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The variation among sites of protein structure
divergence is shaped by mutation and scaled by

selection
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Abstract

Protein structures do not evolve uniformly, but the degree of structure di-
vergence varies among sites. The resulting site-dependent structure divergence
patterns emerge from a process that involves mutation and selection, which may
both, in principle, influence the emergent pattern. In contrast with sequence
divergence patterns, which are known to be mainly determined by selection,
the relative contributions of mutation and selection to structure divergence pat-
terns is unclear. Here, studying 6 protein families with a mechanistic biophysical
model of protein evolution, we untangle the effects of mutation and selection.
We found that even in the absence of selection, structure divergence varies from
site to site because the mutational sensitivity is not uniform. Selection scales
the profile, increasing its amplitude, without changing its shape. This scaling
effect follows from the similarity between mutational sensitivity and sequence
variability profiles.

Keywords: Protein evolution, Mutation, Selection, Biophysical model,
Structure divergence, Sequence divergence

1. Introduction

Patterns of evolutionary variability inform on the processes that shape them.
The evolutionary process has two main components: mutation, which originates
new mutant genotypes, and selection, which determines the likelihood of mu-
tants becoming lost or fixed [1]. At genotype level selection is usually the main
force shaping emergent patterns. In contrast, at phenotype level even com-
pletely random unselected mutations may result in biased phenotypic variation
governed not by selection, but by biases of the developmental process that maps
genotypes onto phenotypes [2, 3, 4, 5, 6]. Therefore, when looking for the forces
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shaping observed patterns of evolutionary variation, it is important to remem-
ber that these patterns result, in general, from the combination of the effects of
mutation and selection on phenotypes.

Here, we are interested in protein evolution, which results in the divergence
of protein amino-acid sequences and their structures. A protein’s sequence and
structure can be thought of as its genotype and phenotype, respectively, with
protein folding, which maps the sequence onto the structure, playing the role
of development. Most studies of patterns of protein divergence within protein
families have focused on sequence divergence. In particular, much research has
aimed at finding the biological and physical causes underlying the observed
variation of sequence conservation among protein sites [7, 8, 9, 10, 11]. The
main lesson is that the sequence divergence patterns are mostly governed by
selection for stability [12, 13].

We know much less about patterns of structure divergence and their causes.
Classic studies focused on overall structure divergence and its relation with se-
quence divergence and showed that structures evolve more slowly than sequences
[14, 15, 16]. More recently, the focus has shifted to studying in more detail the
directions of evolutionary deformation within protein families [17, 18, 19, 20, 21,
22]. In analogy with sequence patterns, some studies have tried selectionist ex-
planations of structure patterns [17, 23]. However, other studies proposed that
selection has no effect on structure patterns, which would be purely determined
by mutational sensitivity [18, 19]. In such mutationist view, features of protein
structure would be more variable or conserved according to whether they are
more sensitive or insensitive with respect to mutations.

Despite the previous purely mutationist explanation of structure divergence
patterns, it is still surprising that selection, all-important at sequence level,
leaves no trace at structure level. Without selection, all protein sites would
diverge with the same rate of amino acid substitutions per unit of time. Because
of selection, different sites evolve at different rates. Selection being so evident in
such variation among sites of of sequence divergence rates, here we hypothesised
that in addition to mutational sensitivity, selection should also leave some trace
in the variation among sites of the degree of structure divergence. If this was
the case, site-dependent structure divergence profiles would be shaped by a
combination of mutational sensitivity and natural selection.

To test the previous hypothesis, we dissected the relative effects of muta-
tional sensitivity and selection on structure divergence. To this end, we derived
a biophysical model of protein structure evolution, we validated the model by
comparison with observed data, and we studied the differential effect of selec-
tion on structure divergence patterns by comparing patterns predicted under
varying degrees of selection. In the following sections we describe methods in
detail, present and discuss the results, draw the main conclusions and propose
some directions of future research.
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2. Methods

2.1. Structure divergence profiles: RMSD

To measure structure divergence patterns, we used RMSD profiles. Given a
set of aligned and structurally superimposed homologous proteins, Root Mean
Square profiles, RMSD = (RMSD1, RMSD2, . . .), were calculated as follows. First, we
picked one member of the set, ref, as reference. Then, we obtained the pair
alignments between ref and each other member of the set p. Next, we calculated
the vectors ∆ri(p, ref) = rpi − rrefi , the difference between the position vectors
of the alpha carbons of site i of ref and its homologous site of p. Finally, we
obtained

