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Abstract
Harrigan and Spekkens (Found Phys 40:125–157, 2010) provided a categorization 
of quantum ontological models classifying them as �-ontic or �-epistemic if the 
quantum state � describes respectively either a physical reality or mere observers’ 
knowledge. Moreover, they claimed that Einstein—who was a supporter of the sta-
tistical interpretation of quantum mechanics—endorsed an epistemic view of � . In 
this essay we critically assess such a classification and some of its consequences by 
proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens’ 
categorization implicitly assumes that a complete description of a quantum system 
(its ontic state, � ) only concerns single, individual systems instantiating absolute, 
intrinsic properties. Secondly, we argue that such assumptions conflict with some 
current interpretations of quantum mechanics, which employ different ontic states as 
a complete description of quantum systems. In particular, we will show that, since 
in the statistical interpretation ontic states describe ensembles rather than individu-
als, such a view cannot be considered �-epistemic. As a consequence, the authors 
misinterpreted Einstein’s view concerning the nature of the quantum state. Next, we 
will focus on relational quantum mechanics and perspectival quantum mechanics, 
which in virtue of their relational and perspectival metaphysics employ ontic states 
� dealing with relational properties. We conclude that Harrigan and Spekkens’ cat-
egorization is too narrow and entails an inadequate classification of the mentioned 
interpretations of quantum theory. Hence, any satisfactory classification of quantum 
ontological models ought to take into account the variations of � across different 
interpretations of quantum mechanics.
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1  Introduction

The question concerning what is the correct interpretation of quantum mechanics 
(QM) and how it represents the microphysical world arose since the first formula-
tions of the theory in the twenties. The fervent debates about the status and meaning 
of the quantum state—which are still alive today—clearly witness this fact. Against 
this background, there is some agreement among experts working on the founda-
tions of quantum theory that, if such a framework tells us in some relevant sense 
what the world is like, then the ontological status of the quantum state � must be 
clearly spelled out. Thus far, different interpretations of the quantum formalism 
faced in various ways the metaphysical issue of what is the nature of the quantum 
state, and how it relates to the underlying reality (if it does it at all). Consequently, it 
is not surprising that � has been given different statuses and roles.

Referring to this, the first crucial question in this inquiry is likely to be the fol-
lowing: Does the quantum state represent a state of some physical entity out there 
in the world, or does it represent instead a state of our knowledge about something 
out there in the world? Interestingly, answers to this question roughly outline two 
stances regarding the nature of the quantum state: if it is assumed to represent real 
physical systems, it is said to be ontic; otherwise, it is considered epistemic. Hence, 
one can sort interpretations out depending on whether the quantum state is consid-
ered as representing some state of affairs in the world, or just agents’ knowledge. In 
addition, when discussing the interpretation of the quantum state, one has to take 
into account another distinction as crucial as the former. Indeed, � may represent 
the state of a physical quantum system either completely or partially; thus, interpre-
tations of QM can be sorted out depending on whether they consider the quantum 
state to be a complete or a partial description of physical systems. In the latter case, 
a complete description of the state of a system may require some supplementary set 
of variables—as exemplified by the class of hidden variables models and theories.

Although these different views about (and categorizations of) the quantum state 
were somehow known since the very beginning of quantum theory, a rigorous clas-
sification has been given only recently in Harrigan and Spekkens [26], where the 
authors provided strict criteria to define the ontic or epistemic nature of quantum 
states. Even though one of the main aims of Harrigan and Spekkens is to provide a 
novel classification for hidden variable models, they clearly go beyond this scope, 
since their classification also allows accommodating non-hidden variable models, 
extending the categories to almost any interpretation of QM.1 For this reason, Har-
rigan and Spekkens’ categorization of models have obtained a far-reaching reso-
nance, and soon became common currency among physicists and philosophers of 
physics when discussing not only hidden variable models, but also the meaning of 
� in various interpretations of QM (cf. for instance [11, 25]). Nonetheless, although 
Harrigan and Spekkens’ distinction has significantly contributed to shed clarity on a 

1  In this essay we assume that readers have some familiarity with Harrigan and Spekkens’ work.
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complex debate, in this paper we will argue that there are some relevant aspects that 
their classification either overlooks or fails to fully capture.

More precisely, we will discuss some assumptions underlying Harrigan and 
Spekkens’ classification, with particular attention to (i) their definition of “complete 
physical state” of quantum systems represented by their ontic state �—and, thereby, 
the structure of the ontic space Λ—and (ii) the relations between � and � . Indeed, 
the nature of �, as defined by these authors, has been so far scarcely discussed in the 
literature, which has rather focused on how � represents �. This fact, unfortunately, 
has led to some misrepresentations of the nature of the ontic state in relation to vari-
ous interpretations of QM. Harrigan and Spekkens’ classification, in fact, implicitly 
assumes (i) that unalike ontological models pose the very same �, and (ii) that they 
just disagree about the relation held between � and � . Clearly, there would be many 
ways to unfold different assumptions with respect to �, however, in the present essay 
we will be concerned with the following. The authors assume that, in any ontologi-
cal model 

(1)	 � represents the state of a single, individual quantum system;
(2)	 � is perspective independent.

We will argue that both assumptions are unwarranted and might be a source of 
confusion when assessing some interpretations of QM. Firstly, it is worth noting that 
one of the principal aims of the authors is to argue that Einstein not only showed 
that quantum theory is incomplete, but also that the quantum state represents merely 
observers’ knowledge, consequently endorsing a �-epistemic view. Given that he 
supported a statistical view of QM, Harrigan and Spekkens conclude that such an 
interpretation must be considered �-epistemic. However, not every quantum theory 
presupposes that � represents the state of a single, individual quantum system. Para-
digmatically, the statistical (or ensemble) interpretation of quantum mechanics (cf. 
Ballentine [3]) assumes that � provides a description of the statistical properties of 
an ensemble of similarly prepared systems. In this case, however, there is no matter 
of fact to suppose that a statistical ontological model is also committed to single, 
individual systems that it fails to describe. On the contrary, an accurate reading of 
such a view suggests that statistical ontological models do not take � as providing 
a complete description of a single, individual quantum system, but of an ensemble. 
That is, a statistical ontological model poses a different sort of � with respect to 
that employed in Harrigan and Spekkens [26]. This fact, in turn, is conceptually rel-
evant since it implies that the statistical interpretation should not be considered a �
-incomplete and �-epistemic model—as in Harrigan and Spekkens’ classification—
but �-complete and, thereby, �-ontic. We will also discuss the implications of this 
fact with respect to Harrigan and Spekkens’ interpretation of Einstein’s view about 
the quantum state.

Secondly, we will claim that not every ontological model should assume that 
� is perspective independent. This is crucial for some relational and perspectival 
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interpretations of QM,2 where it would be meaningless to claim that � is independent 
of a given reference system or perspective (cf. Rovelli [39] and Dieks [15] respec-
tively). Remarkably, one of the consequences of not taking the relational nature of 
� into account is to conflate relationalism and/or perspectivalism with subjectivism 
and incompleteness with respect to the quantum state. On the contrary, being per-
spectival or relational should not be regarded exclusively as a property of � , but 
also—and more importantly—as a property of �. In the particular case of Rovel-
li’s interpretation, although we agree with Harrigan and Spekkens in saying that 
the quantum state is �-epistemic, we do not consider such an interpretation to be �
-incomplete: even in the absence of an absolute perspective to describe � quantum 
mechanically, when the tenets of Rovelli’s theory are seriously taken into account, 
it is not fair to consider � as incomplete. Moreover, in other forms of quantum per-
spectivalism, for instance that defended by Dieks, the quantum state is evidently �
-ontic, though different perspectives could deliver different � s for a perspectival �.

The structure of the paper is the following: in Sect. 2 we briefly explain Harrigan 
and Spekkens’ classification. In Sect.  3, we will show that � must not be always 
regarded as the state of a single, individual system. To exemplify this point we take 
into consideration the ensemble interpretation of QM. In Sect. 4, we aim at showing 
that � should not be regarded as perspective independent either. In this case, we will 
consider Rovelli’s relational and Dieks’ perspectival interpretations of QM to sup-
port our theses. Finally, conclusions are drawn in Sect. 5.

2 � Ã ‑Ontic and Ã ‑Epistemic Ontological Models

Harrigan and Spekkens [26] provide a stratified classification of ontological quan-
tum models that essentially depends on the nature of the quantum state. Such a clas-
sification is suitable for the authors’ purpose, since they aim primarily to show that 
Einstein’s interpretation of QM—which was statistical in essence (cf. Einstein [20, 
21])—supported a �−epistemic view of the quantum state. More precisely, Harri-
gan and Spekkens argue not only that Einstein showed that the quantum mechanical 
wave function is not a complete representation of physical systems, but also, and 
more importantly, that � is epistemic, i.e. it describes not an underlying physical 
reality, but merely observers’ knowledge. Since this thesis will be critically assessed 
in the reminder of the present essay, let us introduce in more detail Harrigan and 
Spekkens classification starting from the definitions of what ontological models are 
within their approach.

