). Calculations were performed with the following
values of the cost-weight parameters: Q ¼ 1; R ¼ 5: Initial state perturbation: 0:05 from initial
coverage y0 ¼ 0:38545805: Both trajectories reach y0 asymptotically, as desired.

Even for small perturbations, the non-linear approach produces control strategies that depart
from linear controllers. An illustration of this point is depicted in Figure 3. The ‘Linear’
horizontal reference represents the proportional gains that would be obtained from the dynamic
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parameters A;B of the system, different control effort versus state accuracy (R=Q) design
choices, and the solution to the algebraic Riccati equation corresponding to the approximate
linear-quadratic problem. The optimal solution is always a proportional control, with a gain
that is independent from the initial perturbation. For the bilinear approximation an ‘apparent’
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Optimal state trajectories for nonlinear system and bilinear approximation

time t
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, x
(t

)+
 θ

(0
)

bilinear model's state
complete model's state
difference (shifted and scaled)

Figure 2. Suboptimal state trajectory for the non-linear system (optimal for the bilinear approximation).
The difference between trajectories is shifted to 0.4 and magnified threes times to show in the same picture.

Initial perturbation: 0.05.
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Figure 3. Ratio between the bilinear (apparent) proportional gain and the solution to the linear-
quadratic problem (strictly proportional), depending on initial perturbation. Curves for some R=Q

values from 1 to 100 are shown.
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gain is calculated using the same parameters plus the coefficient N of the non-linear term, and
the value of the initial perturbation xð0Þ: For a fixed R=Q value, the ratio between the non-linear
and the linear controller gains depends on the initial perturbation and is shown in one of the
non-horizontal curves. The procedure is run for increasing R=Q values. Results show that, as
the control effort (weighted by R) has greater incidence on the total cost (i.e. as R=Q grows),
then the optimal gain for the bilinear approximation ðKbilinearÞ increasingly differs from its linear
counterpart ðKlinearÞ: Therefore, in order to obtain optimal results for this system, non-linear
departs from linear control results as the cost of supplying overpotential Z grows. Notice that
minimizing the overpotential is roughly equivalent to minimizing power expenses when the
output current density is kept nearly constant (see [13]).

2.2. Set-point changes

Original equilibrium ðy0; Z0Þ; with gðy0; Z0Þ ¼ 0: Target set-point: ð %x; %uÞ ¼ ðy1 � y0; Z1 � Z0Þ with
gðy1; Z1Þ ¼ 0:

The problem consists in steering the system from the original equilibrium towards the target
set-point while minimizing the deviation quadratic cost

JðuÞ ¼

Z 1
0

½Qðx� %xÞ
2
þ Rðu� %uÞ

2
� dt ð16Þ

The corresponding Hamiltonian differential equations, Riccati algebraic equation and
optimal feedback for this problem have also been discussed in [20] and here take the form

’x ¼ Axþ ðBþNxÞ%u�
ðBþNxÞðBþNxÞ0l

2R
; xð0Þ ¼ x0ð¼ 0Þ ð17Þ

’l ¼ �2Qðx� %xÞ � ðAþ %uNÞ
0lþ

N 0lðBþNxÞ0l
2R

; lð0Þ ¼ 2 %pðx0Þðx0 � %xÞ ð18Þ

In this case the costate is related to the state in the form

l ¼ 2 %pðxÞðx� %xÞ ð19Þ

and %pð:Þ is the state-dependent solution to

Qþ %pðxÞðAþ %uNÞ þ ðAþ %uNÞ
0
%pðxÞ � %pðxÞ

ðBþNxÞðBþNxÞ0

R
%pðxÞ ¼ 0 ð20Þ

The optimal feedback results then

u ¼ %u�
1

2R
ðBþNxÞ0l; Z ¼ Z0 þ u ð21Þ

A numerical example of a set-point change for the bilinear approximation, from yequilðZ0Þ ¼
yequilð�0:05Þ ¼ 0:38545805 towards y1¼