RMSDi =
√
〈||∆ri(p, ref)||2〉 (1)

where ||.||2 is the squared Euclidean norm and < ... > represents the average
over p − ref pair alignments. Since we were not interested in absolute RMSD

values but in their relative variation among sites, we normalized site scores:

nRMSDi =
RMSDi

µ
(2)

where µ is the average of RMSD over sites. Since we use nRMSD everywhere, for
simplicity, we drop the n and use RMSD to denote normalized scores.

2.2. Data sets and RMSDobs

We studied 6 protein families chosen from the HOMSTRAD database of
structurally aligned homologous protein families. HOMSTRAD is a database
of carefully manually curated aligned and superimposed protein domains, often
used as benchmark for automatic structure alignment algorithms [24, 25]. We
picked families with at least 15 members, avoiding (1) families whose sequences
were too similar, )which results in flat uninformative RMSD profiles, (2) families
with proteins larger than 300 sites, which computational simulations too costly,
and (3) families with proteins smaller than 50 sites, too small to be modelled
accurately using the sort of Elastic Network Models used here. The families
chosen, and some key properties are summarized in Table 1.

RMSDobs , the observed profiles, are the RMSD profiles calculated using the
HOMSTRAD alignments. For each family, we chose as reference protein ref

the protein whose structure is closer to the average family structure (Table 1).
Then, we calculated the structure divergence profile RMSDobs using this reference,
as explained in section 2.1.

2.3. Mutation-Selection Model and RMSDMSM

The Mutation Selection Model, MSM, is a biophysical model of protein evolu-
tion that combines previous models used to study structure divergence [18, 19]
and sequence divergence [26]. Briefly, proteins are represented by Elastic Net-
work Models, mutations as perturbations of the network contacts, selection
using a stability-based fixation probability, and simulations are performed by
repeating mutation-selection steps. In this section, we describe in some detail
each model component.
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2.3.1. Elastic Network Model

We used the simplest Elastic Network Model (ENM), the so-called Anisotropic
Network Model, ANM [27]. The ANM represents sites as nodes placed at the
sites’ Cα positions and joins nodes using springs of identical spring constant k,
if they are within a cut-off distance R0 of each other. For the wild-type protein
at a given point of time, ANM represents the protein’s potential energy as:

Vwt(r) =
1

2

∑
i<j

kij(dij − lij)2 (3)

where dij is the distance between nodes i and j in a given protein conformation
r, and lij is the length of spring i− j . All models developed so far use lij = d0ij ,

where d0ij is the distance between i and j in the native conformation r0wt. This
guarantees that this conformation is at the minimum of the energy well. The
force constants are given by:

kij =

{
k, d0ij ≤ R0,

0, d0ij > R0

(4)

Therefore, ANM has two parameters, R0 and k. In general, results are quite
insensitive to the precise values in the range 10 ≤ R0 ≤ 15. Here we used
R0 = 12.5Å. The parameter k has no effect on normalized RMSD values, of
interest here, thus we arbitrarily set k = 1.

For proteins, the most common use of ENMs is to analyse protein motions.
For instance, normal modes can be obtained by diagonalization of the matrix
of second derivatives of Vwt(r), the Hessian matrix K. This matrix can also be
used to calculate the variance-covariance matrix C:

C = K−1 (5)

(Rigorously, K is singular and has no inverse, thus the pseudo-inverse is used
instead, see e.g. [19].) C can be partitioned into blocks Cij , where i and j
designate sites. Off-diagonal blocks describe correlated motions and diagonal
blocks characterize individual fluctuations. For example, the flexibility of site i,
measured by its Root Mean Square Fluctuation, RMSF, is given by:

RMSFi =
√
Tr(Cii) (6)

where Tr is the matrix trace operation.