It is worth noting that the authors define ontological models employing an 
operational setting, i.e. the primitive notions of such models consist exclusively in 

2  In the remainder of the essay we will sometime refer to relational and perspectival interpretations of 
QM as relational and perspectival quantum mechanics, whereas we will frequently refer to Ballentine’s 
or Einstein’s views as the ensemble or statistical interpretation of QM. However, we do not mean any 
conceptual difference between them: we take all these as different interpretations of the standard formal-
ism and not as alternative formulations of QM.
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preparations procedures of physical systems in certain states and measurements 
performed on them. A complete specification of the properties of a given phys-
ical system is provided by �, the ontic state of the system under scrutiny. Refer-
ring to this “in an operational formulation of quantum theory, every preparation P 
is associated with a density operator � on Hilbert space, and every measurement 
M is associated with a positive operator valued measure (POVM) {Ek}. (In special 
cases, these may be associated with vectors in Hilbert space and Hermitian opera-
tors respectively.) The probability of obtaining outcome k is given by the general-
ized Born rule, p(k|M,P) = Tr(�Ek) ” (Harrigan and Spekkens [26], p. 128). Indeed, 
the main aim of such operational models is to provide probabilities p(k|M,  P) of 
outcomes k for some measurement M performed on the prepared systems, given the 
set of preparation instructions P. When a measurement is carried out, a measuring 
device will “reveal something about those properties” (ibid.). To this regard, Har-
rigan and Spekkens underline that, although an agent may know the preparation 
procedures prior the performance of a certain measurement, she may have incom-
plete knowledge of �. Thus, it follows that while outcomes k are determined by �, 
and therefore the probability to obtain them is p(k|�,M), the epistemic state of the 
observer is given by p(�|P)—notably, an observer which has incomplete informa-
tion about � assigns “non-sharp” probability distributions over the ontic space Λ. 
Hence, the authors do not specify the metaphysical nature of quantum objects at 
play. In this context, the word “ontological” is used in a weaker sense with respect to 
the standard philosophical jargon: the authors simply mean that the quantum models 
just refer to something real in the world, leaving however unspecified the details 
concerning their ontologies.

Let us now introduce the first categorization of models.3 Harrigan and Spekkens 
divide quantum theories in �-complete and �-incomplete: in the former case, the 
quantum state encodes every information about systems which refer to real physical 
objects existing in the world. Alternatively stated, in �-complete views the quantum 
state represents completely the features of a physical system. Indeed, it is generally 
accepted that, according to standard QM, � provides such a complete description 
of quantum systems and, consequently, it is taken to describe an underlying real-
ity; for this reason Harrigan and Spekkens [26] defined this theoretical framework 
as �-complete. Contrary to standard QM, hidden variables models supply � with 
additional variables in order to represent the states of physical systems; thus, such 
models are defined as �-incomplete insofar as the quantum state provides only a 
partial description of the features of physical systems. Remarkably, to the extent to 
which � represents only partially the state of the quantum system and needs to be 
supplemented with additional structures, hidden variable models are also called �
-supplemented by Harrigan and Spekkens.

3  In this section we do not follow exactly Harrigan and Spekkens’ order in presenting the several catego-
rizations of their approach, since the authors introduce in the first place the distinction between �-ontic 
and �-epistemic models. However, for ease of exposition, we prefer to introduce in the first place the 
distinction between �-complete and �-incomplete models.
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In the second place, the authors propose another distinction concern-
ing the status of quantum states, classifying � either as ontic or epistemic. In 
a nutshell, a model is defined �-ontic if every complete physical state (i.e. the 
ontic state � ) can be consistently described by a pure state. According to Har-
rigan and Spekkens’ categorization, in �-ontic models different quantum states 
correspond to disjoint probability distributions over the space of ontic states Λ. 
More precisely, a model is said to be �-ontic if “for any pair of preparation pro-
cedures, P� and P�, associated with distinct quantum states � and �, we have 
p(�|P� )p(�|P�) = 0 for all � ” (Harrigan and Spekkens [26], pp. 131–132), mean-
ing that observers’ epistemic states associated with different quantum states are 
non-overlapping. On the contrary, a model is defined �-epistemic if there exist 
ontic states consistent with more than one pure state. Therefore, in such epis-
temic models, there are quantum states that correspond to overlapping probability 
distributions in Λ. Indeed, this is a distinctive feature of these models since it 
implies that agents’ epistemic states may overlap, i.e. there exist preparation pro-
cedures P� ,P� such that p(�|P� )p(�|P�) ≠ 0, meaning that the ontic state � can 
be consistently represented by both quantum states � and � : “[i]n a �-epistemic 
model, multiple distinct quantum states are consistent with the same state of real-
ity—the ontic state � does not encode � ” (ibid., p. 132). This explains why the 
authors claim that in the case of �-epistemic models, the quantum state refers to 
observers’ incomplete knowledge of reality, and not to reality itself.

Now we are ready to combine both distinctions in order to classify different 
ontological models. Considering �-complete models, there is a one-to-one relation 
between reality and its complete description provided by the pure quantum state � . 
Consequently, in these models, knowing the quantum state implies having a com-
plete knowledge of the ontic state of the system under consideration. Therefore, �
-complete models are necessarily also �-ontic. Examples of such models are given 
by standard QM, Everett’s relative-state formulation (cf. Everett [24]), the Many-
World interpretation (cf. Wallace [41]), and Wave-Function Realism (cf. Albert [1]).

If ontological models are �-incomplete, then they may be either �-supplemented 
or �-epistemic. In the former case, the description of a physical system is supple-
mented by some additional (or hidden) variables, whose value is generally unknown. 
In hidden variables models, trivially, the quantum state provides partially or incom-
plete knowledge of the system. Examples of hidden variables models are given by 
Bohmian mechanics (cf. Dürr et al. [18]), Bohm’s pilot-wave theory (cf. Bohm [6]), 
and Nelson’s stochastic mechanics (cf. Nelson [36]). Notably, also the class of �
-supplemented models is �-ontic. Finally, in the case of �-epistemic models, � rep-
resents an agent’s incomplete knowledge of reality, and not reality itself. A typical 
example of such a kind of models is given by QBism (cf. Caves et al. [13]).

From these distinctions some conclusions can be inferred. In the first place, mod-
els which are simultaneously �-complete and �-epistemic cannot exist. Therefore, if 
a model is �-complete, it must be �-ontic (cf. Lemma 6, [26], p. 133). Alternatively, 
if a model is �-incomplete, then it can either be �-ontic, as in the case of hidden 
variable models, or �-epistemic. If a model is �-epistemic, then it cannot in any 
case be �-ontic, since it does not describe any underlying physical reality, but only 
the agents’ knowledge of it.
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In the remainder of this essay we will critically analyze the premises and pre-
suppositions of Harrigan and Spekkens’ distinctions. We will explain why the the-
sis according to which Einstein’s interpretation of QM is �-epistemic can be hardly 
defended. Moreover, we will argue that some assumptions concerning the nature of 
� not only seem to be unwarranted, but also conflict some tenets of current interpre-
tations of QM.

3 � The Statistical Interpretation of QM: Ã ‑Ontic or Ã ‑Epistemic?

One of the main claims of Harrigan and Spekkens is that Einstein endorsed a �
-epistemic view of the quantum state. The authors primarily support this claim 
by analyzing one of Einstein’s arguments aimed at demonstrating the incomplete-
ness of quantum mechanics contained in a letter to Schrödinger dated June 19th, 
1935. Given this claim and that Einstein was a supporter of the statistical view of 
the quantum state, Harrigan and Spekkens conclude that such an interpretation must 
be considered �-epistemic.4 In this section we will argue for the following theses: 
(i) to maintain that Einstein held a �-epistemic view misrepresents his thoughts on 
QM, and (ii) that it is not correct to conceive the statistical interpretation of QM as 
a �-epistemic model (at least without making further assumptions). Hence, we here 
underline an important limitation of Harrigan and Spekkens’ classification, which 
can also have negative consequences for their account of Einstein’s position with 
respect to the interpretation of QM.

3.1 � Einstein and the Ã ‑Epistemic View

Let us explain in the first place the reasons for which the categorization introduced 
in the previous section classifies the ensemble view as �-epistemic. As we have 
seen, ontological models consider operational procedures to prepare the state of a 
quantum system in a certain manner as primitive notions. Such procedures are asso-
ciated with some observable properties, whose values will be then revealed by the 
performance of a set of measurements on the physical system under scrutiny. The 
ontic state � of such a system is supposed to specify all its properties, i.e. it is sup-
posed to describe it completely. Furthermore, the ontic space Λ encodes the reality 
envisaged by the model of the system under consideration in a very special sense: 
in Harrigan and Spekkens’ account, � represents exclusively individual systems, not 
ensemble of systems. If there is a one-to-one relation between � and �, then, the 
description provided by � is complete, i.e. it provides a complete description of an 
individual system. However, to affirm that � does not yield a complete description 
of a quantum system—as stated in several places by Einstein5—is to claim that � 

4  Also Leifer [29] put the statistical interpretation in the �-epistemic camp.
5  Einstein famously expressed his view about the incompleteness of quantum mechanics in the essay 
written with Boris Podolsky and Nathan Rosen resulting in the well-known EPR paradox [23]. However, 
it is a notorious historical fact that Einstein was dissatisfied with the EPR paper, which had been writ-
ten by Podolsky. Einstein then reformulated his own incompleteness argument in many other places, as 
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must be incomplete as long as it does not match with �. Thus, according to Harri-
gan and Spekkens’ classification, � must be either �-supplemented, or �-epistemic. 
Insomuch as the statistical view does not introduce or propose hidden variables, this 
interpretation cannot be considered a �-supplemented model. Therefore, as a simple 
logical consequence of the authors’ classification, the ensemble view must be a �
-incomplete model which is also �-epistemic. Consequently, the quantum state is 
taken to represent the observer’s knowledge of the system’s state.

It is now worth stressing the importance of such a conclusion for Harrigan and 
Spekkens’ hypothesis concerning Einstein’s support of a �-epistemic view. In the 
first place, the authors carefully discuss Einstein’s attempt aimed at showing the 
incompleteness of the quantum mechanical description of physical systems. How-
ever, they do not take into consideration the EPR paradox, but rather, a simplified 
and clearer argument contained in a letter to Schrödinger dated June 19th, 1935. 
In this correspondence Einstein stated that, in his opinion, QM would have been a 
complete theory only if the quantum state � would be correlated one-to-one with 
“the real state of the real system”. A failure of this requirement would then naturally 
imply the incompleteness of the theory:

In the quantum theory, one describes a real state of a system through a normal-
ized function, � , of the coordinates (of the configuration-space) [...] Now one 
would like to say the following: � is correlated one-to-one with the real state 
of the real system. [...] If this works, then I speak of a complete description 
of reality by the theory. But if such an interpretation is not feasible, I call the 
theoretical description ‘incomplete’ (Einstein’s letter to Schrödinger, June 19th 
1935, quote in Howard [27], p. 179).