4 yequilðZ1Þ ¼ yequilð�0:06Þ ¼ 0:46030979 is shown in
Figure 4. The value of y1 is closely approached by the bilinear system, for which the
corresponding equilibrium control value is around Z1b ¼ �0:055; the asymptotic limit for uðtÞ in
the figure. But the original dynamics has an equilibrium state y1b ¼ yequilðZ1bÞ ¼ 0:4229; the
asymptotic value for yðtÞ in the figure, different from the desired y1. The inaccuracies in the final
values (y1b instead of y1; and Z1b instead of Z1) show the need for parameters’ updating, at least
for set-point change operations.
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3. UPDATING PARAMETERS VIA SENSITIVITY FUNCTIONS

Since the analytical expressions of the original and the approximate dynamics (Equations
(1)–(4) and (5)–(8), respectively) are smooth, then the existence of smooth local flows (f and
*f :T�X�P�U! X; respectively) are guaranteed (here T;X;P;U denote the admissible
time, state, parameter and control value sets). Uncertainties on the original parameters veV; v

e
H;

veT; ye; a;T translate into uncertainties on the parameters p of the bilinear approximation, i.e. on
A;B;N: The sensitivities with respect to these parameters p in the context of this section will be
defined as

Sp¼
4 @ *f
@p

ð22Þ

It is well known (see for instance [21, 22]) that the sensitivities are governed by the ‘equation
on variations’

’Sp ¼
@*g

@y
Sp þ

@*g

@p
; Spð0Þ ¼ 0 ð23Þ

The use of sensitivities in modelling (see [22]) has been extended to control matters,
but specifically in adapting parameter values we propose a generalization of the continuous-
case recursive least-squares approach given in [15]. The objective is to minimize the deviation-
square

w2ðt; pÞ ¼4
Z t

0

e�aðt�tÞ½yðtÞ � *yðtÞ�2 dt ð24Þ
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Figure 4. States’ trajectories (yðtÞ for the non-linear system and xðtÞ þ x0 for its bilinear approximation),
corresponding to a suboptimal control trajectory uðtÞ for a change of set-point problem. The scale for

states’ values is on the left y-axis, and for control values in the right y-axis.
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with respect to the parameters p; where a is adequately called ‘the forgetting factor’. By applying
Leibnitz’s rule

@w2

@p
ðt; pÞ ¼ �2

Z t

0

e�aðt�tÞ½yðtÞ � *yðtÞ�SpðtÞ dt ð25Þ

and by approximating
*yðtÞ ¼ *yðt; pÞ � *yðt; %pÞ þ S0pðtÞðp� %pÞ ð26Þ

where %p is the nominal value of the parameter vector, then the critical value of p (i.e.
argð@w2=@pÞðt; pÞ ¼ 0) for the time-period ½0; t� would be

pðtÞ ¼
4

arg min w2ðt; pÞ ¼ %pþ PðtÞZðtÞ ð27Þ

where the variables P;Z are notations for

PðtÞ ¼
4

Z t

0

e�aðt�tÞS2
pðtÞ dt

� ��1
8t > 0 ð28Þ

ZðtÞ ¼
4

Z t

0

e�aðt�tÞ½yðtÞ � *yðt; %pÞ�SpðtÞ dt ð29Þ

If continuous (on-line) updating of the parameter is desired, then Equation (27) can be
differentiated to obtain

’p ¼ PSp e ð30Þ

where
eðtÞ ¼4 yðtÞ � *yðt; pðtÞÞ ð31Þ

that should be integrated along with the differential equation satisfied by P; namely

’P ¼ aP� PSpS
0
pP ð32Þ

Notice that the initial ‘value’ of P would be1; so Equations (30) and (32) are only used after
some small (resetting) time, say t ¼ d; in order to get a good estimation of PðdÞ � %P from
Equation (28). If d is small, then pðdÞ ¼ %p and PðdÞ ¼ %P may be safely taken as initial conditions
for the corresponding ordinary differential equations (ODEs).

Figures 5 and 6 illustrate an intent to update parameters during the same change of set-points
x0! x1 used in previous sections. The three parameters A;B;N change widely when calculated
from bilinearizing the original dynamics around ðx0; u0Þ and around ðx1; u1Þ: The parameter N
reflects the non-linearity of the approximation, and its values suffer the biggest change
when calculated around both equilibria (it even changes sign). For these reasons an intent of
adapting onlyN was performed, and the result was already satisfactory. Nevertheless, another run
was simulated by adapting A;B;N simultaneously, without obtaining any significant improvement
in the state behaviour. The values of N adapted under both conditions are plotted in Figure 6.