2.3.2. Mutation

We represent point mutations as small perturbations of the springs con-
necting the mutated site to its neighbours [18, 19]. Specifically, a mutation is
modelled as:

lij → lij + δij (7)
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where δij are the spring-length perturbations which are zero except for contacts
of the mutated site, for which they are independently chosen from identical
normal distributions:

δij ∼ N(0, σmut) (8)

We arbitrarily set σmut = 1 in the present study, because this parameter has no
effect on the normalized RMSD profiles, which are our focus here.

The mutant’s energy function is given by:

Vmut(r) =
1

2

∑
i<j

kij [dij − (lij + δij)]
2 (9)

The mutant’s native conformation, r0mut is the r that minimizes Vmut(r). It may
be calculated using:

r0mut = r0wt + ∆r0 (10)

where ∆r0 is the deformation that results from the mutation and can be calcu-
lated using:

∆r0 = Cf (11)

where C is the variance-covariance matrix given by Eq. 5 and f is a “force”
vector that can be calculated from the perturbations δij of Eq. 7 [18, 19].

2.3.3. Selection

MSM is an origination-fixation model [1]: at any given time the population
consists of a single genotype, the current wild type, and evolution results from
repeated mutation-fixation steps consisting of the origination of a mutant geno-
type by mutation, which either disappears or gets fixed, replacing the wild-type,
according the value of a fixation probability function, which represents natural
selection.

Here, natural selection is modelled by the following fixation probability func-
tion [26]:

pfix = e−βδV
∗

(12)

where β is a parameter that allows tuning selection pressure against destabi-
lization and δV ∗ is the energy difference between the mutant and the wild type
when both are at the active conformation, which is assumed to be the native
wild-type equilibrium structure:

δV ∗ = Vmut(r
0
wt)− Vwt(r0wt) (13)

This model of selection was derived in detail in [26]. Noteworthy, an expo-
nential fixation probability such as Eq. 12 is related to a fitness function that
is a “step function” [8, 28]. The interested reader could find more details in the
cited references.
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2.3.4. Simulation

To generate an evolutionary path of protein structures r0, r1, . . . , rn, we
need to specify the initial structure and the model selection parameter β. The
path starts at rt = r0. At time-step t, a mutation is introduced in rt by picking
a protein site randomly and perturbing all its contacts to obtain a trial mutant,
the energy δV ∗ and fixation probability pfix are calculated, and the mutation
is accepted if a number between 0 and 1 picked from a uniform distribution is
smaller than pfix. If the mutation is fixed, rmut is calculated and rt+1 = rmut is
set. This mutation-selection step is repeated until t = n is reached.

The previous process can be used to generate any desired phylogenetic tree.
In this work, we simulated star trees, which are sets of independent paths of
the same length divergent from the same ancestral structure r0. To generate a
star tree, therefore, model input is selection parameter β, common ancestor r0,
lineage length n = nsubs, and number of lineages npaths = nlineages.

2.3.5. RMSDMSM

RMSDMSM were calculated from aligned proteins obtained from MSM simulations.
For each family studied, we chose the member closest in structure to the family
average as reference protein (Table 1). Then we generated simulated datasets
using MSM for increasing selection pressures β. We used nbranches = 100 and
nsubs = (100 − Id%)/100, where Id% is the average sequence identity percent
of the HOMSTRAD family. Using these simulated datasets, we calculated the
site-dependent structure divergence profiles RMSDMSM, as explained in section 2.1.

2.3.6. Acceptance rate: ω

In addition to structure divergence degrees, measured by RMSD, we consider
also sequence divergence degrees, which are conveniently measured using ω, the
so-called acceptance rate, which is the average number of fixations per mutation.
At protein level, ω can be calculated using:

ω =< pfix >=<< e−βδV
∗
>> (14)

where the double-averaging symbol << ... >> is used to denote a double aver-
aging, over sites and mutations. At site level, ωi is given by

ωi =< pfix >=< e−βδV
∗
>i (15)

with < . . . >i denoting an average over mutations at site i:
ω is a convenient measure of selection pressure. If β = 0 there is no selection:

all mutations are accepted, pfix = 1, and ω = 1. On the other hand, as the
selection pressure parameter β increases, ω decreases.