Referring to this, Harrigan and Spekkens establish a direct connection between 
Einstein’s criterion of completeness and their own definition of �-completeness, 
which reads:

An ontological model is �-complete if the ontic state space Λ is isomorphic 
to the projective Hilbert space PH (the space of rays of Hilbert space) and if 
every preparation procedure P� associated in quantum theory with a given ray 
� is associated in the ontological model with a Dirac delta function centered at 
the ontic state �� that is isomorphic to � , p(�|P� ) = �(� − �� ) (Harrigan and 
Spekkens [26], p. 131).

In other words, according to them the “real state of the real system” is precisely 
the parameter � referring to the ontic state of a certain system. Regarding this, it 
should be underlined that Einstein’s criterion of completeness and Harrigan and 
Spekkens’ definition are grounded on different bases: on the one hand, the latter 

Footnote 5 (continued)
for instance in his correspondence with Schrödinger—where he introduced the though experiment now 
widely known as “Einstein’s boxes” and published in Einstein [20] (see also [37] for a nice discussion)—
in his correspondence with Max Born, in the essay “Quanten-Mechanik und Wirklichkeit” published in 
Dialectica in 1948, and in his intellectual autobiography contained in Einstein [21].
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authors start from an operational perspective, for which � describes properties asso-
ciated with the preparation procedures chosen by an observer in a given experimen-
tal situation. On the other hand, Einstein had in mind a strong ontological reading 
of the completeness criterion: QM should include every physical feature of systems 
in their quantum states, where these properties do refer to the inherent attributes 
instantiated by these systems. As also stressed by Howard [27], Einstein thought that 
systems do possess definite attributes at all times, independently of measurements, 
being such a belief firmly grounded in the separability principle. Nonetheless, for 
the sake of the discussion, this important difference can be left aside. Let us then 
assume that these definitions are pragmatically equivalent in the precise sense that, 
for both Einstein and Harrigan and Spekkens, in order for QM to be complete, there 
must be a one-to-one relation between � and the real state of physical systems, that 
is, �.

Einstein’s argument proceeds as follows. Firstly, one has to take into consider-
ation, as in the EPR scenario, an entangled pair formed by two systems A and B 
which, after their interaction, form the joint system AB. Secondly, the subsystems A 
and B are sent to space-like separated regions. Finally, Einstein notes that the perfor-
mance of a measurement of a two-valued operator upon A will affect the result in B,  
where the quantum state may have values �B,�B. Hence:

what is essential is exclusively that �B and �B are in general different from 
one another. I assert that this difference is incompatible with the hypothesis 
that the description is correlated one-to-one with the physical reality (the real 
state). After the collision, the real state of (AB) consists precisely of the real 
state of A and the real state of B, which two states have nothing to do with one 
another. The real state of B thus cannot depend upon the kind of measurement 
I carry out on A. (Separation hypothesis from above.) But then for the same 
state of B there are two (in general arbitrarily many) equally justified �B which 
contradicts the hypothesis of a one-to-one or complete description of the real 
states (Einstein’s letter to Schrödinger, June 19th 1935, quoted in Harrigan and 
Spekkens [26], p. 147).

As Howard underlines, this proof of incompleteness differs from that included in 
the EPR paper, being only indirect and involving a contradiction between his crite-
rion of completeness and the separability principle. The latter principle entails that 
B’s real state should remain unaffected by manipulation, observation and measure-
ment performed on the space-like separated system A. Hence, the different quantum 
states �B,�B attributable to B on the basis of the different observation on A must be 
correlated with the same real state of B. Indeed, as Howard writes “if the �-func-
tion were to provide a complete description of the real state of B,  it would have to 
be correlated one-to-one with B’s real state, and there we have our contradiction 
with the separation principle” (Howard [27], p. 180). In sum, Einstein’s criterion of 
completeness employed in this argument implies that different quantum states must 
be correlated with different real, ontic states of the systems. Here is the key for Har-
rigan and Spekkens crucial conclusion: since there exist two possible states that one 
may assign to B as results of measurements on the system A,   there exist two pos-
sible overlapping epistemic states since both of them are ascribable to B. Therefore, 
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based on their own definitions, the authors conclude not only that � fails to be com-
plete—as Einstein’s argument shows—but also that it fails to be ontic! According 
to them, Einstein affirms that there may be multiple quantum states associated with 
the same ontic state, i.e. for the state B there would be two equally possible and 
equally justified states �B and �B. To state it differently, changes in � would not cor-
respond to changes in the ontic state. Therefore, Harrigan and Spekkens conclude 
that Einstein showed the failure of �-onticity; consequently, �-complete and �-sup-
plemented models cannot represent his views on QM. Thus, the authors claim, one 
is left with just one option: Einstein sought to adopt a �-incomplete and �-epistemic 
interpretation of the quantum state.

3.2 � Einstein, the Statistical Interpretation of QM and Ã ‑Completeness

Although Harrigan and Spekkens’ interpretation of Einstein’s view may seem cor-
rect at first sight, in this section we provide an argument that may weaken their con-
clusion. Before that, let us clarify in some detail what Einstein thought about the 
nature of the quantum state. It is well-known that he suggested that the � function 
does not describe individual systems—as required instead by the definitions pro-
vided in the previous section—but ensemble of systems. From several arguments 
raised against the completeness of QM, indeed, it emerges evidently that he favored 
a statistical interpretation of this theory. Interestingly, such arguments span almost 
his entire career, as for instance (but not only) in Einstein [19–22], showing that he 
endorsed the ensemble view consistently. To this regard, Bacciagaluppi and Valen-
tini [2] (p. 150) even claim that “Einstein was arguably the founder of the statistical 
interpretation”.6

For spatial reasons, in the present essay we will take into consideration only three 
of them which we find particularly relevant: the first is contained in the reports of 
the fifth Solvay Congress held in 1927 which can be found in Bacciagaluppi and 
Valentini [2], the second appeared in Einstein’s 1936 essay “Physics and Reality”, 
finally, the third is given in Einstein’s replies to the essays written for his intellectual 
biography in 1949, contained in the well-known volume edited by Schilpp, Albert 
Einstein Philosopher–Scientist.

At the fifth Solvay Congress Einstein proposed a simple argument aimed at 
showing the incompleteness of the quantum mechanical representation of indi-
vidual systems. Let’s consider the following physical situation: a beam of elec-
trons is directed towards a screen S where a small slit O is present, behind the 

6  Clearly Bacciagaluppi and Valentini do not refer to Born’s statistical interpretation of |�|2—which 
gives the probability amplitude for individual measurement outcomes—but to the ensemble view. It is 
worth noting that for Born individual measurement results are in principle unpredictable with certainty 
due to the inherent indeterminism of the theory, and the indeterminate nature of quantum objects. On 
the contrary, Einstein interpreted this unpredictability as a sign of the incompleteness of QM. Indeed, 
as we will see in the remainder of this section, Einstein considered the statistical character of QM as the 
cause for its incompleteness. These two physicists, then, held opposite metaphysical views concerning 
the interpretation of quantum theory. The reader may refer to the Born–Einstein exchange of letters [7], 
since the issue of the interpretation of QM is discussed in several places.
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screen there is a hemispherical photographic film P with a large radius. Some of 
these electron will pass though O,  and will spread uniformly in all directions on 
P,  given that the waves associated with their state of motion are diffracted at O. 
The probability that an electron hits the screen in a determinate point x of the film 
is measured by the intensity at x of the spherical waves after the diffraction at O. 
In virtue of the laws of QM, however, it will not in general be possible to predict 
wth certainty the exact locations where the particle will hit the film; indeed, only 
the probability that an electron will be found at a given point of space can be cal-
culated. Einstein, then, compares two possible interpretations of quantum theory 
with respect to this example that substantially differ about the nature of the quan-
tum state: 

(1)	 Interpretation I: the quantum state � is not associate to a single electron, but to 
an ensemble of systems, a cloud of electrons. Consequently, the quantity |�|2 
represents the probability that at a given point x of P is found a particle of the 
statistical ensemble. Thus, quantum theory does not provide information about 
individual processes, “but only about the ensemble of an infinity of elementary 
processes (Einstein in Bacciagaluppi and Valentini [2], p. 441, emphasis added);

(2)	 Interpretation II: the theory provides a complete description of individual pro-
cesses, so that each electron directed towards S can be fully accounted in terms 
of its quantum state—i.e. to every electron is associated a wave packet which is 
subject to diffraction at O: here |�|2 represents the probability that the particle 
is found at the point x of the film.

According to Interpretation I, the quantum state represents an ensemble of 
electrons, and not individual systems. In this case the quantity |�|2 represents the 
probability that in a particular point of the film there is a particle of the cloud. 
Here we see a crucial feature of this statistical interpretation: it is silent with 
respect to individual processes. On the contrary, conforming to Interpretation II, 
the squared modulus of � “expresses the probability that at a given instant the 
same particle is present at a given point (for example on the screen). Here, the 
theory refers to an individual process and claims to describe everything that is 
governed by laws” (ibid.). In this second interpretation, � provides a complete 
description of a single, specific electron. Einstein’s argues in this manner against 
Interpretation II:

If |�|2 were simply regarded as the probability that at a certain point a given 
particle is found at a given time, it could happen that the same elementary 
process produces an action in two or several places on the screen. But the 
interpretation, according to which |�|2 expresses the probability that this 
particle is found at a given point, assumes an entirely peculiar mechanism 
of action at the distance, which prevents the wave continuously distributed 
in space from producing an action in two places on the screen (ibid.).