4. INCREASING THE DIMENSION OF THE APPROXIMATION

If continuous parameter updating results are insufficient to meet the accuracy requirements over
the trajectories of the bilinear system, then a better approximation to the dynamics may be
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Figure 5. States for a change of set-point operation, resulting from the suboptimal control applied to the
original plant, and to its bilinear approximation (with the parameter N adapted). The difference in states’

trajectories is shifted to 0.42, and magnified 20 times.
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Figure 6. Parameter N adapted via sensitivity functions during the change of set-points x0 ! x1: In the
solid line, parameters A;B are maintained at their nominal values (calculated around x0), and only N is
modified. The dashed line shows the values of N when the three parameters (A;B;N) are adapted

simultaneously. The dotted line is a plot of the difference between the two updating strategies.
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needed. The natural step in this direction is to refine the approximation intended in Section 2 by
adding higher order derivatives in the Taylor expansion (Equation (5)) of the original
differential equation. By defining

x1¼
4

x

x2¼
4

x2 ð33Þ

then several new terms from the series may be included in the dynamics

’x1 ¼ ’x � A1x1 þ B1uþN1x1uþ A2x2 þN2x2u

’x2 ¼ 2x ’x � 2A1x2 þ 2B1x1uþ 2N1x2u ð34Þ

where the new coefficients are

A1¼
4

A; B1¼
4

B; N1¼
4

N; A2¼
4 1

2!

@2g

@x2
ðy0; Z0Þ; N2¼

4 1

2!

@3g

@x2@u
ðy0; Z0Þ ð35Þ

Then, after augmenting the state through x ½x1 x2�
0; a new bilinear approximation is

generated and simulated (Figure 7). Now

’x � $Axþ $Buþ $Nxu; x 2 R2
ð36Þ

where
$A¼
4

A1 A2

0 2A1

 !
; $B¼

4
B1

0

 !
; $N¼

4
N1 N2

2B1 2N1

 !
ð37Þ

In the present case, the nominal values of the new parameters result in

A2 ¼ �86:2384; N2 ¼ 0 ð38Þ

This technique due to Carleman (see [23, 24]) is clearly extensible to other powers of the state,
and allows to write increasingly higher order Taylor approximations of the original dynamics as
higher order bilinear systems. For instance, the augmented matrices for a third-order bilinear
approximation would read

$A ¼

A1 A2 A3

0 2A1 2A2

0 0 3A1

0
BB@

1
CCA; $B ¼

B1

0

0

0
BB@

1
CCA; $N ¼

N1 N2 N3

2B1 2N1 2N2

0 3B1 3N1

0
BB@

1
CCA ð39Þ

where the new parameters are only those in the two upper right corners of the square matrices, namely

A3¼
4 1

3!

@3g

@x3
ðy0; Z0Þ; N3¼

4 1

3!

@4g

@x3@u
ðy0; Z0Þ ð40Þ

No physical meaning of the state is lost (the original x always remains in x1; and the other
components represent just powers of the original state deviations). It should be noticed that only
two new parameters would need to be estimated after increasing the dimension by one.
Therefore, a bilinear approximation of dimension n will ‘essentially’ have 2nþ 1 coefficients,
while its matrices $A; $B; $N will have 2n2 þ n ¼ nð2nþ 1Þ degrees of freedom, i.e. an order of
magnitude less. This computationally convenient aspect seems not to have been taken into
account in previous literature.
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Reduction of order may at some point be conducing, especially after the dimension has
become so high as to endanger on-line computations. A trivial approach to order reduction may
be just to return to the previous (smaller) dimension when strict and continuous accuracy has
been detected during some agreed period of time. Here this aspect will not be discussed; for
alternative approaches see [25].