2.4. Mutation Model and RMSDMM

We use the Mutation Model, MM, as a control to quantify the effect of adding
selection over the purely mutational effect. MM is the special case of MSM with
β = 0 (ω = 1) in which all mutations are fixed and thus selection does not

6

Jo
urn

al 
Pre-

pro
of



operate. Therefore, RMSDMM = RMSDMSM(β = 0), calculated as described in the
previous section. Since in this case the only source of variation among sites is
the variable sensitivity of the structure’s response to mutations, we call RMSDMM

the mutational sensitivity.

3. Results and discussion

We studied the effects of mutation and selection on site-dependent struc-
ture divergence patterns for the 6 protein families of Table 1. To this end,we
compared three types of profile: RMSDMSM, RMSDMM, and RMSDobs. An RMSD pro-
file is a vector RMSD = (RMSD1, RMSD2, . . .), where RMSDi quantifies the relative
structure divergence of site i. RMSDMSM are profiles predicted by the Mutation
Selection Model, MSM, which simulates evolutionary divergence under the effect
of mutational deformations and selection on protein stability. RMSDMM are profiles
predicted by the Mutation Model, MM, which is the special case of MSM without
selection (and, therefore, represents the structure response of the protein struc-
ture to unselected random mutations, which is why we refer to RMSDMM as the
mutational sensitivity). RMSDobs are the observed profiles, calculated from the
multiple alignments of actual family members.

For clarity, we used one example case, serine proteases, for the figures shown
in the main document. Results for other families are similar, as can be seen in
supplementary figures ( section 4.)

3.1. Model predictions

We start by analysing the effect of varying selection pressure on model pre-
dictions. We run MSM simulations for all families and various values of the
selection parameter β. Then, for each family and each β value, we calculate
the RMSDMSM profile and the average fixation probability ω, which is a convenient
measure of selection pressure.

RMSDMSM profiles for serine proteases are shown in Figure 1. Clearly, structure
divergence varies among sites even in the absence of selection (ω = 1). As selec-
tion pressure increases (ω decreases), RMSDMSM profiles become more pronounced.
However, while increasing selection makes peaks higher and wells deeper, selec-
tion does not affect the positions of peaks and wells along the sequence, which is
why all RMSDMSM profiles look similar to the mutational sensitivity profile RMSDMM.

More quantitatively, we find that RMSDMSM increases linearly with RMSDMM (Fig-
ure 2a), obeying:

RMSDMSMi (ω) = 1 + α(ω)(RMSDMMi − 1), i = 1, . . . N (16)

where i is the site index and N the number of sites, ω is the average acceptance
probability, and α is the slope of the linear dependence.

According to Eq. 16, any variation among sites of RMSDMSM is due to the
mutational sensitivity RMSDMM, which does not depend on selection. Selection
affects only the site-independent slope parameter α, which has a minimum α = 1
for ω = 1 and increases with decreasing ω (Figure 2b). Therefore, Eq. 16
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accounts for the observed similarity between RMSDMSM and RMSDMM profiles and
for the amplifying effect of selection.

Note that according to Eq. 16, RMSDMSM and RMSDMM are identical, modulo a
linear transformation, so that, in this very sense, they can be said to have the
same shape. On the other hand, the increase of the parameter α with selection
pressure (Figure 2b and Figure 2c), accounts for the scaling of RMSDMSM profiles
(Figure 2a). Therefore, we can say that the variation among sites of structure
divergence is shaped by mutational sensitivity and scaled by selection.

3.2. Predictions vs observations

To test the previous predictions, we assessed whether Eq. 16 fits observed
profiles, RMSDobs. The model-vs-data fit for serine proteases is visualized in Fig-
ure 3. In this case, the relationship between the profiles compared is RMSDobs ≈
RMSDMSM = 1+1.9(RMSDMM−1) (Table 2). Thus, the observed profile RMSDobs is sim-
ilar to the MSM profile RMSDMSM and both are similar to, but more pronounced than
the mutational sensitivity profile RMSDMM (Figure 3a and Figure 3b). Accord-
ingly, RMSDobs increases with RMSDMM more steeply than expected in the absence
of selection (Figure 3c).

In general, Eq. 16, provides a very good fit to RMSDobs for all families of
this study, which validates the MSM model (Table 2). The Pearson correlation
coefficient between RMSDobs and RMSDMM varies in the range 0.62 ≤ R ≤ 0.8,
which shows that the mutational sensitivity is a major determinant of structure
divergence. In addition, in all cases α > 1, consistent with the presence of
negative selection, as modelled by the MSM model.