In sum, Einstein claims that QM prevents multiple detections of a single elec-
tron on the screen in virtue of some mechanism of action at a distance—i.e. the 
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collapse of � . However, he argues, such a mechanism is in contradiction with the 
principle of locality, and thus, with the theory of relativity. Since locality was a 
necessary physical principle according to Einstein’s opinion, it follows that this 
action at a distance is avoided only claiming that the wave function does not pro-
vide a complete description of individual systems and individual processes. Noto-
riously Einstein favored Interpretation I, which speak in favor of an ensemble 
interpretation of the quantum state.

The second argument is taken from Einstein [20]. In this essay Einstein explicitly 
claims that the incompleteness of quantum theory is a consequence of the statisti-
cal nature of the quantum laws: “the incompleteness of the representation” of quan-
tum systems he says, “is the outcome of the statistical nature (incompleteness) of 
the laws [of quantum mechanics] (p. 374). Einstein, then, provides the following 
example to support his claim: consider a quantum state �r which corresponds to the 
periodic solution of the Schrödinger equation in order of increasing energy. Suppose 
that a system is in the lowest energy state E1 represented by �1, and that after a cer-
tain finite amount of time a small force acts on our system. Einstein notes that from 
the Schrödinger’s evolution, one obtains the following wave function:

Then, he asks whether � describes a real state of the system:

If the answer is yes, then we can hardly do otherwise than ascribe to this con-
dition a definite energy E,  and, in particular, such an energy as exceeds E1 by 
a small amount (in any case E1 < E < E2 ). Such an assumption is, however, at 
variance with the experiments on electron impact such as have been made by J. 
Franck and G. Hertz, if, in addition to this, one accepts Millikan’s demonstra-
tion of the discrete nature of electricity. As a matter of fact, these experiments 
lead to the conclusion that energy values of a state lying between the quantum 
values do not exist. From this it follows that our function � does not in any 
way describe a homogeneous condition of the body, but represents rather a 
statistical description in which the cr represent probabilities of the individual 
energy values [...] The � function does not in any way describe a condition 
which could be that of a single system; it relates rather to many systems, to “an 
ensemble of systems” in the sense of statistical mechanics (Einstein [20], p. 
375).

In addition, at the end of his analysis, Einstein underlines that the quantum state 
provides such a statistical description for two essential reasons: one the one hand, 
the performance of a measurement introduces unknown and uncontrollable pertur-
bations on the system, on the other, and more importantly, because the wave func-
tion does not represent individual systems, as shown in the above example. Thus, 
he concludes, the incompleteness of quantum mechanics is a consequence of the 
statistical nature of its laws.

Furthermore, in this essay Einstein briefly refers also to the EPR incomplete-
ness argument, presenting it in form which is very close to that included in his 
letter to Schrödinger mentioned in the previous section. In this argument, a 

� =
∑

cr�r.
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measurement of a two-valued operator performed on the system A—part of 
a complex entangled system AB—will affect the state of the system B which is 
space-like separated. Then, it is possible to ascribe to B multiple quantum states, 
which do not describe unambiguously the unique physical state of B. To this 
regard, Einstein notes that it is sufficient to interpret � as referring to an ensemble 
of systems in order to eliminate “every difficulty”. Referring to this example Ein-
stein claims: “The fact that quantum mechanics affords, in such a simple manner, 
statements concerning (apparently) discontinuous transitions from one total con-
dition to another without actually giving a representation of the specific process, 
this fact is connected with another, namely the fact that the theory, in reality, does 
not operate with the single system, but with a totality of systems.” (ibid., p. 376). 
Interestingly, this statement clearly shows that Harrigan and Spekkens’ argument 
aimed at showing that Einstein endorsed a �-epistemic view rests essentially on 
his statistical conception of the quantum state.

Finally, the third textual evidence for Einstein’s endorsement of the statistical 
view is taken from his intellectual biography [21]. In order to show the statistical 
nature of quantum theory, he considers the case of a radioactive atom whose average 
decay time is definite, and which is exactly localized in a point in space. It is well-
known that conforming to the formalism of QM, the radioactive process of emission 
of a light particle is described by a three-dimensional wave function which is differ-
ent from zero only in the small region occupied by the atom at the initial time t0, but 
at successive instants t it spreads in space. Such a function provides the probability 
to find the particle in given region of space if a measurement of position is per-
formed, however, it does not contain any information concerning the exact time of 
the disintegration of the radioactive atom. Thus, Einstein asks whether the descrip-
tion of the decay process provided by quantum theory is complete. Not surprisingly, 
he answers in the negative:

The immediate plausible answer is: No. For one is, first of all, inclined to 
assume that the individual atom decays at a definite time; however, such a defi-
nite time-value is not implied in the description by the �-function. If, there-
fore, the individual atom has a definite disintegration time, then as regards the 
the individual atom its description by means of the �-function must be inter-
preted as an incomplete description. In this case the �-function is to be taken 
as the description, not of a singular system, but of an ideal ensemble of sys-
tems. In this case one is driven to the conviction that a complete description of 
a single system should, after all, be possible; but for such complete description 
there is no room in the conceptual world of statistical quantum theory (Ein-
stein [21], p. 668).

Einstein continues by saying that

Insofar, then, as a quantum-theoretician takes the position that the description 
by means of a �-function refers only to an ideal systematic totality but in no 
wise to the individual system, he may calmly assume a definite point of time 
for the transformation. But, if he represents the assumption that his descrip-
tion by way of the �-function is to be taken as the complete description of the 
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individual system, then he must reject the postulation of a specific decay-time 
(Einstein [21], pp. 669–670).

In conclusion, he claimed programmatically that if one aims at describing indi-
vidual quantum systems with quantum theory, one is inevitably lead to “implausible 
theoretical conceptions” as we have underlined with the above examples. In par-
ticular, one is forced to accept a spooky mechanism of action at a distance, which 
is in stark contrast with the principles of relativity theories. Thus, according to Ein-
stein, the only meaningful reading of quantum theory is statistical, meaning that 
it describes only ensemble of systems, and not individuals (cf. Einstein [21],  pp. 
671–672).7

After having showed Einstein’s views on the statistical nature of quantum the-
ory—which is the source of its incompleteness—let us come back to Harrigan and 
Spekkens’ argument. To state that Einstein endorsed a �-epistemic view of the 
quantum state, and simultaneously to acknowledge that he supported the statistical 
interpretation, imply that the latter must be considered a �-epistemic theory, dealing 
with observers’ knowledge of the quantum state.

Thus, a question immediately arises: How do Harrigan and Spekkens reinforce 
their conclusion that the ensemble view is a �-epistemic model? They answer it by 
saying that the notion of “ensemble” in Einstein’s jargon is nothing but a way to talk 
about probabilities reflecting an observer’s knowledge:

the only difference between “ensemble talk” and “epistemic talk” is that in 
the former, probabilities are understood as relative frequencies in an ensemble 
of systems, while in the latter, they are understood as characterizations of the 
incomplete knowledge that an observer has of a single system when she knows 
the ensemble from which it was drawn. Ultimately, then, the only difference 
we can discern between the ensemble view and the epistemic view concerns 
how one speaks about probabilities, and although one can debate the merits of 
different conceptions of probability, we do not feel that the distinction is sig-
nificant in this context, nor is there any indication of Einstein having thought 
so (Harrigan and Spekkens [26], p. 150).

7  Referring to this, two facts should be mentioned: on the one hand, although for Einstein the statistical 
interpretation was the most meaningful reading of quantum theory, he was not fully satisfied with the 
then current situation about the interpretation of QM. Thus, the ensemble view was just the “least bad” 
option available at the time, attending new developments of physics. To this specific regard the reader 
may refer to Einstein [21], pp. 671–673. On the other hand, Einstein was convinced that in order to pro-
vide a complete description of individual processes one should have added variables to the formalism of 
quantum theory. Alternatively stated, Einstein was in favor of a possible completion of quantum theory 
with the aid of hidden variables, or better, he thought that quantum theory should include in its descrip-
tion definite properties for quantum systems, as underlined also by Howard [27]. In spite of this, he did 
not supported the hidden variable interpretation of QM provided by Bohm [6]; indeed, in Einstein [22] 
severe objects against Bohm’s theory were presented (cf. Myrvold [35] for a discussion). To this regard, 
the reader should also refer to Einstein’s correspondence with Born [7], as for instance letter 99 dated 
12th May 1952, where Einstein judged Bohm’s theory as a “cheap solution” to the problems of quantum 
theory.
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Given the importance of this conclusion, let us discuss whether it is really sound. 
Let us see, then, if we can really affirm that the ensemble view is �-epistemic. In 
order to address these issues, it is useful to introduce the tenets of the statistical 
interpretation of QM relevant to our discussion. In what follows we will consider 
the statistical interpretation of QM contained in [3], which is still today the most 
detailed presentation of this approach to quantum theory8 It is worth noting that Bal-
lentine himself identified the statistical view with Einstein’s interpretation of quan-
tum theory; indeed, he explicitly writes that “if we identify the Copenhagen Inter-
pretation with the opinions of Bohr, then the Statistical Interpretation is rather like 
those of Einstein” (ibid., p. 358). Let us then introduce the basic tenets of the statis-
tical interpretation:

•	 Pure states provide a description of statistical properties of an ensemble of 
similarly prepared systems. The quantum state � does not need to completely 
describes individual systems;

•	 Quantum states formally represent the set of certain state preparation proce-
dures. Thus, systems which undergo the same preparation procedures for cer-
tain observable will have similar properties, but they are not equal in all their 
respects—they may differ with respect to those properties for which they are not 
subjected to the same preparation procedures (the uncertainty principle means 
that is not possible to obtain an ensemble of identically prepared systems for all 
their properties);

•	 A certain eigenstate of a given observable represents the ensemble of those sys-
tems which are in that particular state;

•	 Generally, quantum theory does not predict the result of individual measurement 
of a certain observable. However, the probability of each possible outcome can 
be verified by the iterated repetition of state preparations and measurements, 
eventually constructing the statistical distributions of the results;

•	 Generally, quantum theory predictions are not relevant for individual, single 
measurements. Quantum mechanical calculations rather pertains to an ensemble 
of similar measurements;

•	 According to the ensemble view, probability refers to “the relative frequency 
(or measure) of the various eigenvalues of the observable in the conceptual infi-
nite ensemble of all possible outcomes in the identical experiments (the sam-
ple space)”, whereas the statistical frequency refers to the “results in an actual 
sequence of experiments. The probabilities are properties of the state preparation 
method and are logically independent of the subsequent measurement” ([3], p. 
361, italics added);

•	 In the statistical view, probability does not refer to the observer’s knowledge. 
Referring to this, Ballentine is explicit: “[i]n contrast to the Statistical Inter-
pretation, some mathematicians and physicists regard probability as a meas-
ure of knowledge, and assert that the use of probability is necessitated only by 

8  For a more recent perspective on the statistical interpretation of quantum theory, the reader may refer 
to Bowman [8].
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the incompleteness of one’s knowledge. This interpretation can legitimately be 
applied to games like bridge or poker [...]. But physics is not such a game, and as 
Popper has emphasized, one cannot logically deduce new and verifiable knowl-
edge—statistical knowledge—literally from a lack of knowledge” (ibid.).