5. NOISE IN I/O SIGNALS

Concerning disturbances, often called signal noise, the bilinear approximation constructed
above is also useful (no general filter theory is available for non-linear systems). The
stochastically perturbed bilinear system can be rewritten as

’x ¼ ½Aþ uðtÞN�xþ BuðtÞ þ x1 ð41Þ

y ¼ Cxþ x2 ð42Þ

where x1 and x2 are stochastic differentials of Brownian motions with coefficients s1 and s2;
respectively, and y denotes the perturbed output signal, whose relation to physical variables is
discussed below, together with a procedure for estimating and updating the observation
parameter C:

The treatment that follows is referred to the optimal regulation problem (the extension to the
servo problem for set-point changes being straightforward), so the underlying control (in
feedback form) will be

u ¼ �
1

R
ðBþNxÞ0pðxÞx ð43Þ

0 5 10 15 20 25 30

Dimension increase by Carleman´s technique

θ

VHT
Dim. 1
Dim. 2

0.38

0.37

0.39

0.4
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0.42

0.43

0.44

0.45

0.46

0.47

time t

Figure 7. Step response for the original plant, the bilinear approximations of dimensions 1 and 2. The
differences of the approximations with respect to the non-linear plant are correspondingly plotted in the

lower part of the figure, magnified 20 times and shifted to y0:
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where pðxÞ is the solution to the state-dependent Riccati equation (14). In what follows uðtÞ will
denote the time value of the suboptimal control (in practice uð:Þ can be constructed on-line
without knowing pðxÞ; since xð:Þ and lð:Þ are available as the solutions to the initial-value
Hamiltonian equations (11) and (12)).

In this context, the Kalman–Bucy filter for the approximated model can be implemented
through (see [26, 27])

’X ¼ ½Aþ uðtÞN�X þ BuðtÞ þ GðtÞ½y� CX �; Xð0Þ ¼ Eðx0Þ ð44Þ

where GðtÞ ¼
4 PðtÞC0s�12 and Pð:Þ is the solution to another Riccati-type ODE, integrable as an

initial-value problem

’P ¼ ½Aþ uðtÞN�PþP½Aþ uðtÞN�0 �PC0C�12 CPþ C1; Pð0Þ ¼ Covðx0Þ ð45Þ

and C1¼
4 s1s01; C2¼

4 s22: Then, given the initial-value structure of the coupled ODEs’ problem
(44)–(45), this filter can be integrated on-line once the output variable yð:Þ is clearly defined. The
natural observable of the system is the current density J (see [13]) generated by the deposition of
charges in the electrodes (e� in left-hand-sides of Equations (1) and (2)), namely

J ¼ FðvV þ vHÞ ð¼
4

hðy; ZÞÞ ð46Þ

Here an approximation to the deviation of J with respect to its (in general non-zero) initial
value Jð0Þ

y¼
4

J � hðy0; Z0Þ ð47Þ

will be taken as the output for the model. Consistently with the Kalman–Bucy formulation, the
following approximation is adopted:

y �
@h

@y
ðy0; Z0Þ þ

@h

@Z
ðy0; Z0Þ

dk

dx
ð0Þ

� �
x ¼ Cx ð48Þ

where the notation kðxÞ refers to the feedback expression of the suboptimal control, namely

kðxÞ ¼
4

�
1

R
ðBþNxÞ0pðxÞx ð49Þ

and then the nominal (initial) value %C of the observation parameter C can be calculated from

%C¼
4 @h

@y
ðy0; Z0Þ �

@h

@Z
ðy0; Z0Þ

B0pð0Þ
R

ð50Þ

It may be assumed at this point that a filtered state X is on-line available, and therefore a
measure of the deviation from the bilinear model would be

e¼4 X � x � ðy� y0Þ � ð*y� y0Þ ð51Þ

This error may be used to update the parameters of the bilinear approximation through
Equations (30), (32) and (23) instead of the theoretical definition (31), since y is not measured on-
line. But, since theoretically the output J has a non-linear structure, then the parameter %C would
also need updating from the nominal value defined above, along similar lines to those of Section
3, for which another appropriate measure of the error between current densities is needed.