In summary, as predicted by the MSM model, observed profiles RMSDobs are
similar to the mutational sensitivity profile RMSDMM, but more pronounced, be-
cause they’re scaled by selection with a scaling parameter α > 1.

3.3. Dependence of RMSD on flexibility and packing

According to Eq. 11, mutational deformations depend on the protein’s variance-
covariance matrix C. This matrix characterizes protein fluctuations (Eq. 6)),
which suggests a possible relationship between structure divergence and flexi-
bility. In addition, since flexibility is related to local packing [29], we would
also expect a relationship between divergence and packing. Indeed, as we show
in Figure 4, both RMSDMSM and RMSDMM increase with RMSF and decrease with
CN. These dependencies should be seen as representations of a single gradient,
because RMSF ≈ 1/

√
CN [29]. The gradient is in place even without selection,

due to variation among sites of mutational sensitivity (RMSDMM). With selection
(RMSDMSM), the gradient becomes steeper.

3.4. Structure patterns vs. sequence patterns

So far, we have shown that RMSDMSM increases linearly with mutational sensi-
tivity RMSDMM with a constant slope that depends on selection pressure (Eq. 16).
Further, we showed that RMSDMM increases with flexibility and decreases with
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packing, with selection making these gradients steeper. What is the mechanism
that underpins such seemingly secondary role of selection?

To answer this question, we compare structure profiles with sequence profiles
(Figure 5). Without selection, all sites evolve at the same rate: the sequence
ω profile is flat. In contrast, even without selection, RMSDMM varies among sites,
as we know from previous sections. Because of selection, different sites evolve
at different rates, and a site-dependent sequence profile emerges. At structure
level, selection does not affect the shape of the RMSD profile, but just scales it.
From the figure, it is obvious that mutational sensitivity and sequence profiles
are very similar. Because of this similarity, selection does not change the shape
of the RMSD profile but only its amplitude, which explains the scaling effect of
selection described by Eq. 16.

3.5. Comparison of different ENM models

All the previous results are based on the Anisotropic Network Model (ANM).
This model, assigning the same spring force constant kij = k to all contacts,
is the simplest possible elastic network model. From the very good agreement
between predictions and observations (Table 2), it follows that in spite of its sim-
plicity, the ANM-based MSM model captures the physics underlying the variation
of structure divergence among sites. However, other presumably more realistic
network models exist and it is worthwhile to test the effect of ENM model choice
on RMSD predictions. To this end, we compared ANM results with three alter-
native elastic network models: MW, HCA, and pfANM. MW uses two different
force constants, a larger one for contacts between covalently bound residues and
a smaller one for non-covalent contacts[30]; HCA, the “harmonic alpha carbon”
model, sets a large force constant for pairs with dij < 4.5Å, which includes
the covalently bound pairs, and kij ∝ 1/d6ijfor other pairs [31]; pfANM, the

“parameter-free Anisotropic Network Model”, uses kij ∝ 1/d2ij for all pairs [32].
From Figure 6, we see that the RMSDMSM profiles predicted by different ENM

models are similar to each other and similar to the observed profiles RMSDobs.
More quantitatively, the goodness of fit between RMSDMSM and RMSDobs is similar
for different models (Table 3). The reason for such model-independence is that
evolutionary deformations are governed by the variance-covariance matrix C
(see Eq. 11), which depends more on the elastic network topology, captured
by all models, than on details of the interactions, which is why elastic network
models work [33].

4. Conclusion

To summarize, we studied the relative effects of mutational sensitivity and
natural selection on the variation among sites of structure divergence in protein
families. We found that both mutation and selection contribute to structure
divergence. Specifically, the shape of the site-dependent structure divergence
profile is determined by mutational sensitivity, and selection has a seemingly
secondary effect of scaling the profile (Eq. 16). We also showed that mutational
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sensitivity increases with site flexibility and decreases with local packing and
that, again, these gradients become steeper because of the scaling effect of selec-
tion. Finally, we proposed an explanation of this scaling effect of selection: the
mutational sensitivity profile and the sequence variability profiles are similar,
so that their combination does not affect the profile shape, but only its scale.