It is easy to recognize these tenets in Einstein’s view of QM. In the first place, 
states also here refer to ensembles, thus, they do not describe individual systems. In 
the second place, the predictions of quantum theory do not concern individual pro-
cesses, but only statistical distributions of measurement results. Finally, the quantum 
probabilities do not refer to observers’ knowledge of particular experimental situ-
ations. Hence, it is fair to establish a strong theoretical continuity between Ballen-
tine’s presentation of the ensemble view and Einstein’s interpretation of quantum 
mechanics. This fact, as we will see, will be crucial in our argumentation.

In the first place, there is a (ontological) crucial difference between the ensem-
ble view and the requirements imposed to ontological models by Harrigan and 
Spekkens. According to the statistical interpretation, the quantum state does not aim 
to represent individual systems, meaning that it does not tell us anything about sin-
gle, individual quantum systems. Neither does it tell us anything about individual 
measurements. Everything that can be said about quantum systems concern sets of 
similarly prepared objects. It is worth noting, however, that this view does not fail 
to describe individual systems, since these just lie outside its scope. Unfortunately, 
this crucial aspect of the ensemble view is not taken into account by Harrigan and 
Spekkens: to claim that it is a �-epistemic model because � does not describe indi-
vidual states, it is to assume that this view somehow failed to describe individual 
systems. However, this is simply to ignore the relevance of ensembles for the sta-
tistical interpretation. Referring to this, it is interesting to note that Ballentine care-
fully distinguishes between two different types of interpretations of QM: the statisti-
cal view (according to which the quantum state does not provide a description of 
individual systems—as repeatedly stressed by Einstein) and interpretations in which 
pure states provide descriptions of individual systems. Harrigan and Spekkens never 
make this distinction clear, and they seem to be assessing the statistical view in 
terms of its success at describing individual systems, which, as we showed, is not 
in the business of such a view. Alternatively stated, Harrigan and Spekkens evalu-
ate the statistical interpretation with the same criteria used to evaluate completely 
different sort of models, i.e. those in which the quantum state refers to individual 
systems, putting the ensemble view in the wrong category.

In the second place, another crucial point to highlight is that the ontic space of 
the statistical interpretation is not one of individuals, but of ensembles. This allows 
for an alternative reading of the ontic state: it provides a complete description of 
the properties of an ensemble, not of individuals. And there is nothing else to know 
about ensembles that is not provided by the quantum state. The upshot of the present 
discussion is that the sort of � that the statistical interpretation poses is completely 
different in nature with respect to that employed by Harrigan and Spekkens. More-
over, also the relation between � and � should be assessed differently within the 
statistical view. These facts are completely overlooked in Harrigan and Spekkens’ 
account. This justifies one of our claims against their classification: it is too narrow 
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and puts severe constraints on the structure of the ontic spaces, to the effect that 
even an interpretation where observers’ knowledge does not play any role is classi-
fied as epistemic. The crucial issue here is that the assumption according to which 
the ontic state exclusively represents the complete state of an individual system does 
not find any theoretical justification within the ensemble view, since it is fundamen-
tally not about individuals, but about sets of identically prepared systems which are 
completely described by � .

Naturally, the way to amend Harrigan and Spekkens’ misrepresentation of the sta-
tistical interpretation is to consider the possibility to enlarge the description of ontic 
states and ontic spaces to ensembles. This amounts to allowing the ontic space to 
describe either individual systems or ensemble of systems. Then, � may be assessed 
in terms of its success in capturing either ontic states’ features. When it comes to the 
statistical view, � must be assessed in relation to an ontic state of ensembles. It hap-
pens that so interpreted it says all can be said about such an ontic state.9 In accord-
ance with this, the ensemble view would be a �-complete model which, following 
Harrigan and Spekkens’ definition, cannot be �-epistemic. Therefore, the assump-
tion that the authors made defining what ontological models are simply leaves out 
the possibility to evaluate correctly the status of the quantum state in the context of 
the statistical interpretation.

There is a further argument that concerns probabilities. As we have seen from 
the principles of the ensemble view, it is not true that probabilities in such an inter-
pretation represent observers’ knowledge, as Harrigan and Spekkens maintained. 
Indeed, in their essay there is no theoretical explanation for which probabilities 
in the ensemble view should be understood as observers’ incomplete knowledge. 
While it is true that in the ensemble view quantum probabilities refer to relative 
frequencies, as the authors claim, they nonetheless refer to “the relative frequency 
(or measure) of the various eigenvalues of the observable in the conceptual infinite 
ensemble of all possible outcomes in the identical experiments (the sample space)” 
Ballentine [3], p. 361, emphasis added). It is the statistical frequency that refers to 
actual sequence of measurement performed on a particular ensemble of quantum 
systems. Thus, the authors are conflating relative frequencies, that is, quantum prob-
abilities, with mere statistical frequency. This fact comes from a misrepresentation 
of the notion of ensemble as used in the statistical view. Indeed, the authors claim 
that the “ensemble talk” refers solely to the fact that probabilities should be inter-
preted as relative frequency in an actual, particular ensemble of systems. However, 
Ballentine reminds us that this is not the case: the notion of “ensemble” at play in 
the statistical view is quite different and deeper, since it refers to the infinite con-
ceptual ensemble of similarly prepared system; “for example, the system may be a 
single electron. Then the ensemble will be the conceptual (infinite) set of all single 

9  Here we are not claiming that the statistical view provides an ultimate description of physical objects, 
resolving once and for all the ontological disputes of QM. Indeed, both Einstein and Ballentine con-
ceive the possibility to complete the description of systems provided by this interpretation. However, 
both these physicists say that as far as quantum mechanics is concerned, the statistical view is the most 
detailed approach at our disposal if one wants to avoid theoretical and interpretational difficulties.



1332	 Foundations of Physics (2020) 50:1315–1345

1 3

electrons which have been subjected to some state preparation technique (to be spec-
ified for each state), generally by interaction with a suitable apparatus” (ibid.). This 
is also underlined by Einstein himself, when he claimed that the quantum state refers 
to “an infinity of elementary processes” and to “an ideal ensemble of systems”, as 
seen a few lines above. In addition, Ballentine clearly states that probabilities in the 
statistical interpretation are inherently associated with states preparation procedures, 
and are metaphysically and logically independent from actual measurements—in 
this latter case we deal with statistical frequencies. Thus, it is false to claim that, 
in the context of the ensemble view, probabilities refer to relative frequencies con-
cerning actual measurements performed on particular sets of systems. If this is true, 
then the supposed equivalence between “ensemble talk” and “epistemic talk” has no 
theoretical basis. As a consequence, it would be misleading to consider the ensem-
ble view as an �-epistemic model, since observers’ knowledge plays absolutely no 
role in this context.

In conclusion, in this section we argued that there is no theoretical basis to con-
sider the statistical interpretation of quantum theory a �-epistemic model, contra 
Harrigan and Spekkens’ claims. The reason lies in a difference between ontic states 
in the ensemble view and in Harrigan and Spekkens’ classification: they represent 
ensembles in the former, but individuals in the latter. Moreover, there is an issue 
with respect to the interpretation of probabilities: the authors do not provide sound 
arguments supporting the thesis for which probabilities in the ensemble view should 
refer to incomplete observers’ knowledge. Consequently, claiming that the statisti-
cal view entails an epistemic interpretation of the quantum state would require fur-
ther argumentation. This naturally puts into question the conclusion that Einstein 
defended a �-epistemic view as well. Of course, the authors may argue that Einstein 
did not endorsed what is now called the ensemble view, but a different sort of epis-
temic interpretation. However, this should be proved with more rigorous argumenta-
tion, especially in the light of the textual evidence provided in this section according 
to which Einstein did endorse the ensemble view, and that his thoughts are faithfully 
represented by Ballentine [3].

4 � On the Perspective Independency of �

In the previous section we argued that the assumption that � applies to individual 
systems cannot capture the basic tenets of the statistical interpretation of quantum 
mechanics. In this section, we will analyze and discuss a second assumption in Har-
rigan and Spekkens’ classification with respect to the nature of �, namely, that it 
is taken to be independent of any reference system. We will call this assumption 
perspective independence, according to which quantum systems instantiate abso-
lute, intrinsic properties. Though intuitive at first sight, we will argue that the per-
spective independence assumption is at odds with some interpretations of QM that 
adopt a relational (or perspectival) ontology—the modal-perspectival quantum 
mechanics (PQM henceforth) and relational quantum mechanics (RQM henceforth). 
This implies that some ontological models of QM would not fit into Harrigan and 
Spekkens’ classification, since they diverge about the nature of �.
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4.1 � �‑Perspective Independent?