Assuming some updating for C is performed (see below), then an approximate filtered current
density #J may be calculated on-line from

#J ¼
4

CX þ hðy0; Z0Þ ð52Þ
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This regularized variable should be a good approximation to the theoretical J defined in
Equation (46), which is unavailable since it is corrupted by noise x2: But taking into account the
expected functionality of the current density, a deterministic non-linear observer can be
constructed. An efficient scheme is discussed in [28]. The following intermediate definitions
illustrate the structure of such a device:

%E¼
4

e f Z; #E¼
4

eaf Z; $E¼
4

eða�1Þ f Z

v0V¼
4

$E

1� ye
; v1V¼

4

v0V þ
#E

ye
; v0H¼

4
#E

1� ye
; v1H¼

4

v0H þ
$E

ye

ĂðZÞ ¼4 �
F

s
veVv

1
V þ veHv

1
H þ

4veT

ð1� yeÞ
2

� �
; B̆¼

4

�
2FveT
s

1

y2e
�

1

ð1� yeÞ
2

" #

D̆ðZÞ ¼4
F

s
veVv

0
V þ veHv

0
H þ

2veT

ð1� yeÞ
2

� �
; C̆ðZÞ ¼4 F ½veHv

1
H � veVv

1
V�; ĔðZÞ ¼4 F ½veVv

0
V � veHv

0
H� ð53Þ

The original dynamics given by Equations (4) and (46) take the following form:

’y ¼ ĂðZÞyþ B̆y2 þ D̆ðZÞ ð54Þ

J ¼ C̆ðZÞyþ ĔðZÞ ð55Þ

The non-linear observer adapted to this system generates Yð:Þ; a new approximation to the
unmeasured physical variable yð:Þ; through the coupled dynamics

’Y ¼ *AðZÞYþ *BY2
þ *DðZÞ þ

*CðZÞ
z
f #J � *CðZÞY� *EðZÞg; Yð0Þ ¼ y0 ð56Þ

’z ¼ �mz� 2 *AðZÞzþ 2½ *CðZÞ�2; zð0Þ ¼ 1 ð57Þ

where the ODE for the correction factor z is found from the requirement that

Wðt; eobsÞ ¼
4 1

2
zðtÞðeobsÞ

2
ð58Þ

be a time-dependent Lyapunov function, i.e. a smooth positive-definite function of the
theoretical observation error

eobsð:Þ ¼
4 Yð:Þ � yð:Þ ð59Þ

with negative derivative along eobs-trajectories (see [28]).
The updating, filtering and observing strategies were applied simultaneously to the same

change of set-point treated before. The results are depicted in Figure 8, and since the initial
value y0 for the observer is exactly known, the trajectory Yð:Þ keeps too close to the filtered state
as to be noticed in the figure.

Figure 9 illustrates only the performance of the observer after a simulated perturbation of
0:02 in the (unknown) state, a value of m ¼ 1 (in this case, B̆50; so any positive m will do) and
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z0 ¼ 1: The observer catches the state in a very small time, so the value of the output variable
corresponding to the physical state y will be nearly the same as the observation function
calculated from Y-values.

Then the appropriate error-measure for updating the parameter C would be

e1¼
4

y1 � Y ð60Þ

where y1 captures the non-linear structure of the current density through

y1¼
4

hðY; ZÞ � hðy0; Z0Þ ð61Þ

and Y denotes the best output computable from the Kalman–Bucy filter equations

Y ¼
4

CXð¼ #J � hðy0; Z0ÞÞ ð62Þ

Finally, after defining the objective to minimize through the updating of C; namely

w21ðt; pÞ ¼
4

Z t

0

e�aðt�tÞ½ y1ðtÞ � CXðtÞ�2 dt ð63Þ

the differential equations that should be integrated on line with this purpose (see Section 3)
would be

’C ¼ P1Xe1 ð64Þ

’P1 ¼ aP1 � P1XX
0P1 ð65Þ
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Figure 8. State and control, corrupted and filtered, for a noisy change of set-point. The variable Y coming
from the observer results indistinguishable from the filtered state, so it has not been plotted.
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where

P1ðtÞ ¼
4

Z t

0

e�aðt�tÞXðtÞX 0ðtÞ dt
� ��1

8t > 0 ð66Þ

As explained in Section 3, updating of C may be safely initiated after some small resetting
time d1; eventually equal to d; enough for a reliable finite value for P1ðdÞ to be estimated from
Equation (66), and then continue integration of the ODEs with