To finish, we mention some future research directions we find interesting.
First, the most straightforward follow-up of this work would be to to perform a
detailed comparative study of site-dependent patterns at sequence and structure
levels, to look for subtle traces of selection in divergence patterns, beyond the
general trend demonstrated here. Second, this study focused on stability-based
selection, which is the main force shaping sequence divergence patterns, but
selection on activity may also have strong effects, especially at and close to ac-
tive sites. It would be interesting to see how this affects structure conservation
profiles. Third, depending on the findings of the previous two lines, the dif-
ference between RMSDMSM predictions and RMSDobs observations could help detect
functional sites. Finally, at present the MSM model does not consider insertions
of deletions, which may limit its applicability to close homologues at the family
level. Therefore, it would be worthwhile to extend the model to consider the
effects of insertions and deletions in order to study more diverged structures.
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Figure 1: Predicted site-dependent structure divergence profiles for serine pro-
teases. RMSDMSM is the site-dependent profile of Root Mean Square Deviations calculated from
sets of proteins simulated with the Mutation Selection model MSM. RMSD values are normalized
so that their average over sites is 1. site is the site of the protein used as initial condition of
simulations. ω is the average probability of accepting mutations. As (negative) selection pres-
sure increases, ω decreases. The maximum is ω = 1, which is the no-selection case in which all
mutations are accepted. We call this special case the Mutational Model, and we denote the
corresponding profile RMSDMM (RMSDMM = RMSDMSM(ω = 1)). It is important to note that RMSDMM is
not uniform: even in the absence of selection structure divergence varies among sites, because
the sensitivity of the structure to random mutations varies among sites. Therefore, RMSDMM

represents the mutational sensitivity. Selection makes the profiles more pronounced, but does
not seem to affect their shape.
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Figure 2: structure divergence is proportional to mutational sensitivity. The results
shown are for serine proteases. a: structure divergence, RMSDMSM depends linearly on mutational
sensitivity, RMSDMM. Points represent sites and lines were obtained fitting the points using Eq.16:
RMSDMSM = 1 + α(RMSDMM − 1). b: Increasing selection pressure (decreasing ω) increases the
slope of the RMSDMSM vs. RMSDMM lines, α. Therefore, selection linearly scales the profile making
it more pronounced. c: Pearson correlation coefficient, R, between RMSDMSM and RMSDMM. That
R ≈ 1 for all ω values, means that while selection scales the RMSDMSM profile, it does not affect
its shape, which is determined by the mutational sensitivity RMSDMM.
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Figure 3: Predicted vs. observed structure divergence profiles for serine proteases.
Three structure divergence profiles are shown: the observed profile RMSDobs, the predicted
profile RMSDMSM obtained by fitting Eq. 16 to observed data, and, as control, the mutational
sensitivity profile RMSDMM. The differences between RMSDMSM and RMSDMM are due to selection.
a: RMSDobs vs. RMSDMSM ; note that RMSDobs is very similar to RMSDMSM. b: RMSDobs vs. RMSDMM;
both profiles are similar in shape but RMSDobs has larger amplitude because of the amplifying
effect of selection. c: structure divergence vs. mutational sensitivity. Note that the RMSDMSM

vs. RMSDMM line does not superimpose with the y = x line, also shown. This is due to selection,
which increases the slope, amplifying the variation of structure divergence among sites.
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Figure 4: Dependence of RMSD on flexibility and packing for serine proteases. Com-
parison of observed site-specific structure divergence, RMSDobs, with predictions RMSDMSM and
RMSDMM. a: Increase of structure divergence with increasing site flexibility, measured by RMSF

(the Root Mean Square Fluctuations predicted by the Anisotropic Network Model). b: De-
crease of structure divergence with increasing local packing density, measured by the Contact
Number CN (number of sites within a distance of 12.5 Å). The two dependencies are related
because RMSF ≈ 1/