Let us begin by introducing in detail the perspective independence assumption. As 
recalled in the previous sections, Harrigan and Spekkens begin their characteriza-
tion of � by claiming that the primitive notions of ontological models are properties 
of microscopic systems:

[a] preparation procedure is assumed to prepare a system with certain proper-
ties and a measurement procedure is assumed to reveal something about those 
properties. A complete specification of the properties of a system is referred to 
as the ontic state of that system, and is denoted by � (Harrigan and Spekkens 
[26], p. 128).

As we mentioned previously, one of the criteria to sorting ontological models 
out consists in specifying the type of relation existing between � and � . Note that �
-incomplete models take � to be just a partial description of �, in the sense that the 
latter involves more properties than those captured by � . This failure (ibid., p. 131) 
may require Λ either to be parameterized by � and by supplementary variables, or to 
be not parameterized by � whatsoever, making � purely epistemic.

Be that as it may, we claim that Harrigan and Spekkens’ characterization of quan-
tum ontological models requires � to meet the following assumptions:

•	 Intrinsicality: a quantum system instantiates intrinsic properties that may be 
revealed through measurements.

•	 Absolute objectivity and completeness: �, the objective, complete description of a 
quantum system, is primarily given by univocally specifying the intrinsic proper-
ties of a quantum system—such properties hold absolutely, i.e. for any possible 
perspective.

In virtue of these two assumptions, it can be said that in �-ontic models � ‘encodes’ 
the � , for � is only consistent with one choice of � . If a quantum system only 
instantiates intrinsic properties, then any description of it will consist in providing 
monadic predicates, that is, one-place logical predicates like F(x).

Consequently, a complete description of a quantum system will consist in provid-
ing an exhaustive list of monadic predicates that may be ascribed to it univocally for 
any perspective. It is important to highlight univocally here: one of the most sali-
ent features of intrinsic properties is that things possess them in virtue of the way 
themselves are, regardless of their relations with external things (Lewis [30], p. 61). 
Thus, it follows that if � is a complete description of the intrinsic properties of a 
quantum system, any consistent �-complete model is forced to provide only one � . 
To explain this point more clearly, we can think of the opposite scenario, when we 
have two different � s for the same �. These � s might be regarded as two different 
perspectives, representing overlapping probabilities, in the sense that there exists a 
pair of preparation procedures, P� and P�, such that p(�|P� )p(�|P�) ≠ 0. Hence, 
� does not encode � , which translates into a lacking of knowledge about �. On the 
contrary, if � is only consistent with one choice of � , it follows straightforwardly 
that it is consistent with one of the perspectives from which a quantum system is 
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described. In consequence, as there is only one choice of � compatible with �, it is 
independent of the perspective we choose—we will trivially choose the right one. 
This aspect reveals a third implicit assumption that in turn relies upon the previous 
ones:

•	 Perspective independence: a complete description of the intrinsic properties of a 
quantum system can be only given by one choice of � .

Alternatively stated, there is only one correct perspective to describe the state of 
a quantum system. Hence, intrinsicality, absolute objectivity and completeness and 
perspective independence naturally leads to categorize overlapping probability dis-
tributions as epistemic states: such probability distributions must be read as igno-
rance about the intrinsic properties a quantum system instantiates. In other words, if 
two � s can be ascribed to some �, then they are equally failing to capture a quantum 
system’s intrinsic properties.

These assumptions are common in the literature on quantum physics and have 
roots in classical physics. If a classical coin shows ‘head’ after flipping it, then we 
assume the coin really instantiates the property of “being head” regardless the per-
spective from which the property “being head” was registered. If we were asked 
whether the coin landed ‘tail’ after flipping it, we would somehow know that an 
objective, complete answer will be given by a yes–no proposition. Any response 
lying in between must be considered as incomplete, in the sense of lacking the 
required knowledge to provide a yes–no answer. Mutatis mutandis, these assump-
tions play an akin role when it comes to quantum physics within Harrigan and 
Spekkens’ classification: � would ideally give us an objective, complete description 
of a quantum system by listing its (intrinsic) properties.

This conventional wisdom can be found in different places in the standard litera-
ture, but for spatial reasons here we consider just two noteworthy sources. On the 
one hand, in their book The Quantum Theory of Measurement, Paul Busch, Pekka 
Lahti and Peter Mittelstaedt introduce an objectification requirement in order to 
know how definite properties are to be represented in the quantum formalism. Con-
forming to such a criterion, a property of a system is definite and objective if and 
only if the system’s quantum state is a mixture, in the ignorance sense, of eigenstates 
of the observable corresponding to the property in question (Busch et al. [10], p. 21). 
The requirement basically says that a quantum system instantiates an objective prop-
erty if there is a probability equal to 1 of finding the system in an eigenstate of the 
observable representing such a property upon measurement. As Dennis Dieks notes, 
in such a mixture “the presence of different pure states as components reflects our 
lack of knowledge about which one of these states actually obtains” (Dieks [14], p. 
761). The objectification requirement thus presupposes that quantum systems must 
really instantiate some properties and lack others univocally—any failure of com-
pletely capturing such properties must be interpreted as ignorance.

On the other hand, in their 2012 celebrated paper, Matthew Pusey, Jonathan Bar-
rett and Terry Rudolph poses a no-go theorem for any model in which the quan-
tum state ( � ) just represents mere information about an underlying physical state. 
Though the term ‘physical state’ is not perfectly accurate, they claim that quantum 
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systems have real physical states that are objective and independent of any observer. 
According to this view, physical properties are constant functions over the physi-
cal state and a quantum system genuinely instantiates a physical property only if for 
every pair of distributions, they are disjoint. To put it differently, the existence of 
overlapping probability distribution would denounce a failure in the assignment of 
physical properties to quantum systems (Pusey et al. [38]), which is in perfect agree-
ment with Harrigan and Spekkens’ view.

Any challenge to this attitude requires a radical revision of our understanding of 
properties and how we know them. In the longstanding debate about how the quan-
tum formalism should be interpreted, some have proposed such a radical revision 
in the last decades. Two clear instances of this are PQM, mainly defended by Den-
nis Dieks (cf. Bene and Dieks [5], Dieks [14, 15]), and RQM, actively promoted 
by Carlo Rovelli (cf. Rovelli [39]). Although different, both views rely on a strong 
relational ontology for quantum physics, according to which the properties of quan-
tum systems are not absolute or intrinsic. In accordance with this, any description of 
physical systems must be given in terms of relational properties, expressed through 
at least dyadic predicates involving not only the target system S, but also the refer-
ence system R from which it is said that S instantiates the property F. Thus, any 
description will look like a two-place predicate, F(S, R),  which reads “S is F from 
R’s perspective”. In the following, we will briefly introduce both interpretations, 
focusing on their ontological tenets.

4.2 � Towards a Perspectival and Relational Quantum Mechanics

PQM belongs to the class of the so-called modal interpretations of quantum mechan-
ics (cf. van Fraassen [40], Dieks and Vermaas [16], and Lombardi and Dieks [33]). 
From a broad viewpoint, the modal interpretations are a significantly large family of 
interpretations of the quantum formalism holding at least three theses:

•	 Non-collapse dynamics: the quantum state evolves always unitarily according to 
some Schrödinger-type equation of motion;

•	 A single world: there only exists a single actual world;
•	 Modal possibilism: the quantum state (specifically, the dynamical state) repre-

sents what may be the case, that is, it represents real possibilities.

Taking as an example a one-particle system in a superposition of z-spin, 
��⟩ =

�
1

2
(� ↑⟩ + � ↓⟩), each term in the superposition represents different possibili-

ties that might be actualized through some actualization rule. Such a superposed 
state never collapses, but evolves unitarily according to some Schrödinger-type 
dynamical equation. And here it comes the philosophical novelty of modal interpre-
tations: the quantum reality is not exhausted by what is actual (that is, by which term 
we will eventually obtain in the actual world), but it also involves what is possible. 
Although supporters of the modal interpretation hold that there is only one actual 
world, wherein some set of self-adjoint Hermitian operators will acquire definite 
values, they also hold that there is a realm of unrealized possibilities. This proposal, 
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however, should be clearly distinguished from the Many-World interpretation, since 
the latter holds that any term in a superposition corresponds to some actual existing 
world (or “branch” of the universal wave function), whereas the former holds that 
only one term corresponds to some actual state in our world.

One of the central debates within modal interpretations is about whether there 
is an a priori privileged set of commuting observables. Conforming to some modal 
versions, a realist non-collapse interpretation is committed to selecting a privileged 
set of definite-valued observables out of all observables. Which is such a set has 
been one of the central issues of modal interpretations, raising several disputes 
about the nature of the actualization rule and observables. For instance, a Bohm-like 
interpretation may be seen as a modal interpretation in which the privileged observ-
able is position, so that the set of definite-valued observable for any quantum system 
will be given by all the observables that commute with position (cf. Bub [9]). Oth-
ers have picked out the Hamiltonian as the privileged observable (cf. Lombardi and 
Castagnino [31]). Since the Hamiltonian commutes with all the Casimir operators of 
the Galilean group (when the system is described in the reference frame of its center 
of mass), it plays a paramount role in building the quantum theory (cf. Lombardi 
et al. [32]).

However, other modal interpretations disagree on selecting a privileged set of 
commuting observables a priori. Instead, they hold that which subset of observables 
will acquire actual definite values depends on the form of the quantum state. Impor-
tantly, and this is the novelty with respect to most orthodox approaches, insofar as 
the form of the quantum state changes with time, such a subset of observables will 
also change with time.

Putting aside these differences, we can claim that for these approaches the quan-
tum state will depend upon the perspective from which the quantum system is given. 
This idea has been championed by PQM, a perspectivalist view of quantum mechan-
ics within modal interpretations, supported mainly by Dennis Dieks and Gyula 
Bene.10 According to this approach, the nature of quantum reality is inherent rela-
tional in so much as the properties of quantum systems are not intrinsic.