Cðd1Þ ¼ %C

6. SIGNALS’ FLOW FOR THE COMBINED CONTROL, FILTERING, AND
UPDATING STRATEGIES

A flowchart of the adaptive-filtered suboptimal control scheme proposed in this paper is
presented in Figure 10. The state variable y is unavailable in practice, therefore the error e used
for updating purposes is calculated from the filtered state X instead, i.e. e ¼ X1 � x1 � y� *y
(the first component of vector x; and consequently the first of X ; are representative of the
approximation *y to the original state y; the other components representing powers of the state).
By using X instead of Y at this stage, the updating of the parameters A;B;N; involved in the
approximate dynamics of the state, is kept virtually independent of the form of the observation
function h:

However, the presumed analytical dependence of the current density J on the state and
control plays its role at the observer stage, where h enters the calculations through C̆ and Ĕ: So
the observed state Y; calculated from J; is the appropriate value to correct the observation

State trajectory for η = -0.06

θ,
Θ

Simulated θ
Observed Θ

0 2 4 6 8 1410 12 16 18 20
0.38
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time t

Figure 9. Performance of the non-linear observer.
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parameter C of the filter, which is made through the error e1 ¼ hðY; ZÞ � #J � J � CX �
J � Cx ¼ J � *J: Here *J denotes the output corresponding to the observed bilinear
approximation

’x ¼ Axþ BuþNxu

y ¼ Cx

7. CONCLUSIONS

In this paper the optimal control of HER reactions in the presence of uncertainty and noise has
been treated from an engineering viewpoint. In doing so a rather complete methodology has
been developed to treat the same problem for non-linear processes whose dynamics are
accurately modelled by smooth differential equations.

J=h(θ,η) y=J-h0

Σ
dθ/dt=g(θ,η)

Σ∼

dx/dt =Hλ
0(x,λ)

dλ/dt =−Hx
0(x,λ)

Filter
dX/dt=
dΠ/dt=

u=k(x,λ)

J^=CX+h0

Observer
dΘ/dt=g^(Θ,η,J^)

dζ/dt=...

ε=X1-x1
ε1=y1-Y

dp/dt =P Sp ε
dC/dt =P1 X ε1

dP/dt=...
dP1 /dt=...

+
In put

J
Out put

ε<tol
?Increase

Dimension n→ n+1,
Initialize An+1 , Nn+1

J

η0

u

η
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ξ2

λx,
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Θ
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Figure 10. Flow of signals for the complete strategy.
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The strategy relies on bilinear approximations of the dynamics, whose dimensions are
increased as needed by adding new terms of the Taylor expansion corresponding to the original
non-linear plant, via Carleman’s technique. The parameters of these approximations are
continuously updated by using sensitivity matrices. The error between observables of the plant
and its approximation is corrupted by noise, so a filter becomes necessary. It is shown that the
Kalman–Bucy structure is suitable for the bilinear model, provided an observation matrix C is
efficiently estimated. This forces to run a non-linear observer in parallel, since the original
output (the current density J) theoretically depends on the state in a complicated non-linear
fashion.

Each stage of the scheme has been individually illustrated through numerical simulations, in
regulation and servo problems with quadratic optimality criteria. The complete control
procedure requires the following ODEs to be integrated on-line (for a fixed dimension n of the
bilinear approximation):

(i) the bilinear dynamics in Hamiltonian form for x; l (2n equations);
(ii) the updated parameters p (approximately 2nþ 1), sensitivity matrix Sp (2nþ 1 equations)

and covariance matrices P (2nþ 1 equations);
(iii) the filter (n equations for the state X) and its corresponding matrix Riccati ODE for P (n

equations, by neglecting non-diagonal elements), and 2n equations for updating C
(includes P1);

(iv) the non-linear observer Y and its corresponding correction factor m; 2 equations.

This makes a total of 12nþ 5 coupled ODEs running on-line. In this paper the whole strategy
has been put to work in dimension one, but the number of equations for reasonably low
dimensions remain easily tractable with modern programmable equipment used in process
control.
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