√
CN , thus these two figures are alternative representations of a single

gradient: an increase of structure divergence from the tightly packed and rigid protein core
towards the loosely packed and flexible regions. Importantly, this gradient is evident even
without selection; selection has a seemingly secondary effect of making it steeper without
changing its shape.
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Figure 5: Comparison of structure and sequence divergence profiles. Structure di-
vergence is measured by RMSD and sequence divergence by acceptance rates ω. Both are
normalized so that their average over sites is 1. Predictions of the MSM model that best fits
RMSDobs observed profiles are compared with predictions of the purely mutational MM model.
RMSF measures site flexibility, and the contact number CN measures local packing. a: Com-
parison of structure divergence profiles (top) and sequence divergence profiles (bottom). b:
Comparison of RMSD-vs-RMSF and ω-vs-RMSF gradients. c: Comparison of RMSD-vs-CN and ω-
vs-CN gradients. Note that in the absence of selection (MM model), sequence divergence is
identical for all sites (flat profiles), but structure divergence varies among sites. With se-
lection, the sequence divergence profile emerges and structure divergence becomes amplified.
This amplification is due to RMSDMSM resulting from a combination of two very similar profiles:
the selection-independent mutational sensitivity profile, RMSDMM, and the selection-dependent
sequence profile, ωMSM.
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Figure 6: Dependence of predictions on ENM model choice, case of serine pro-
teases. Comparison of RMSDMSM predictions using four different elastic network models denoted
ANM, MW, HCA, and pfANM (defined in section 3.5). The observed profile RMSDobs is also
shown. All models predict similar profiles.
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Table 1: Protein families

family Nprot < Id% > ref pdb Nsites SCOP
Serine proteases 27 38 1mct 223 β
Fatty acid binding proteins 17 36 1hmt 131 β
Globins 41 32 1a4f,B 146 α
Phospholipases A2 18 49 1jia,A 122 α
RNA recognition motif 20 23 1fxl 82 α/β
Src homology 3 domain 20 32 1lck,A 54 small

Columns show, in order, family name, brief family id, number of members,
average % sequence identity, reference protein (its pdb id and chain), number of
sites of the reference, and structure class according to the SCOP classification
[34].
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Table 2: Best linear fit to observed profiles, RMSDMSM = 1 + α(RMSDMM − 1).

family R σ α± se ω ± se

Serin proteases 0.70 0.50 1.90 ± 0.13 0.13 ±0.05
Fatty acid binding proteins 0.74 0.32 1.98 ± 0.16 0.04 ±0.1
Globins 0.62 0.36 1.50 ± 0.16 0.28 ±0.13
Phospholipases A2 0.72 0.40 1.37 ± 0.12 0.34 ±0.14
RNA recognition motif 0.80 0.43 1.33 ± 0.11 0.32 ±0.13
Src homology 3 domain 0.77 0.39 1.32 ± 0.15 0.26 ±0.16

R is the Pearson correlation coefficient between RMSDobs and RMSDMSM; σ is the standard
deviation of the residuals; α is the slope estimate of the best model-data fit and se

its standard error; ω is the mutation acceptance rate predicted by the best MSM model
and se its standard error. Note that for all cases ω < 1, which means that selection
does affect the observed structure divergence profiles.
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Table 3: Comparison of RMSF profiles predicted by different models.

family ANM MW HCA pfANM
Serin proteases 0.70 0.63 0.67 0.69
Fatty acid binding proteins 0.73 0.48 0.70 0.66
Globins 0.62 0.51 0.59 0.58
Phospholipases A2 0.73 0.65 0.72 0.72
RNA recognition motif 0.80 0.77 0.79 0.78
Src homology 3 domain 0.77 0.72 0.77 0.77

The table shows R, the Pearson correlation coefficient between RMSDobs and RMSDMSM pre-
dicted by four different elastic network models: the anisotropic network model (ANM),
Ming’s and Wall’s model (MW), the harmonic Cα model (HCA), and the parameter-
free anisotropic network model (pfANM). Models are described in section 3.5.
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Highlights 

• The degree of evolutionary divergence of protein structures varies among sites. 
• A Mutation-Selection model (MSM) of protein structure evolution with selection for stability is 

developed. 
• Even in the case of no selection, the sensitivity of the structure to random mutations varies among 

sites. Selection amplifies this variation but it does not affect its shape. 
• This scaling effect of selection follows from the similarity between the selection-independent 

mutational sensitivity and the selection-dependent sequence divergence, the two contributions 
that are combined to produce the observed structural divergence profile. 
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