This chiefly means that any description of the state of a quantum system can be 
only given by relational properties, defined with respect to another physical system 
serving as ‘witness’ (borrowing Kochen’s expression [28]) or ‘reference system’ [4]. 
In this context, a quantum system S can thus be represented by different quantum 
states relative to different reference systems. This fact entails that the same quantum 
system S may have definite values of certain observables from the perspective of a 
reference system R,  and may be in a superposition with respect to those observables 
from a distinct reference system O. The upshot of all this is that as the nature of 
quantum states is intrinsically relational, there is no matter of fact out of which we 
can privilege one perspective over the other. In this sense the nature of the quantum 
state is said to be perspectival.

In metaphysics, relational properties are those whose instantiation by some indi-
vidual depends on the sort of relations that such an individual holds with other 

10  For a discussion of relativistic quantum states in PQM the reader may refer to Myrvold [34].
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systems or its surrounding. What is important to remark about relational proper-
ties is what resources we need to exhaustively specify them. As already mentioned 
above, intrinsic properties are given by one-place predicates as, for instance, the 
property of having a certain mass, which is expressed by the proposition p,   “the 
body c has a mass = x ”, p ∶ M(c) = x. In this case, we only need one placeholder 
to define the property and to ascribe truth values to the proposition p,  V(p) = 1(0). 
Extrinsic properties behave quite differently. To begin with, they are given by at 
least two-place predicates, that is, two placeholders are required to define the prop-
erty adequately. For instance, the property of “having a weight = x ” remains unde-
fined until the location of an individual not be specified. In other words, the prop-
erty is relational because requires to provide the whereabouts of an individual for 
the proposition in which it intervenes to be given with truth values. The weight of 
an apple will vary depending on whether it is on the Earth or on Mars, so one of 
the placeholders in the predicate function will be filled by an individual’s location, 
(l), (M(o, l) = x), where o is the apple and x is weight of the apple according to the 
location l. Note that for a relational property as “having a certain weight” the indi-
vidual’s location is essential in order to define meaningfully the property itself and 
cannot be eliminated.

In general, we intuitively think of physical systems (and things broadly con-
ceived) as having both intrinsic and relational properties. Sometimes we want to talk 
about how a physical system is in itself, and thereby we rely on its intrinsic proper-
ties. However, sometimes we rather want to talk about a physical system in relation 
to something external to it, relying on its relational properties. Notwithstanding this, 
PQM claims that when it comes to quantum physics, we have both principled and 
empirical reasons to believe that quantum reality only involves relational properties. 
This primarily means that in order to specify the state of a quantum object, we must 
provide information concerning the reference system from which we are specifying 
such a quantum state (a perspective in the jargon of PQM). Then, the quantum state 
is relational in exactly the same way as the property “having a weight = x ” is defined 
in relation to a location. Let us see a concrete example.

PQM’s starting point is generally the standard Hilbert space formalism with only 
unitary time evolution. In this framework, the largest quantum system is the uni-
verse as a whole, whose quantum state is a pure vector state ��⟩. However, the truly 
relational nature of quantum systems comes up when we focus on subsystems of the 
whole universe. In these cases, quantum states will be represented by density opera-
tors acting on the Hilbert space of the subsystem S. In the standard representations, 
we give the quantum state of a system when we simply specify its density operator, 
�. But in PQM the quantum state is relational, meaning that its specification must be 
given by a two-place predicate. This can be represented in the formalism by attach-
ing indices to the density operator, �S

R
, which reads “the quantum state of subsystem 

S relatively to R”, or “from the perspective of R”.
There are two noteworthy cases. The first one is when S coincides with R. The sit-

uation can be rephrased in terms of “the quantum state of S relatively to itself”. In this 
case, the quantum state of S is given by partial tracing the quantum state of the uni-
verse (which by definition is in the pure quantum state �U

U
= ��⟩⟨�� ). Thus, the den-

sity operator for a subsystem S relative to itself is �S
U
= Tr(U�S)�

U
U
= Tr(U�S)��⟩⟨��. 
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If there is no degeneracy, then �S
S
= ��⟩⟨��. In accordance with the modal tradition, 

the state �S
S
 codifies the physical properties that S actually has. In other words, all 

the properties that are derived from the quantum state of S from its own perspective 
are properties that S possess on its own. However, the perspectival nature of quan-
tum mechanics arises when the quantum state of S is considered from an arbitrary 
external reference system, �S

R
. A particular case of this is when the system S is con-

tained in a bigger system A. To obtain the relational state of S from A we trace out 
the degrees of freedom of A that do not belong to S. Then, �S

A
 can be defined as the 

density operator �S
A
= Tr(A�S)�

A
A
.

Let us stop at this point to make some comments. The relational nature of the 
quantum state means that the state and physical properties of any quantum system 
crucially (and we would say by definition) depend upon specifying a reference sys-
tem with respect to which they are given. Importantly, this means that the relational 
nature of the quantum state is irreducible, in the sense that the state cannot be boiled 
down to a non-relational specification of the quantum state. This suggests, in turn, 
that the relational nature of the quantum state does not represent an epistemic limi-
tation in our way of ascribing states to quantum physical systems, as if there were 
some properties we failed to capture. On the contrary, this reflects an intrinsically 
relational quantum reality. When we say that a quantum system is in a superposed 
state of spin from a reference system R, but in a definite state, say � ↑⟩, from a refer-
ence system A,  we are not saying that R does not really know that S is in a � ↑⟩ state, 
but that from R’s perspective S is indeterminate in spin. Such a relational state is as 
real as any other relational state.

This might strike someone as perplexing and paradoxical: We have two oppos-
ing descriptions of the same situation that turn out to be on equal footing. How-
ever, according to PQM, this “paradox” only follows from not taking seriously the 
quantum mechanical formalism and its relational nature.11 If quantum systems can 
only instantiate relational properties, any fair description ought to be given by rela-
tional states. In other words, in the quantum ontology there are not intrinsic proper-
ties whatsoever, thus, any description resorting on monadic predicates, or reducing 
relational properties to intrinsic ones, is just off the right track. This is also valid 
for those cases where the system and the reference system are the same. It could be 
argued that quantum systems actually instantiate intrinsic properties, namely, those 
defined from the perspective of the system itself. Putting aside quantum mechani-
cal reasons to reject this argument (cf. Dieks [15]), the argument is conceptually 
misguided: the state of a system with respect to itself is just one perspective among 
many others, being merely a special case of a relational property. The fact that those 
properties be said to be intrinsic is merely linguistic, not grounding any metaphysi-
cal claim.

11  Nonetheless, this situation is pervading in physics and many examples can be given. For instance one 
may think about velocity in classical physics: such a quantity is always defined in relation to a particular 
reference system, however, this does not turn velocity into a subjective magnitude. It is just relative to 
such a reference frame.
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Let us now turn to a more radical relational ontology for quantum mechanics. 
Rovelli’s RQM shares to a good extent PQM’s tenets, though it takes even a step 
further in the relativization of the quantum state. RQM begins by claiming that 
quantum mechanics is not actually about the quantum state ( ��⟩ ), as at first glance it 
seems, but about values of physical variables. The quantum state is just “a fictitious 
nonphysical mental construction” (Rovelli [39], p. 1645), which serves as a book-
keeping device for storing the information about the history of a system’s interac-
tions. This is one of the most notable differences between PQM and RQM: whereas 
in the former view the relational quantum state truly represents the relational nature 
of the quantum world, in the latter the quantum state is irreducibly epistemic. What 
is in fact objective in the relational quantum world envisaged by Rovelli is the real 
events or processes brought about in the course of the interactions between physical 
systems. In RQM,

[t]he real events of the world are the “realization” (the ‘coming to reality’, the 
‘actualization’) of the values of q, q��, q���,… in the course of the interaction 
between physical systems. This actualization of a variable q in the course of an 
interaction can be denoted as the quantum event q′′ (Dorato [17], p. 243).

Hence, the micro-world described by the quantum mechanical formalism is 
made up of processes that characterize sequences of quantum events, that is, physi-
cal systems whose properties take values due to interactions. However, the values 
that properties take for a system are not absolute and intrinsic, but relational. As 
in PQM, that a system’s property Q acquires the value q does not mean that q is an 
absolute value, but it is relative to an external reference system R with which S has 
interacted. What the quantum mechanical formalism shows is that different physi-
cal interactions (for instance, agents performing measurements in different labora-
tories, or particles colliding spontaneously in the surroundings of a faraway star) 
can deliver different accounts of a quantum event. For the same token, it cannot be 
said that an isolated system has definite value for some variable Q: only interac-
tions allow a system to take definite values. Insofar as all interactions stand on equal 
footing, every interacting physical system can be taken as defining a perspective 
from which some system’s property acquires a definite value, which goes along with 
PQM’s spirit.12

4.3 � � in a Relational Quantum Land

Both PQM and RQM radically change our conventional understanding of how phys-
ical systems should be identified through their properties. What consequences do 
these views entail for Harrigan and Spekkens’ classification? In the first place, it 
is clear that the authors’ assumptions about the nature of � are completely at odds 
with those of PQM and RQM. In consequence, the overarching relational attitude 

12  The metaphysical implications of RQM has not been yet in-depth investigated. Two exceptions are 
Dorato [17] and Candiotto [12].
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of both views imposes criteria to characterize � that diverge greatly with respect to 
those of Harrigan and Spekkens’. In the second place, PQM and RQM in a deriva-
tive sense allow two quantum states to correspond to overlapping probability distri-
butions without being committed to consider � as epistemic. In the third place, both 
views bring up a different notion of objectivity, which clashes with that assumed by 
Harrigan and Spekkens.

In Sect. 4.1, we mentioned that their classification takes for granted three assump-
tions with respect to the nature of the ontic state, namely, intrinsicality, absolute 
objectivity and completeness, and perspective independence. Naturally, from the 
point of view of RQM and PQM, these assumptions can no longer be accepted. 
Within these interpretations, quantum systems do not possess intrinsic properties at 
all, but rather instantiate relational ones. Thus, it follows that � , if it is meant to rep-
resent (partially or completely) the quantum reality, must be relational due to princi-
pled metaphysical reasons. Hence, if intrinsicality is an assumption about what kind 
of properties a complete description of a quantum system must involve, PQM and 
RQM categorically reject it, holding a different principle:

•	 Relationality: a quantum system instantiates relational properties, which require 
a reference system to be meaningful.

Under this assumption, � no longer relates to a � involving intrinsic properties, 
but to a � involving properties always relatively to a reference system. Clearly, the 
nature of � will also be relational. For instance, in the context of RQM, since a quan-
tum event is defined by the interactions between a physical system S and a reference 
system R,   S acquires certain values uniquely with respect to R. A third system O, 
with which S and R do not interact, can rightfully offer a description of S completely 
different with respect to that of R.

Taking seriously into account the relational nature of quantum systems, R and O 
refer to the “same” quantum event—the interaction between S and R. However, this 
quantum event may receive at least two different descriptions insofar as these refer 
to two different reference systems—one of them has interacted with S,  whereas the 
other does not. The point is that there is nothing missing here for either perspective: 
both descriptions are on equal footing and just express the relational nature of quan-
tum reality.

By rejecting intrinsicality, RQM and PQM deny the assumption of absolute 
objectivity and completeness as well. In the case of RQM, when two different refer-
ence systems R and O interact differently with a physical system S,  they represent 
two equally valid perspectives from which the system can be characterized. Along 
the same line, from PQM’s view, as there only exist relational properties, each per-
spective defines its own objective and complete set of (relational) properties of the 
system in relation to itself. Hence, the notion of completeness of the description can 
no longer be absolute, but relative:

•	 Relative objectivity and completeness: an objective, complete description of a 
quantum system’s properties is given by the relational properties that a quantum 
system instantiates in relation to a reference system.
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An important result following from these considerations is that quantum mechan-
ics, according to RQM and PQM, makes it plausible to objectively ascribe more 
than one state to the same physical system S. In other words, two distinct reference 
systems R and O can ascribe different � s to the same S,  because such R and O will 
specify different complete sets of relational properties for the same quantum system. 
This directly refutes the identification between providing overlapping probability 
distributions and ignoring which is the set of complete properties of a quantum sys-
tem. In other words, RQM and PQM make automatically false any inference aiming 
at showing that providing two different � s for a given � leads to a purely epistemic 
reading of such � s. This is particularly interesting because it paves the way to regard 
overlapping probability distributions as �-ontic, blurring out the distinctive feature 
of �-epistemic ontological models. One of the lessons we can take from this is that 
being �-epistemic not only requires that there is possible to provide overlapping 
probability distributions for a given �, but also that � satisfies intrinsicality, absolute 
objectivity and completeness and perspective independency.

It is worth noting a subtle difference between PQM and RQM at this point. 
Whereas PQM would take a relational � to be �-complete, and thereby �-ontic, 
RQM’s attitude is manifestly instrumentalist with respect to � . For PQM, it is clear 
that any fair description of an irreducibly relational world must be given by rela-
tional quantum states, which by definition include the possibility of ascribing dif-
ferent states to the same physical system. This fact just reflects the relational nature 
of the world, and cannot be regarded as hampering a realist attitude. For RQM, by 
contrast, the quantum state is merely a useful tool for calculation and prediction, and 
because of this it is �-epistemic. However, its epistemic or instrumentalist nature is 
not due to the possibility of having overlapping probability distributions, as it would 
follow from Harrigan and Spekkens’ classification, but it is due to more principled 
reasons. RQM holds a weak realist attitude with respect to its sparse event ontology, 
which is of course also relational, but wherein � is left out of the picture. Thus, the 
possibility of having different descriptions for a physical system (that is, of ascrib-
ing different values to physical variables) does not necessarily imply that there are 
some properties that our descriptions are not capturing. Neither does it imply that 
such descriptions are subjective: it is clear that the acquisition of definite values is a 
mind-independent physical fact, largely due to the existence of interactions among 
systems.

All these reasons naturally lead to finally rejecting perspective independence

•	 Perspective dependence: a complete description of the properties of a quantum 
system can only be given by a relational � , which is specified in relation to a ref-
erence system.

To sum up, one of Harrigan and Spekkens’ assumptions is that � is a complete 
description of reality independently of any reference system. This assumption was 
shown to be at odds with some current interpretations of QM that take � to be rela-
tional and perspectival. A relational metaphysics for QM does not only change the 
nature of quantum systems in relation to the properties that they may instantiate, 
but also the relation that � holds with � . Any adequate description of a perspectival 
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quantum reality is forced to involve two-place predicates that refer, too, to the per-
spective from which a quantum system is described. Therefore, the assumption of a 
free-perspective � simply postulates a divergent metaphysics with respect to that of 
RQM’s and PQM’s, which reveals that the classification provided by these authors is 
too narrow to include them.

5 � Conclusion

In this essay, we have argued that Harrigan and Spekkens’ classification cannot be 
employed in order to convincingly accommodate some current interpretations of 
quantum mechanics. In particular, we have shown that interpretations promoting 
an ensemble view or a perspectival and relational ontology for the quantum realm 
severely conflict with some assumptions of Harrigan and Spekkens’ scheme. We 
provided a twofold argumentation. In the first place, it has been shown that Harrigan 
and Spekkens’ classification assumes that � is the complete description of single, 
individual quantum systems that are also perspective independent. On an opera-
tional basis, both assumptions set up an ontology according to which the basic con-
stituents of every quantum theory are individuals instantiating intrinsic properties. 
Conforming to it, � was assessed in terms of its relationship and adequacy with such 
an underlying ontology, bringing about the analyzed classification. However, in the 
second place, it has been argued that such ontological assumptions were at odds, in 
a conceptually fundamental sense, with the tenets of some interpretations of QM.

As a first case, we argued that the ensemble view does not share the assumption 
that QM is about single, individual systems. On the contrary, this interpretation is 
based on the idea that quantum mechanics is about ensembles, thus adopting a new 
ontological category not straightforwardly reducible to individuals. In accordance 
to this, the statistical view poses a � that refers to ensembles, and thereby, � should 
be assessed in virtue of capturing such a new reading of �. Importantly, by debunk-
ing the assumption that � describes individual quantum systems, we showed that � 
in the statistical view cannot be classified as �-epistemic. As a consequence of this 
rationale, we also concluded that more sound arguments and more textual evidence 
is needed in order to affirm that Einstein supported a �-epistemic view of the quan-
tum state.

As a second case, we argued that PQM and RQM challenge the idea that � is a 
complete perspective-free description of quantum systems in terms of intrinsic prop-
erties. In contrast, both PQM and RQM put forward a perspectival and relational 
ontology where � must be regarded as perspective dependent and given by relational 
properties. As a consequence, the � s should be contrasted with a quantum ontol-
ogy that admits divergences and overlappings by principled reasons. In the case of 
a PQM model, we argued that it would be misguided to consider it as �-epistemic 
for the interpretation allows the possibility of probability overlapping distributions 
when a system is described by different perspectives. To be emphatic: a perspectival 
and a relational ontology do not consider such a possibility as a failure, but as an 
inherent feature of the quantum world. For these reasons, any PQM model ought 
to be classified as �-ontic if it is meant to capture fully a relational and perspective 
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dependent �. In the case of a RQM model, the quantum state is indeed regarded as �
-epistemic, but for different reasons as we detailed in Sects. 4.2 and 4.3. Importantly, 
Harrigan and Spekkens’ classification fails to capture such reasons, blurring out the 
distinctive features of a relational ontology, in general, and of RQM, in particular.

The most general conclusion that can be drawn from our arguments and from the 
cases we presented is the following. One of the reasons why Harrigan and Spekkens’ 
classification fails to accommodate some interpretations of QM is because it presup-
poses that � remains fixed across different interpretations: it is taken for granted that 
in various quantum theories � varies, whereas � does not in the precise sense that 
for the authors � always refers to properties of individual systems inserted into a 
single, unique perspective. Contra these claims, we hold that � can vary across dif-
ferent interpretations. Hence, a more adequate classification should also incorporate 
divergent views about � as criteria to sort ontological models out.

This implies that a more adequate classification of quantum models should take 
into consideration further categories to satisfactorily represent the various features 
of �. Given that we showed that the ontic state of quantum systems does not always 
refer to a complete description of single, individual systems, a general categoriza-
tion of quantum models should specify the nature of � as to whether it is meant to 
completely describe individual systems or not. If it does, then a complete description 
of the properties of a quantum system is a description of properties instantiated by 
individual systems. If it does not, then � is meant to completely describe ensembles. 
In the second place, it should be also specified whether � is perspective independ-
ent or not: in the former case, a complete description of a quantum system would 
involve intrinsic attributes instantiated by a particular physical system, in the latter 
case, such a description would take into account relational properties that depend on 
some reference system.

Conforming to what we said above, our proposal suggests to introduce new cat-
egories to classify ontological models —i.e. the specification of whether is �-per-
spective independent and �−individual—in order to show how � may vary across 
different interpretations. With them, we could reappraise Harrigan and Spekkens’ 
categorizations of the quantum state � . For instance, their definition of �-epistemic 
models relies heavily on � to be perspective independent; by contrast, a far-reaching 
definition should take this aspect of the ontic state into consideration.

In sum, Harrigan and Spekkens’ categories can be made more precise and correct 
incorporating how different ontological models pose different � s. Clearly, these new 
distinctions we are introducing make the classification of ontological models sub-
stantially more complex. However, this is the price to pay in order to comprehend 
the essential ontological assumptions underlying the various interpretations of QM. 
In conclusion, a far-reaching and more rigorous classification should take variations 
of � seriously into account, which entails reappraising the status of � in function of 
such variations. Such a task will be matter of future work.
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